mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-13 04:30:23 +00:00
a58d67af29
This checks the sanity of the register use lists in the MI intermediate representation. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179895 91177308-0d34-0410-b5e6-96231b3b80d8
1609 lines
57 KiB
C++
1609 lines
57 KiB
C++
//===-- MachineVerifier.cpp - Machine Code Verifier -----------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Pass to verify generated machine code. The following is checked:
|
|
//
|
|
// Operand counts: All explicit operands must be present.
|
|
//
|
|
// Register classes: All physical and virtual register operands must be
|
|
// compatible with the register class required by the instruction descriptor.
|
|
//
|
|
// Register live intervals: Registers must be defined only once, and must be
|
|
// defined before use.
|
|
//
|
|
// The machine code verifier is enabled from LLVMTargetMachine.cpp with the
|
|
// command-line option -verify-machineinstrs, or by defining the environment
|
|
// variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive
|
|
// the verifier errors.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/CodeGen/Passes.h"
|
|
#include "llvm/ADT/DenseSet.h"
|
|
#include "llvm/ADT/SetOperations.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
|
|
#include "llvm/CodeGen/LiveStackAnalysis.h"
|
|
#include "llvm/CodeGen/LiveVariables.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineInstrBundle.h"
|
|
#include "llvm/CodeGen/MachineMemOperand.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/InlineAsm.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/MC/MCAsmInfo.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Target/TargetRegisterInfo.h"
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
struct MachineVerifier {
|
|
|
|
MachineVerifier(Pass *pass, const char *b) :
|
|
PASS(pass),
|
|
Banner(b),
|
|
OutFileName(getenv("LLVM_VERIFY_MACHINEINSTRS"))
|
|
{}
|
|
|
|
bool runOnMachineFunction(MachineFunction &MF);
|
|
|
|
Pass *const PASS;
|
|
const char *Banner;
|
|
const char *const OutFileName;
|
|
raw_ostream *OS;
|
|
const MachineFunction *MF;
|
|
const TargetMachine *TM;
|
|
const TargetInstrInfo *TII;
|
|
const TargetRegisterInfo *TRI;
|
|
const MachineRegisterInfo *MRI;
|
|
|
|
unsigned foundErrors;
|
|
|
|
typedef SmallVector<unsigned, 16> RegVector;
|
|
typedef SmallVector<const uint32_t*, 4> RegMaskVector;
|
|
typedef DenseSet<unsigned> RegSet;
|
|
typedef DenseMap<unsigned, const MachineInstr*> RegMap;
|
|
typedef SmallPtrSet<const MachineBasicBlock*, 8> BlockSet;
|
|
|
|
const MachineInstr *FirstTerminator;
|
|
BlockSet FunctionBlocks;
|
|
|
|
BitVector regsReserved;
|
|
RegSet regsLive;
|
|
RegVector regsDefined, regsDead, regsKilled;
|
|
RegMaskVector regMasks;
|
|
RegSet regsLiveInButUnused;
|
|
|
|
SlotIndex lastIndex;
|
|
|
|
// Add Reg and any sub-registers to RV
|
|
void addRegWithSubRegs(RegVector &RV, unsigned Reg) {
|
|
RV.push_back(Reg);
|
|
if (TargetRegisterInfo::isPhysicalRegister(Reg))
|
|
for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs)
|
|
RV.push_back(*SubRegs);
|
|
}
|
|
|
|
struct BBInfo {
|
|
// Is this MBB reachable from the MF entry point?
|
|
bool reachable;
|
|
|
|
// Vregs that must be live in because they are used without being
|
|
// defined. Map value is the user.
|
|
RegMap vregsLiveIn;
|
|
|
|
// Regs killed in MBB. They may be defined again, and will then be in both
|
|
// regsKilled and regsLiveOut.
|
|
RegSet regsKilled;
|
|
|
|
// Regs defined in MBB and live out. Note that vregs passing through may
|
|
// be live out without being mentioned here.
|
|
RegSet regsLiveOut;
|
|
|
|
// Vregs that pass through MBB untouched. This set is disjoint from
|
|
// regsKilled and regsLiveOut.
|
|
RegSet vregsPassed;
|
|
|
|
// Vregs that must pass through MBB because they are needed by a successor
|
|
// block. This set is disjoint from regsLiveOut.
|
|
RegSet vregsRequired;
|
|
|
|
// Set versions of block's predecessor and successor lists.
|
|
BlockSet Preds, Succs;
|
|
|
|
BBInfo() : reachable(false) {}
|
|
|
|
// Add register to vregsPassed if it belongs there. Return true if
|
|
// anything changed.
|
|
bool addPassed(unsigned Reg) {
|
|
if (!TargetRegisterInfo::isVirtualRegister(Reg))
|
|
return false;
|
|
if (regsKilled.count(Reg) || regsLiveOut.count(Reg))
|
|
return false;
|
|
return vregsPassed.insert(Reg).second;
|
|
}
|
|
|
|
// Same for a full set.
|
|
bool addPassed(const RegSet &RS) {
|
|
bool changed = false;
|
|
for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
|
|
if (addPassed(*I))
|
|
changed = true;
|
|
return changed;
|
|
}
|
|
|
|
// Add register to vregsRequired if it belongs there. Return true if
|
|
// anything changed.
|
|
bool addRequired(unsigned Reg) {
|
|
if (!TargetRegisterInfo::isVirtualRegister(Reg))
|
|
return false;
|
|
if (regsLiveOut.count(Reg))
|
|
return false;
|
|
return vregsRequired.insert(Reg).second;
|
|
}
|
|
|
|
// Same for a full set.
|
|
bool addRequired(const RegSet &RS) {
|
|
bool changed = false;
|
|
for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
|
|
if (addRequired(*I))
|
|
changed = true;
|
|
return changed;
|
|
}
|
|
|
|
// Same for a full map.
|
|
bool addRequired(const RegMap &RM) {
|
|
bool changed = false;
|
|
for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I)
|
|
if (addRequired(I->first))
|
|
changed = true;
|
|
return changed;
|
|
}
|
|
|
|
// Live-out registers are either in regsLiveOut or vregsPassed.
|
|
bool isLiveOut(unsigned Reg) const {
|
|
return regsLiveOut.count(Reg) || vregsPassed.count(Reg);
|
|
}
|
|
};
|
|
|
|
// Extra register info per MBB.
|
|
DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap;
|
|
|
|
bool isReserved(unsigned Reg) {
|
|
return Reg < regsReserved.size() && regsReserved.test(Reg);
|
|
}
|
|
|
|
bool isAllocatable(unsigned Reg) {
|
|
return Reg < TRI->getNumRegs() && MRI->isAllocatable(Reg);
|
|
}
|
|
|
|
// Analysis information if available
|
|
LiveVariables *LiveVars;
|
|
LiveIntervals *LiveInts;
|
|
LiveStacks *LiveStks;
|
|
SlotIndexes *Indexes;
|
|
|
|
void visitMachineFunctionBefore();
|
|
void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB);
|
|
void visitMachineBundleBefore(const MachineInstr *MI);
|
|
void visitMachineInstrBefore(const MachineInstr *MI);
|
|
void visitMachineOperand(const MachineOperand *MO, unsigned MONum);
|
|
void visitMachineInstrAfter(const MachineInstr *MI);
|
|
void visitMachineBundleAfter(const MachineInstr *MI);
|
|
void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB);
|
|
void visitMachineFunctionAfter();
|
|
|
|
void report(const char *msg, const MachineFunction *MF);
|
|
void report(const char *msg, const MachineBasicBlock *MBB);
|
|
void report(const char *msg, const MachineInstr *MI);
|
|
void report(const char *msg, const MachineOperand *MO, unsigned MONum);
|
|
void report(const char *msg, const MachineFunction *MF,
|
|
const LiveInterval &LI);
|
|
void report(const char *msg, const MachineBasicBlock *MBB,
|
|
const LiveInterval &LI);
|
|
|
|
void verifyInlineAsm(const MachineInstr *MI);
|
|
|
|
void checkLiveness(const MachineOperand *MO, unsigned MONum);
|
|
void markReachable(const MachineBasicBlock *MBB);
|
|
void calcRegsPassed();
|
|
void checkPHIOps(const MachineBasicBlock *MBB);
|
|
|
|
void calcRegsRequired();
|
|
void verifyLiveVariables();
|
|
void verifyLiveIntervals();
|
|
void verifyLiveInterval(const LiveInterval&);
|
|
void verifyLiveIntervalValue(const LiveInterval&, VNInfo*);
|
|
void verifyLiveIntervalSegment(const LiveInterval&,
|
|
LiveInterval::const_iterator);
|
|
};
|
|
|
|
struct MachineVerifierPass : public MachineFunctionPass {
|
|
static char ID; // Pass ID, replacement for typeid
|
|
const char *const Banner;
|
|
|
|
MachineVerifierPass(const char *b = 0)
|
|
: MachineFunctionPass(ID), Banner(b) {
|
|
initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.setPreservesAll();
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
|
}
|
|
|
|
bool runOnMachineFunction(MachineFunction &MF) {
|
|
MF.verify(this, Banner);
|
|
return false;
|
|
}
|
|
};
|
|
|
|
}
|
|
|
|
char MachineVerifierPass::ID = 0;
|
|
INITIALIZE_PASS(MachineVerifierPass, "machineverifier",
|
|
"Verify generated machine code", false, false)
|
|
|
|
FunctionPass *llvm::createMachineVerifierPass(const char *Banner) {
|
|
return new MachineVerifierPass(Banner);
|
|
}
|
|
|
|
void MachineFunction::verify(Pass *p, const char *Banner) const {
|
|
MachineVerifier(p, Banner)
|
|
.runOnMachineFunction(const_cast<MachineFunction&>(*this));
|
|
}
|
|
|
|
bool MachineVerifier::runOnMachineFunction(MachineFunction &MF) {
|
|
raw_ostream *OutFile = 0;
|
|
if (OutFileName) {
|
|
std::string ErrorInfo;
|
|
OutFile = new raw_fd_ostream(OutFileName, ErrorInfo,
|
|
raw_fd_ostream::F_Append);
|
|
if (!ErrorInfo.empty()) {
|
|
errs() << "Error opening '" << OutFileName << "': " << ErrorInfo << '\n';
|
|
exit(1);
|
|
}
|
|
|
|
OS = OutFile;
|
|
} else {
|
|
OS = &errs();
|
|
}
|
|
|
|
foundErrors = 0;
|
|
|
|
this->MF = &MF;
|
|
TM = &MF.getTarget();
|
|
TII = TM->getInstrInfo();
|
|
TRI = TM->getRegisterInfo();
|
|
MRI = &MF.getRegInfo();
|
|
|
|
LiveVars = NULL;
|
|
LiveInts = NULL;
|
|
LiveStks = NULL;
|
|
Indexes = NULL;
|
|
if (PASS) {
|
|
LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>();
|
|
// We don't want to verify LiveVariables if LiveIntervals is available.
|
|
if (!LiveInts)
|
|
LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>();
|
|
LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>();
|
|
Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>();
|
|
}
|
|
|
|
visitMachineFunctionBefore();
|
|
for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end();
|
|
MFI!=MFE; ++MFI) {
|
|
visitMachineBasicBlockBefore(MFI);
|
|
// Keep track of the current bundle header.
|
|
const MachineInstr *CurBundle = 0;
|
|
// Do we expect the next instruction to be part of the same bundle?
|
|
bool InBundle = false;
|
|
|
|
for (MachineBasicBlock::const_instr_iterator MBBI = MFI->instr_begin(),
|
|
MBBE = MFI->instr_end(); MBBI != MBBE; ++MBBI) {
|
|
if (MBBI->getParent() != MFI) {
|
|
report("Bad instruction parent pointer", MFI);
|
|
*OS << "Instruction: " << *MBBI;
|
|
continue;
|
|
}
|
|
|
|
// Check for consistent bundle flags.
|
|
if (InBundle && !MBBI->isBundledWithPred())
|
|
report("Missing BundledPred flag, "
|
|
"BundledSucc was set on predecessor", MBBI);
|
|
if (!InBundle && MBBI->isBundledWithPred())
|
|
report("BundledPred flag is set, "
|
|
"but BundledSucc not set on predecessor", MBBI);
|
|
|
|
// Is this a bundle header?
|
|
if (!MBBI->isInsideBundle()) {
|
|
if (CurBundle)
|
|
visitMachineBundleAfter(CurBundle);
|
|
CurBundle = MBBI;
|
|
visitMachineBundleBefore(CurBundle);
|
|
} else if (!CurBundle)
|
|
report("No bundle header", MBBI);
|
|
visitMachineInstrBefore(MBBI);
|
|
for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I)
|
|
visitMachineOperand(&MBBI->getOperand(I), I);
|
|
visitMachineInstrAfter(MBBI);
|
|
|
|
// Was this the last bundled instruction?
|
|
InBundle = MBBI->isBundledWithSucc();
|
|
}
|
|
if (CurBundle)
|
|
visitMachineBundleAfter(CurBundle);
|
|
if (InBundle)
|
|
report("BundledSucc flag set on last instruction in block", &MFI->back());
|
|
visitMachineBasicBlockAfter(MFI);
|
|
}
|
|
visitMachineFunctionAfter();
|
|
|
|
if (OutFile)
|
|
delete OutFile;
|
|
else if (foundErrors)
|
|
report_fatal_error("Found "+Twine(foundErrors)+" machine code errors.");
|
|
|
|
// Clean up.
|
|
regsLive.clear();
|
|
regsDefined.clear();
|
|
regsDead.clear();
|
|
regsKilled.clear();
|
|
regMasks.clear();
|
|
regsLiveInButUnused.clear();
|
|
MBBInfoMap.clear();
|
|
|
|
return false; // no changes
|
|
}
|
|
|
|
void MachineVerifier::report(const char *msg, const MachineFunction *MF) {
|
|
assert(MF);
|
|
*OS << '\n';
|
|
if (!foundErrors++) {
|
|
if (Banner)
|
|
*OS << "# " << Banner << '\n';
|
|
MF->print(*OS, Indexes);
|
|
}
|
|
*OS << "*** Bad machine code: " << msg << " ***\n"
|
|
<< "- function: " << MF->getName() << "\n";
|
|
}
|
|
|
|
void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) {
|
|
assert(MBB);
|
|
report(msg, MBB->getParent());
|
|
*OS << "- basic block: BB#" << MBB->getNumber()
|
|
<< ' ' << MBB->getName()
|
|
<< " (" << (const void*)MBB << ')';
|
|
if (Indexes)
|
|
*OS << " [" << Indexes->getMBBStartIdx(MBB)
|
|
<< ';' << Indexes->getMBBEndIdx(MBB) << ')';
|
|
*OS << '\n';
|
|
}
|
|
|
|
void MachineVerifier::report(const char *msg, const MachineInstr *MI) {
|
|
assert(MI);
|
|
report(msg, MI->getParent());
|
|
*OS << "- instruction: ";
|
|
if (Indexes && Indexes->hasIndex(MI))
|
|
*OS << Indexes->getInstructionIndex(MI) << '\t';
|
|
MI->print(*OS, TM);
|
|
}
|
|
|
|
void MachineVerifier::report(const char *msg,
|
|
const MachineOperand *MO, unsigned MONum) {
|
|
assert(MO);
|
|
report(msg, MO->getParent());
|
|
*OS << "- operand " << MONum << ": ";
|
|
MO->print(*OS, TM);
|
|
*OS << "\n";
|
|
}
|
|
|
|
void MachineVerifier::report(const char *msg, const MachineFunction *MF,
|
|
const LiveInterval &LI) {
|
|
report(msg, MF);
|
|
*OS << "- interval: ";
|
|
if (TargetRegisterInfo::isVirtualRegister(LI.reg))
|
|
*OS << PrintReg(LI.reg, TRI);
|
|
else
|
|
*OS << PrintRegUnit(LI.reg, TRI);
|
|
*OS << ' ' << LI << '\n';
|
|
}
|
|
|
|
void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB,
|
|
const LiveInterval &LI) {
|
|
report(msg, MBB);
|
|
*OS << "- interval: ";
|
|
if (TargetRegisterInfo::isVirtualRegister(LI.reg))
|
|
*OS << PrintReg(LI.reg, TRI);
|
|
else
|
|
*OS << PrintRegUnit(LI.reg, TRI);
|
|
*OS << ' ' << LI << '\n';
|
|
}
|
|
|
|
void MachineVerifier::markReachable(const MachineBasicBlock *MBB) {
|
|
BBInfo &MInfo = MBBInfoMap[MBB];
|
|
if (!MInfo.reachable) {
|
|
MInfo.reachable = true;
|
|
for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
|
|
SuE = MBB->succ_end(); SuI != SuE; ++SuI)
|
|
markReachable(*SuI);
|
|
}
|
|
}
|
|
|
|
void MachineVerifier::visitMachineFunctionBefore() {
|
|
lastIndex = SlotIndex();
|
|
regsReserved = MRI->getReservedRegs();
|
|
|
|
// A sub-register of a reserved register is also reserved
|
|
for (int Reg = regsReserved.find_first(); Reg>=0;
|
|
Reg = regsReserved.find_next(Reg)) {
|
|
for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
|
|
// FIXME: This should probably be:
|
|
// assert(regsReserved.test(*SubRegs) && "Non-reserved sub-register");
|
|
regsReserved.set(*SubRegs);
|
|
}
|
|
}
|
|
|
|
markReachable(&MF->front());
|
|
|
|
// Build a set of the basic blocks in the function.
|
|
FunctionBlocks.clear();
|
|
for (MachineFunction::const_iterator
|
|
I = MF->begin(), E = MF->end(); I != E; ++I) {
|
|
FunctionBlocks.insert(I);
|
|
BBInfo &MInfo = MBBInfoMap[I];
|
|
|
|
MInfo.Preds.insert(I->pred_begin(), I->pred_end());
|
|
if (MInfo.Preds.size() != I->pred_size())
|
|
report("MBB has duplicate entries in its predecessor list.", I);
|
|
|
|
MInfo.Succs.insert(I->succ_begin(), I->succ_end());
|
|
if (MInfo.Succs.size() != I->succ_size())
|
|
report("MBB has duplicate entries in its successor list.", I);
|
|
}
|
|
|
|
// Check that the register use lists are sane.
|
|
MRI->verifyUseLists();
|
|
}
|
|
|
|
// Does iterator point to a and b as the first two elements?
|
|
static bool matchPair(MachineBasicBlock::const_succ_iterator i,
|
|
const MachineBasicBlock *a, const MachineBasicBlock *b) {
|
|
if (*i == a)
|
|
return *++i == b;
|
|
if (*i == b)
|
|
return *++i == a;
|
|
return false;
|
|
}
|
|
|
|
void
|
|
MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
|
|
FirstTerminator = 0;
|
|
|
|
if (MRI->isSSA()) {
|
|
// If this block has allocatable physical registers live-in, check that
|
|
// it is an entry block or landing pad.
|
|
for (MachineBasicBlock::livein_iterator LI = MBB->livein_begin(),
|
|
LE = MBB->livein_end();
|
|
LI != LE; ++LI) {
|
|
unsigned reg = *LI;
|
|
if (isAllocatable(reg) && !MBB->isLandingPad() &&
|
|
MBB != MBB->getParent()->begin()) {
|
|
report("MBB has allocable live-in, but isn't entry or landing-pad.", MBB);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Count the number of landing pad successors.
|
|
SmallPtrSet<MachineBasicBlock*, 4> LandingPadSuccs;
|
|
for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
|
|
E = MBB->succ_end(); I != E; ++I) {
|
|
if ((*I)->isLandingPad())
|
|
LandingPadSuccs.insert(*I);
|
|
if (!FunctionBlocks.count(*I))
|
|
report("MBB has successor that isn't part of the function.", MBB);
|
|
if (!MBBInfoMap[*I].Preds.count(MBB)) {
|
|
report("Inconsistent CFG", MBB);
|
|
*OS << "MBB is not in the predecessor list of the successor BB#"
|
|
<< (*I)->getNumber() << ".\n";
|
|
}
|
|
}
|
|
|
|
// Check the predecessor list.
|
|
for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(),
|
|
E = MBB->pred_end(); I != E; ++I) {
|
|
if (!FunctionBlocks.count(*I))
|
|
report("MBB has predecessor that isn't part of the function.", MBB);
|
|
if (!MBBInfoMap[*I].Succs.count(MBB)) {
|
|
report("Inconsistent CFG", MBB);
|
|
*OS << "MBB is not in the successor list of the predecessor BB#"
|
|
<< (*I)->getNumber() << ".\n";
|
|
}
|
|
}
|
|
|
|
const MCAsmInfo *AsmInfo = TM->getMCAsmInfo();
|
|
const BasicBlock *BB = MBB->getBasicBlock();
|
|
if (LandingPadSuccs.size() > 1 &&
|
|
!(AsmInfo &&
|
|
AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj &&
|
|
BB && isa<SwitchInst>(BB->getTerminator())))
|
|
report("MBB has more than one landing pad successor", MBB);
|
|
|
|
// Call AnalyzeBranch. If it succeeds, there several more conditions to check.
|
|
MachineBasicBlock *TBB = 0, *FBB = 0;
|
|
SmallVector<MachineOperand, 4> Cond;
|
|
if (!TII->AnalyzeBranch(*const_cast<MachineBasicBlock *>(MBB),
|
|
TBB, FBB, Cond)) {
|
|
// Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's
|
|
// check whether its answers match up with reality.
|
|
if (!TBB && !FBB) {
|
|
// Block falls through to its successor.
|
|
MachineFunction::const_iterator MBBI = MBB;
|
|
++MBBI;
|
|
if (MBBI == MF->end()) {
|
|
// It's possible that the block legitimately ends with a noreturn
|
|
// call or an unreachable, in which case it won't actually fall
|
|
// out the bottom of the function.
|
|
} else if (MBB->succ_size() == LandingPadSuccs.size()) {
|
|
// It's possible that the block legitimately ends with a noreturn
|
|
// call or an unreachable, in which case it won't actuall fall
|
|
// out of the block.
|
|
} else if (MBB->succ_size() != 1+LandingPadSuccs.size()) {
|
|
report("MBB exits via unconditional fall-through but doesn't have "
|
|
"exactly one CFG successor!", MBB);
|
|
} else if (!MBB->isSuccessor(MBBI)) {
|
|
report("MBB exits via unconditional fall-through but its successor "
|
|
"differs from its CFG successor!", MBB);
|
|
}
|
|
if (!MBB->empty() && getBundleStart(&MBB->back())->isBarrier() &&
|
|
!TII->isPredicated(getBundleStart(&MBB->back()))) {
|
|
report("MBB exits via unconditional fall-through but ends with a "
|
|
"barrier instruction!", MBB);
|
|
}
|
|
if (!Cond.empty()) {
|
|
report("MBB exits via unconditional fall-through but has a condition!",
|
|
MBB);
|
|
}
|
|
} else if (TBB && !FBB && Cond.empty()) {
|
|
// Block unconditionally branches somewhere.
|
|
if (MBB->succ_size() != 1+LandingPadSuccs.size()) {
|
|
report("MBB exits via unconditional branch but doesn't have "
|
|
"exactly one CFG successor!", MBB);
|
|
} else if (!MBB->isSuccessor(TBB)) {
|
|
report("MBB exits via unconditional branch but the CFG "
|
|
"successor doesn't match the actual successor!", MBB);
|
|
}
|
|
if (MBB->empty()) {
|
|
report("MBB exits via unconditional branch but doesn't contain "
|
|
"any instructions!", MBB);
|
|
} else if (!getBundleStart(&MBB->back())->isBarrier()) {
|
|
report("MBB exits via unconditional branch but doesn't end with a "
|
|
"barrier instruction!", MBB);
|
|
} else if (!getBundleStart(&MBB->back())->isTerminator()) {
|
|
report("MBB exits via unconditional branch but the branch isn't a "
|
|
"terminator instruction!", MBB);
|
|
}
|
|
} else if (TBB && !FBB && !Cond.empty()) {
|
|
// Block conditionally branches somewhere, otherwise falls through.
|
|
MachineFunction::const_iterator MBBI = MBB;
|
|
++MBBI;
|
|
if (MBBI == MF->end()) {
|
|
report("MBB conditionally falls through out of function!", MBB);
|
|
} else if (MBB->succ_size() == 1) {
|
|
// A conditional branch with only one successor is weird, but allowed.
|
|
if (&*MBBI != TBB)
|
|
report("MBB exits via conditional branch/fall-through but only has "
|
|
"one CFG successor!", MBB);
|
|
else if (TBB != *MBB->succ_begin())
|
|
report("MBB exits via conditional branch/fall-through but the CFG "
|
|
"successor don't match the actual successor!", MBB);
|
|
} else if (MBB->succ_size() != 2) {
|
|
report("MBB exits via conditional branch/fall-through but doesn't have "
|
|
"exactly two CFG successors!", MBB);
|
|
} else if (!matchPair(MBB->succ_begin(), TBB, MBBI)) {
|
|
report("MBB exits via conditional branch/fall-through but the CFG "
|
|
"successors don't match the actual successors!", MBB);
|
|
}
|
|
if (MBB->empty()) {
|
|
report("MBB exits via conditional branch/fall-through but doesn't "
|
|
"contain any instructions!", MBB);
|
|
} else if (getBundleStart(&MBB->back())->isBarrier()) {
|
|
report("MBB exits via conditional branch/fall-through but ends with a "
|
|
"barrier instruction!", MBB);
|
|
} else if (!getBundleStart(&MBB->back())->isTerminator()) {
|
|
report("MBB exits via conditional branch/fall-through but the branch "
|
|
"isn't a terminator instruction!", MBB);
|
|
}
|
|
} else if (TBB && FBB) {
|
|
// Block conditionally branches somewhere, otherwise branches
|
|
// somewhere else.
|
|
if (MBB->succ_size() == 1) {
|
|
// A conditional branch with only one successor is weird, but allowed.
|
|
if (FBB != TBB)
|
|
report("MBB exits via conditional branch/branch through but only has "
|
|
"one CFG successor!", MBB);
|
|
else if (TBB != *MBB->succ_begin())
|
|
report("MBB exits via conditional branch/branch through but the CFG "
|
|
"successor don't match the actual successor!", MBB);
|
|
} else if (MBB->succ_size() != 2) {
|
|
report("MBB exits via conditional branch/branch but doesn't have "
|
|
"exactly two CFG successors!", MBB);
|
|
} else if (!matchPair(MBB->succ_begin(), TBB, FBB)) {
|
|
report("MBB exits via conditional branch/branch but the CFG "
|
|
"successors don't match the actual successors!", MBB);
|
|
}
|
|
if (MBB->empty()) {
|
|
report("MBB exits via conditional branch/branch but doesn't "
|
|
"contain any instructions!", MBB);
|
|
} else if (!getBundleStart(&MBB->back())->isBarrier()) {
|
|
report("MBB exits via conditional branch/branch but doesn't end with a "
|
|
"barrier instruction!", MBB);
|
|
} else if (!getBundleStart(&MBB->back())->isTerminator()) {
|
|
report("MBB exits via conditional branch/branch but the branch "
|
|
"isn't a terminator instruction!", MBB);
|
|
}
|
|
if (Cond.empty()) {
|
|
report("MBB exits via conditinal branch/branch but there's no "
|
|
"condition!", MBB);
|
|
}
|
|
} else {
|
|
report("AnalyzeBranch returned invalid data!", MBB);
|
|
}
|
|
}
|
|
|
|
regsLive.clear();
|
|
for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(),
|
|
E = MBB->livein_end(); I != E; ++I) {
|
|
if (!TargetRegisterInfo::isPhysicalRegister(*I)) {
|
|
report("MBB live-in list contains non-physical register", MBB);
|
|
continue;
|
|
}
|
|
regsLive.insert(*I);
|
|
for (MCSubRegIterator SubRegs(*I, TRI); SubRegs.isValid(); ++SubRegs)
|
|
regsLive.insert(*SubRegs);
|
|
}
|
|
regsLiveInButUnused = regsLive;
|
|
|
|
const MachineFrameInfo *MFI = MF->getFrameInfo();
|
|
assert(MFI && "Function has no frame info");
|
|
BitVector PR = MFI->getPristineRegs(MBB);
|
|
for (int I = PR.find_first(); I>0; I = PR.find_next(I)) {
|
|
regsLive.insert(I);
|
|
for (MCSubRegIterator SubRegs(I, TRI); SubRegs.isValid(); ++SubRegs)
|
|
regsLive.insert(*SubRegs);
|
|
}
|
|
|
|
regsKilled.clear();
|
|
regsDefined.clear();
|
|
|
|
if (Indexes)
|
|
lastIndex = Indexes->getMBBStartIdx(MBB);
|
|
}
|
|
|
|
// This function gets called for all bundle headers, including normal
|
|
// stand-alone unbundled instructions.
|
|
void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) {
|
|
if (Indexes && Indexes->hasIndex(MI)) {
|
|
SlotIndex idx = Indexes->getInstructionIndex(MI);
|
|
if (!(idx > lastIndex)) {
|
|
report("Instruction index out of order", MI);
|
|
*OS << "Last instruction was at " << lastIndex << '\n';
|
|
}
|
|
lastIndex = idx;
|
|
}
|
|
|
|
// Ensure non-terminators don't follow terminators.
|
|
// Ignore predicated terminators formed by if conversion.
|
|
// FIXME: If conversion shouldn't need to violate this rule.
|
|
if (MI->isTerminator() && !TII->isPredicated(MI)) {
|
|
if (!FirstTerminator)
|
|
FirstTerminator = MI;
|
|
} else if (FirstTerminator) {
|
|
report("Non-terminator instruction after the first terminator", MI);
|
|
*OS << "First terminator was:\t" << *FirstTerminator;
|
|
}
|
|
}
|
|
|
|
// The operands on an INLINEASM instruction must follow a template.
|
|
// Verify that the flag operands make sense.
|
|
void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) {
|
|
// The first two operands on INLINEASM are the asm string and global flags.
|
|
if (MI->getNumOperands() < 2) {
|
|
report("Too few operands on inline asm", MI);
|
|
return;
|
|
}
|
|
if (!MI->getOperand(0).isSymbol())
|
|
report("Asm string must be an external symbol", MI);
|
|
if (!MI->getOperand(1).isImm())
|
|
report("Asm flags must be an immediate", MI);
|
|
// Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2,
|
|
// Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16.
|
|
if (!isUInt<5>(MI->getOperand(1).getImm()))
|
|
report("Unknown asm flags", &MI->getOperand(1), 1);
|
|
|
|
assert(InlineAsm::MIOp_FirstOperand == 2 && "Asm format changed");
|
|
|
|
unsigned OpNo = InlineAsm::MIOp_FirstOperand;
|
|
unsigned NumOps;
|
|
for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) {
|
|
const MachineOperand &MO = MI->getOperand(OpNo);
|
|
// There may be implicit ops after the fixed operands.
|
|
if (!MO.isImm())
|
|
break;
|
|
NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm());
|
|
}
|
|
|
|
if (OpNo > MI->getNumOperands())
|
|
report("Missing operands in last group", MI);
|
|
|
|
// An optional MDNode follows the groups.
|
|
if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata())
|
|
++OpNo;
|
|
|
|
// All trailing operands must be implicit registers.
|
|
for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) {
|
|
const MachineOperand &MO = MI->getOperand(OpNo);
|
|
if (!MO.isReg() || !MO.isImplicit())
|
|
report("Expected implicit register after groups", &MO, OpNo);
|
|
}
|
|
}
|
|
|
|
void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
|
|
const MCInstrDesc &MCID = MI->getDesc();
|
|
if (MI->getNumOperands() < MCID.getNumOperands()) {
|
|
report("Too few operands", MI);
|
|
*OS << MCID.getNumOperands() << " operands expected, but "
|
|
<< MI->getNumExplicitOperands() << " given.\n";
|
|
}
|
|
|
|
// Check the tied operands.
|
|
if (MI->isInlineAsm())
|
|
verifyInlineAsm(MI);
|
|
|
|
// Check the MachineMemOperands for basic consistency.
|
|
for (MachineInstr::mmo_iterator I = MI->memoperands_begin(),
|
|
E = MI->memoperands_end(); I != E; ++I) {
|
|
if ((*I)->isLoad() && !MI->mayLoad())
|
|
report("Missing mayLoad flag", MI);
|
|
if ((*I)->isStore() && !MI->mayStore())
|
|
report("Missing mayStore flag", MI);
|
|
}
|
|
|
|
// Debug values must not have a slot index.
|
|
// Other instructions must have one, unless they are inside a bundle.
|
|
if (LiveInts) {
|
|
bool mapped = !LiveInts->isNotInMIMap(MI);
|
|
if (MI->isDebugValue()) {
|
|
if (mapped)
|
|
report("Debug instruction has a slot index", MI);
|
|
} else if (MI->isInsideBundle()) {
|
|
if (mapped)
|
|
report("Instruction inside bundle has a slot index", MI);
|
|
} else {
|
|
if (!mapped)
|
|
report("Missing slot index", MI);
|
|
}
|
|
}
|
|
|
|
StringRef ErrorInfo;
|
|
if (!TII->verifyInstruction(MI, ErrorInfo))
|
|
report(ErrorInfo.data(), MI);
|
|
}
|
|
|
|
void
|
|
MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
|
|
const MachineInstr *MI = MO->getParent();
|
|
const MCInstrDesc &MCID = MI->getDesc();
|
|
|
|
// The first MCID.NumDefs operands must be explicit register defines
|
|
if (MONum < MCID.getNumDefs()) {
|
|
const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
|
|
if (!MO->isReg())
|
|
report("Explicit definition must be a register", MO, MONum);
|
|
else if (!MO->isDef() && !MCOI.isOptionalDef())
|
|
report("Explicit definition marked as use", MO, MONum);
|
|
else if (MO->isImplicit())
|
|
report("Explicit definition marked as implicit", MO, MONum);
|
|
} else if (MONum < MCID.getNumOperands()) {
|
|
const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
|
|
// Don't check if it's the last operand in a variadic instruction. See,
|
|
// e.g., LDM_RET in the arm back end.
|
|
if (MO->isReg() &&
|
|
!(MI->isVariadic() && MONum == MCID.getNumOperands()-1)) {
|
|
if (MO->isDef() && !MCOI.isOptionalDef())
|
|
report("Explicit operand marked as def", MO, MONum);
|
|
if (MO->isImplicit())
|
|
report("Explicit operand marked as implicit", MO, MONum);
|
|
}
|
|
|
|
int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO);
|
|
if (TiedTo != -1) {
|
|
if (!MO->isReg())
|
|
report("Tied use must be a register", MO, MONum);
|
|
else if (!MO->isTied())
|
|
report("Operand should be tied", MO, MONum);
|
|
else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum))
|
|
report("Tied def doesn't match MCInstrDesc", MO, MONum);
|
|
} else if (MO->isReg() && MO->isTied())
|
|
report("Explicit operand should not be tied", MO, MONum);
|
|
} else {
|
|
// ARM adds %reg0 operands to indicate predicates. We'll allow that.
|
|
if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg())
|
|
report("Extra explicit operand on non-variadic instruction", MO, MONum);
|
|
}
|
|
|
|
switch (MO->getType()) {
|
|
case MachineOperand::MO_Register: {
|
|
const unsigned Reg = MO->getReg();
|
|
if (!Reg)
|
|
return;
|
|
if (MRI->tracksLiveness() && !MI->isDebugValue())
|
|
checkLiveness(MO, MONum);
|
|
|
|
// Verify the consistency of tied operands.
|
|
if (MO->isTied()) {
|
|
unsigned OtherIdx = MI->findTiedOperandIdx(MONum);
|
|
const MachineOperand &OtherMO = MI->getOperand(OtherIdx);
|
|
if (!OtherMO.isReg())
|
|
report("Must be tied to a register", MO, MONum);
|
|
if (!OtherMO.isTied())
|
|
report("Missing tie flags on tied operand", MO, MONum);
|
|
if (MI->findTiedOperandIdx(OtherIdx) != MONum)
|
|
report("Inconsistent tie links", MO, MONum);
|
|
if (MONum < MCID.getNumDefs()) {
|
|
if (OtherIdx < MCID.getNumOperands()) {
|
|
if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO))
|
|
report("Explicit def tied to explicit use without tie constraint",
|
|
MO, MONum);
|
|
} else {
|
|
if (!OtherMO.isImplicit())
|
|
report("Explicit def should be tied to implicit use", MO, MONum);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Verify two-address constraints after leaving SSA form.
|
|
unsigned DefIdx;
|
|
if (!MRI->isSSA() && MO->isUse() &&
|
|
MI->isRegTiedToDefOperand(MONum, &DefIdx) &&
|
|
Reg != MI->getOperand(DefIdx).getReg())
|
|
report("Two-address instruction operands must be identical", MO, MONum);
|
|
|
|
// Check register classes.
|
|
if (MONum < MCID.getNumOperands() && !MO->isImplicit()) {
|
|
unsigned SubIdx = MO->getSubReg();
|
|
|
|
if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
|
|
if (SubIdx) {
|
|
report("Illegal subregister index for physical register", MO, MONum);
|
|
return;
|
|
}
|
|
if (const TargetRegisterClass *DRC =
|
|
TII->getRegClass(MCID, MONum, TRI, *MF)) {
|
|
if (!DRC->contains(Reg)) {
|
|
report("Illegal physical register for instruction", MO, MONum);
|
|
*OS << TRI->getName(Reg) << " is not a "
|
|
<< DRC->getName() << " register.\n";
|
|
}
|
|
}
|
|
} else {
|
|
// Virtual register.
|
|
const TargetRegisterClass *RC = MRI->getRegClass(Reg);
|
|
if (SubIdx) {
|
|
const TargetRegisterClass *SRC =
|
|
TRI->getSubClassWithSubReg(RC, SubIdx);
|
|
if (!SRC) {
|
|
report("Invalid subregister index for virtual register", MO, MONum);
|
|
*OS << "Register class " << RC->getName()
|
|
<< " does not support subreg index " << SubIdx << "\n";
|
|
return;
|
|
}
|
|
if (RC != SRC) {
|
|
report("Invalid register class for subregister index", MO, MONum);
|
|
*OS << "Register class " << RC->getName()
|
|
<< " does not fully support subreg index " << SubIdx << "\n";
|
|
return;
|
|
}
|
|
}
|
|
if (const TargetRegisterClass *DRC =
|
|
TII->getRegClass(MCID, MONum, TRI, *MF)) {
|
|
if (SubIdx) {
|
|
const TargetRegisterClass *SuperRC =
|
|
TRI->getLargestLegalSuperClass(RC);
|
|
if (!SuperRC) {
|
|
report("No largest legal super class exists.", MO, MONum);
|
|
return;
|
|
}
|
|
DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx);
|
|
if (!DRC) {
|
|
report("No matching super-reg register class.", MO, MONum);
|
|
return;
|
|
}
|
|
}
|
|
if (!RC->hasSuperClassEq(DRC)) {
|
|
report("Illegal virtual register for instruction", MO, MONum);
|
|
*OS << "Expected a " << DRC->getName() << " register, but got a "
|
|
<< RC->getName() << " register\n";
|
|
}
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
case MachineOperand::MO_RegisterMask:
|
|
regMasks.push_back(MO->getRegMask());
|
|
break;
|
|
|
|
case MachineOperand::MO_MachineBasicBlock:
|
|
if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent()))
|
|
report("PHI operand is not in the CFG", MO, MONum);
|
|
break;
|
|
|
|
case MachineOperand::MO_FrameIndex:
|
|
if (LiveStks && LiveStks->hasInterval(MO->getIndex()) &&
|
|
LiveInts && !LiveInts->isNotInMIMap(MI)) {
|
|
LiveInterval &LI = LiveStks->getInterval(MO->getIndex());
|
|
SlotIndex Idx = LiveInts->getInstructionIndex(MI);
|
|
if (MI->mayLoad() && !LI.liveAt(Idx.getRegSlot(true))) {
|
|
report("Instruction loads from dead spill slot", MO, MONum);
|
|
*OS << "Live stack: " << LI << '\n';
|
|
}
|
|
if (MI->mayStore() && !LI.liveAt(Idx.getRegSlot())) {
|
|
report("Instruction stores to dead spill slot", MO, MONum);
|
|
*OS << "Live stack: " << LI << '\n';
|
|
}
|
|
}
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) {
|
|
const MachineInstr *MI = MO->getParent();
|
|
const unsigned Reg = MO->getReg();
|
|
|
|
// Both use and def operands can read a register.
|
|
if (MO->readsReg()) {
|
|
regsLiveInButUnused.erase(Reg);
|
|
|
|
if (MO->isKill())
|
|
addRegWithSubRegs(regsKilled, Reg);
|
|
|
|
// Check that LiveVars knows this kill.
|
|
if (LiveVars && TargetRegisterInfo::isVirtualRegister(Reg) &&
|
|
MO->isKill()) {
|
|
LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
|
|
if (std::find(VI.Kills.begin(), VI.Kills.end(), MI) == VI.Kills.end())
|
|
report("Kill missing from LiveVariables", MO, MONum);
|
|
}
|
|
|
|
// Check LiveInts liveness and kill.
|
|
if (LiveInts && !LiveInts->isNotInMIMap(MI)) {
|
|
SlotIndex UseIdx = LiveInts->getInstructionIndex(MI);
|
|
// Check the cached regunit intervals.
|
|
if (TargetRegisterInfo::isPhysicalRegister(Reg) && !isReserved(Reg)) {
|
|
for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
|
|
if (const LiveInterval *LI = LiveInts->getCachedRegUnit(*Units)) {
|
|
LiveRangeQuery LRQ(*LI, UseIdx);
|
|
if (!LRQ.valueIn()) {
|
|
report("No live range at use", MO, MONum);
|
|
*OS << UseIdx << " is not live in " << PrintRegUnit(*Units, TRI)
|
|
<< ' ' << *LI << '\n';
|
|
}
|
|
if (MO->isKill() && !LRQ.isKill()) {
|
|
report("Live range continues after kill flag", MO, MONum);
|
|
*OS << PrintRegUnit(*Units, TRI) << ' ' << *LI << '\n';
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (TargetRegisterInfo::isVirtualRegister(Reg)) {
|
|
if (LiveInts->hasInterval(Reg)) {
|
|
// This is a virtual register interval.
|
|
const LiveInterval &LI = LiveInts->getInterval(Reg);
|
|
LiveRangeQuery LRQ(LI, UseIdx);
|
|
if (!LRQ.valueIn()) {
|
|
report("No live range at use", MO, MONum);
|
|
*OS << UseIdx << " is not live in " << LI << '\n';
|
|
}
|
|
// Check for extra kill flags.
|
|
// Note that we allow missing kill flags for now.
|
|
if (MO->isKill() && !LRQ.isKill()) {
|
|
report("Live range continues after kill flag", MO, MONum);
|
|
*OS << "Live range: " << LI << '\n';
|
|
}
|
|
} else {
|
|
report("Virtual register has no live interval", MO, MONum);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Use of a dead register.
|
|
if (!regsLive.count(Reg)) {
|
|
if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
|
|
// Reserved registers may be used even when 'dead'.
|
|
if (!isReserved(Reg))
|
|
report("Using an undefined physical register", MO, MONum);
|
|
} else if (MRI->def_empty(Reg)) {
|
|
report("Reading virtual register without a def", MO, MONum);
|
|
} else {
|
|
BBInfo &MInfo = MBBInfoMap[MI->getParent()];
|
|
// We don't know which virtual registers are live in, so only complain
|
|
// if vreg was killed in this MBB. Otherwise keep track of vregs that
|
|
// must be live in. PHI instructions are handled separately.
|
|
if (MInfo.regsKilled.count(Reg))
|
|
report("Using a killed virtual register", MO, MONum);
|
|
else if (!MI->isPHI())
|
|
MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI));
|
|
}
|
|
}
|
|
}
|
|
|
|
if (MO->isDef()) {
|
|
// Register defined.
|
|
// TODO: verify that earlyclobber ops are not used.
|
|
if (MO->isDead())
|
|
addRegWithSubRegs(regsDead, Reg);
|
|
else
|
|
addRegWithSubRegs(regsDefined, Reg);
|
|
|
|
// Verify SSA form.
|
|
if (MRI->isSSA() && TargetRegisterInfo::isVirtualRegister(Reg) &&
|
|
llvm::next(MRI->def_begin(Reg)) != MRI->def_end())
|
|
report("Multiple virtual register defs in SSA form", MO, MONum);
|
|
|
|
// Check LiveInts for a live range, but only for virtual registers.
|
|
if (LiveInts && TargetRegisterInfo::isVirtualRegister(Reg) &&
|
|
!LiveInts->isNotInMIMap(MI)) {
|
|
SlotIndex DefIdx = LiveInts->getInstructionIndex(MI);
|
|
DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber());
|
|
if (LiveInts->hasInterval(Reg)) {
|
|
const LiveInterval &LI = LiveInts->getInterval(Reg);
|
|
if (const VNInfo *VNI = LI.getVNInfoAt(DefIdx)) {
|
|
assert(VNI && "NULL valno is not allowed");
|
|
if (VNI->def != DefIdx) {
|
|
report("Inconsistent valno->def", MO, MONum);
|
|
*OS << "Valno " << VNI->id << " is not defined at "
|
|
<< DefIdx << " in " << LI << '\n';
|
|
}
|
|
} else {
|
|
report("No live range at def", MO, MONum);
|
|
*OS << DefIdx << " is not live in " << LI << '\n';
|
|
}
|
|
} else {
|
|
report("Virtual register has no Live interval", MO, MONum);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) {
|
|
}
|
|
|
|
// This function gets called after visiting all instructions in a bundle. The
|
|
// argument points to the bundle header.
|
|
// Normal stand-alone instructions are also considered 'bundles', and this
|
|
// function is called for all of them.
|
|
void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) {
|
|
BBInfo &MInfo = MBBInfoMap[MI->getParent()];
|
|
set_union(MInfo.regsKilled, regsKilled);
|
|
set_subtract(regsLive, regsKilled); regsKilled.clear();
|
|
// Kill any masked registers.
|
|
while (!regMasks.empty()) {
|
|
const uint32_t *Mask = regMasks.pop_back_val();
|
|
for (RegSet::iterator I = regsLive.begin(), E = regsLive.end(); I != E; ++I)
|
|
if (TargetRegisterInfo::isPhysicalRegister(*I) &&
|
|
MachineOperand::clobbersPhysReg(Mask, *I))
|
|
regsDead.push_back(*I);
|
|
}
|
|
set_subtract(regsLive, regsDead); regsDead.clear();
|
|
set_union(regsLive, regsDefined); regsDefined.clear();
|
|
}
|
|
|
|
void
|
|
MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) {
|
|
MBBInfoMap[MBB].regsLiveOut = regsLive;
|
|
regsLive.clear();
|
|
|
|
if (Indexes) {
|
|
SlotIndex stop = Indexes->getMBBEndIdx(MBB);
|
|
if (!(stop > lastIndex)) {
|
|
report("Block ends before last instruction index", MBB);
|
|
*OS << "Block ends at " << stop
|
|
<< " last instruction was at " << lastIndex << '\n';
|
|
}
|
|
lastIndex = stop;
|
|
}
|
|
}
|
|
|
|
// Calculate the largest possible vregsPassed sets. These are the registers that
|
|
// can pass through an MBB live, but may not be live every time. It is assumed
|
|
// that all vregsPassed sets are empty before the call.
|
|
void MachineVerifier::calcRegsPassed() {
|
|
// First push live-out regs to successors' vregsPassed. Remember the MBBs that
|
|
// have any vregsPassed.
|
|
SmallPtrSet<const MachineBasicBlock*, 8> todo;
|
|
for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
|
|
MFI != MFE; ++MFI) {
|
|
const MachineBasicBlock &MBB(*MFI);
|
|
BBInfo &MInfo = MBBInfoMap[&MBB];
|
|
if (!MInfo.reachable)
|
|
continue;
|
|
for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(),
|
|
SuE = MBB.succ_end(); SuI != SuE; ++SuI) {
|
|
BBInfo &SInfo = MBBInfoMap[*SuI];
|
|
if (SInfo.addPassed(MInfo.regsLiveOut))
|
|
todo.insert(*SuI);
|
|
}
|
|
}
|
|
|
|
// Iteratively push vregsPassed to successors. This will converge to the same
|
|
// final state regardless of DenseSet iteration order.
|
|
while (!todo.empty()) {
|
|
const MachineBasicBlock *MBB = *todo.begin();
|
|
todo.erase(MBB);
|
|
BBInfo &MInfo = MBBInfoMap[MBB];
|
|
for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
|
|
SuE = MBB->succ_end(); SuI != SuE; ++SuI) {
|
|
if (*SuI == MBB)
|
|
continue;
|
|
BBInfo &SInfo = MBBInfoMap[*SuI];
|
|
if (SInfo.addPassed(MInfo.vregsPassed))
|
|
todo.insert(*SuI);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Calculate the set of virtual registers that must be passed through each basic
|
|
// block in order to satisfy the requirements of successor blocks. This is very
|
|
// similar to calcRegsPassed, only backwards.
|
|
void MachineVerifier::calcRegsRequired() {
|
|
// First push live-in regs to predecessors' vregsRequired.
|
|
SmallPtrSet<const MachineBasicBlock*, 8> todo;
|
|
for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
|
|
MFI != MFE; ++MFI) {
|
|
const MachineBasicBlock &MBB(*MFI);
|
|
BBInfo &MInfo = MBBInfoMap[&MBB];
|
|
for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(),
|
|
PrE = MBB.pred_end(); PrI != PrE; ++PrI) {
|
|
BBInfo &PInfo = MBBInfoMap[*PrI];
|
|
if (PInfo.addRequired(MInfo.vregsLiveIn))
|
|
todo.insert(*PrI);
|
|
}
|
|
}
|
|
|
|
// Iteratively push vregsRequired to predecessors. This will converge to the
|
|
// same final state regardless of DenseSet iteration order.
|
|
while (!todo.empty()) {
|
|
const MachineBasicBlock *MBB = *todo.begin();
|
|
todo.erase(MBB);
|
|
BBInfo &MInfo = MBBInfoMap[MBB];
|
|
for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
|
|
PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
|
|
if (*PrI == MBB)
|
|
continue;
|
|
BBInfo &SInfo = MBBInfoMap[*PrI];
|
|
if (SInfo.addRequired(MInfo.vregsRequired))
|
|
todo.insert(*PrI);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Check PHI instructions at the beginning of MBB. It is assumed that
|
|
// calcRegsPassed has been run so BBInfo::isLiveOut is valid.
|
|
void MachineVerifier::checkPHIOps(const MachineBasicBlock *MBB) {
|
|
SmallPtrSet<const MachineBasicBlock*, 8> seen;
|
|
for (MachineBasicBlock::const_iterator BBI = MBB->begin(), BBE = MBB->end();
|
|
BBI != BBE && BBI->isPHI(); ++BBI) {
|
|
seen.clear();
|
|
|
|
for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) {
|
|
unsigned Reg = BBI->getOperand(i).getReg();
|
|
const MachineBasicBlock *Pre = BBI->getOperand(i + 1).getMBB();
|
|
if (!Pre->isSuccessor(MBB))
|
|
continue;
|
|
seen.insert(Pre);
|
|
BBInfo &PrInfo = MBBInfoMap[Pre];
|
|
if (PrInfo.reachable && !PrInfo.isLiveOut(Reg))
|
|
report("PHI operand is not live-out from predecessor",
|
|
&BBI->getOperand(i), i);
|
|
}
|
|
|
|
// Did we see all predecessors?
|
|
for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
|
|
PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
|
|
if (!seen.count(*PrI)) {
|
|
report("Missing PHI operand", BBI);
|
|
*OS << "BB#" << (*PrI)->getNumber()
|
|
<< " is a predecessor according to the CFG.\n";
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void MachineVerifier::visitMachineFunctionAfter() {
|
|
calcRegsPassed();
|
|
|
|
for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
|
|
MFI != MFE; ++MFI) {
|
|
BBInfo &MInfo = MBBInfoMap[MFI];
|
|
|
|
// Skip unreachable MBBs.
|
|
if (!MInfo.reachable)
|
|
continue;
|
|
|
|
checkPHIOps(MFI);
|
|
}
|
|
|
|
// Now check liveness info if available
|
|
calcRegsRequired();
|
|
|
|
// Check for killed virtual registers that should be live out.
|
|
for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
|
|
MFI != MFE; ++MFI) {
|
|
BBInfo &MInfo = MBBInfoMap[MFI];
|
|
for (RegSet::iterator
|
|
I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
|
|
++I)
|
|
if (MInfo.regsKilled.count(*I)) {
|
|
report("Virtual register killed in block, but needed live out.", MFI);
|
|
*OS << "Virtual register " << PrintReg(*I)
|
|
<< " is used after the block.\n";
|
|
}
|
|
}
|
|
|
|
if (!MF->empty()) {
|
|
BBInfo &MInfo = MBBInfoMap[&MF->front()];
|
|
for (RegSet::iterator
|
|
I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
|
|
++I)
|
|
report("Virtual register def doesn't dominate all uses.",
|
|
MRI->getVRegDef(*I));
|
|
}
|
|
|
|
if (LiveVars)
|
|
verifyLiveVariables();
|
|
if (LiveInts)
|
|
verifyLiveIntervals();
|
|
}
|
|
|
|
void MachineVerifier::verifyLiveVariables() {
|
|
assert(LiveVars && "Don't call verifyLiveVariables without LiveVars");
|
|
for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
|
|
unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
|
|
LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
|
|
for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
|
|
MFI != MFE; ++MFI) {
|
|
BBInfo &MInfo = MBBInfoMap[MFI];
|
|
|
|
// Our vregsRequired should be identical to LiveVariables' AliveBlocks
|
|
if (MInfo.vregsRequired.count(Reg)) {
|
|
if (!VI.AliveBlocks.test(MFI->getNumber())) {
|
|
report("LiveVariables: Block missing from AliveBlocks", MFI);
|
|
*OS << "Virtual register " << PrintReg(Reg)
|
|
<< " must be live through the block.\n";
|
|
}
|
|
} else {
|
|
if (VI.AliveBlocks.test(MFI->getNumber())) {
|
|
report("LiveVariables: Block should not be in AliveBlocks", MFI);
|
|
*OS << "Virtual register " << PrintReg(Reg)
|
|
<< " is not needed live through the block.\n";
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void MachineVerifier::verifyLiveIntervals() {
|
|
assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts");
|
|
for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
|
|
unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
|
|
|
|
// Spilling and splitting may leave unused registers around. Skip them.
|
|
if (MRI->reg_nodbg_empty(Reg))
|
|
continue;
|
|
|
|
if (!LiveInts->hasInterval(Reg)) {
|
|
report("Missing live interval for virtual register", MF);
|
|
*OS << PrintReg(Reg, TRI) << " still has defs or uses\n";
|
|
continue;
|
|
}
|
|
|
|
const LiveInterval &LI = LiveInts->getInterval(Reg);
|
|
assert(Reg == LI.reg && "Invalid reg to interval mapping");
|
|
verifyLiveInterval(LI);
|
|
}
|
|
|
|
// Verify all the cached regunit intervals.
|
|
for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
|
|
if (const LiveInterval *LI = LiveInts->getCachedRegUnit(i))
|
|
verifyLiveInterval(*LI);
|
|
}
|
|
|
|
void MachineVerifier::verifyLiveIntervalValue(const LiveInterval &LI,
|
|
VNInfo *VNI) {
|
|
if (VNI->isUnused())
|
|
return;
|
|
|
|
const VNInfo *DefVNI = LI.getVNInfoAt(VNI->def);
|
|
|
|
if (!DefVNI) {
|
|
report("Valno not live at def and not marked unused", MF, LI);
|
|
*OS << "Valno #" << VNI->id << '\n';
|
|
return;
|
|
}
|
|
|
|
if (DefVNI != VNI) {
|
|
report("Live range at def has different valno", MF, LI);
|
|
*OS << "Valno #" << VNI->id << " is defined at " << VNI->def
|
|
<< " where valno #" << DefVNI->id << " is live\n";
|
|
return;
|
|
}
|
|
|
|
const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def);
|
|
if (!MBB) {
|
|
report("Invalid definition index", MF, LI);
|
|
*OS << "Valno #" << VNI->id << " is defined at " << VNI->def
|
|
<< " in " << LI << '\n';
|
|
return;
|
|
}
|
|
|
|
if (VNI->isPHIDef()) {
|
|
if (VNI->def != LiveInts->getMBBStartIdx(MBB)) {
|
|
report("PHIDef value is not defined at MBB start", MBB, LI);
|
|
*OS << "Valno #" << VNI->id << " is defined at " << VNI->def
|
|
<< ", not at the beginning of BB#" << MBB->getNumber() << '\n';
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Non-PHI def.
|
|
const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def);
|
|
if (!MI) {
|
|
report("No instruction at def index", MBB, LI);
|
|
*OS << "Valno #" << VNI->id << " is defined at " << VNI->def << '\n';
|
|
return;
|
|
}
|
|
|
|
bool hasDef = false;
|
|
bool isEarlyClobber = false;
|
|
for (ConstMIBundleOperands MOI(MI); MOI.isValid(); ++MOI) {
|
|
if (!MOI->isReg() || !MOI->isDef())
|
|
continue;
|
|
if (TargetRegisterInfo::isVirtualRegister(LI.reg)) {
|
|
if (MOI->getReg() != LI.reg)
|
|
continue;
|
|
} else {
|
|
if (!TargetRegisterInfo::isPhysicalRegister(MOI->getReg()) ||
|
|
!TRI->hasRegUnit(MOI->getReg(), LI.reg))
|
|
continue;
|
|
}
|
|
hasDef = true;
|
|
if (MOI->isEarlyClobber())
|
|
isEarlyClobber = true;
|
|
}
|
|
|
|
if (!hasDef) {
|
|
report("Defining instruction does not modify register", MI);
|
|
*OS << "Valno #" << VNI->id << " in " << LI << '\n';
|
|
}
|
|
|
|
// Early clobber defs begin at USE slots, but other defs must begin at
|
|
// DEF slots.
|
|
if (isEarlyClobber) {
|
|
if (!VNI->def.isEarlyClobber()) {
|
|
report("Early clobber def must be at an early-clobber slot", MBB, LI);
|
|
*OS << "Valno #" << VNI->id << " is defined at " << VNI->def << '\n';
|
|
}
|
|
} else if (!VNI->def.isRegister()) {
|
|
report("Non-PHI, non-early clobber def must be at a register slot",
|
|
MBB, LI);
|
|
*OS << "Valno #" << VNI->id << " is defined at " << VNI->def << '\n';
|
|
}
|
|
}
|
|
|
|
void
|
|
MachineVerifier::verifyLiveIntervalSegment(const LiveInterval &LI,
|
|
LiveInterval::const_iterator I) {
|
|
const VNInfo *VNI = I->valno;
|
|
assert(VNI && "Live range has no valno");
|
|
|
|
if (VNI->id >= LI.getNumValNums() || VNI != LI.getValNumInfo(VNI->id)) {
|
|
report("Foreign valno in live range", MF, LI);
|
|
*OS << *I << " has a bad valno\n";
|
|
}
|
|
|
|
if (VNI->isUnused()) {
|
|
report("Live range valno is marked unused", MF, LI);
|
|
*OS << *I << '\n';
|
|
}
|
|
|
|
const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(I->start);
|
|
if (!MBB) {
|
|
report("Bad start of live segment, no basic block", MF, LI);
|
|
*OS << *I << '\n';
|
|
return;
|
|
}
|
|
SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB);
|
|
if (I->start != MBBStartIdx && I->start != VNI->def) {
|
|
report("Live segment must begin at MBB entry or valno def", MBB, LI);
|
|
*OS << *I << '\n';
|
|
}
|
|
|
|
const MachineBasicBlock *EndMBB =
|
|
LiveInts->getMBBFromIndex(I->end.getPrevSlot());
|
|
if (!EndMBB) {
|
|
report("Bad end of live segment, no basic block", MF, LI);
|
|
*OS << *I << '\n';
|
|
return;
|
|
}
|
|
|
|
// No more checks for live-out segments.
|
|
if (I->end == LiveInts->getMBBEndIdx(EndMBB))
|
|
return;
|
|
|
|
// RegUnit intervals are allowed dead phis.
|
|
if (!TargetRegisterInfo::isVirtualRegister(LI.reg) && VNI->isPHIDef() &&
|
|
I->start == VNI->def && I->end == VNI->def.getDeadSlot())
|
|
return;
|
|
|
|
// The live segment is ending inside EndMBB
|
|
const MachineInstr *MI =
|
|
LiveInts->getInstructionFromIndex(I->end.getPrevSlot());
|
|
if (!MI) {
|
|
report("Live segment doesn't end at a valid instruction", EndMBB, LI);
|
|
*OS << *I << '\n';
|
|
return;
|
|
}
|
|
|
|
// The block slot must refer to a basic block boundary.
|
|
if (I->end.isBlock()) {
|
|
report("Live segment ends at B slot of an instruction", EndMBB, LI);
|
|
*OS << *I << '\n';
|
|
}
|
|
|
|
if (I->end.isDead()) {
|
|
// Segment ends on the dead slot.
|
|
// That means there must be a dead def.
|
|
if (!SlotIndex::isSameInstr(I->start, I->end)) {
|
|
report("Live segment ending at dead slot spans instructions", EndMBB, LI);
|
|
*OS << *I << '\n';
|
|
}
|
|
}
|
|
|
|
// A live segment can only end at an early-clobber slot if it is being
|
|
// redefined by an early-clobber def.
|
|
if (I->end.isEarlyClobber()) {
|
|
if (I+1 == LI.end() || (I+1)->start != I->end) {
|
|
report("Live segment ending at early clobber slot must be "
|
|
"redefined by an EC def in the same instruction", EndMBB, LI);
|
|
*OS << *I << '\n';
|
|
}
|
|
}
|
|
|
|
// The following checks only apply to virtual registers. Physreg liveness
|
|
// is too weird to check.
|
|
if (TargetRegisterInfo::isVirtualRegister(LI.reg)) {
|
|
// A live range can end with either a redefinition, a kill flag on a
|
|
// use, or a dead flag on a def.
|
|
bool hasRead = false;
|
|
bool hasDeadDef = false;
|
|
for (ConstMIBundleOperands MOI(MI); MOI.isValid(); ++MOI) {
|
|
if (!MOI->isReg() || MOI->getReg() != LI.reg)
|
|
continue;
|
|
if (MOI->readsReg())
|
|
hasRead = true;
|
|
if (MOI->isDef() && MOI->isDead())
|
|
hasDeadDef = true;
|
|
}
|
|
|
|
if (I->end.isDead()) {
|
|
if (!hasDeadDef) {
|
|
report("Instruction doesn't have a dead def operand", MI);
|
|
I->print(*OS);
|
|
*OS << " in " << LI << '\n';
|
|
}
|
|
} else {
|
|
if (!hasRead) {
|
|
report("Instruction ending live range doesn't read the register", MI);
|
|
*OS << *I << " in " << LI << '\n';
|
|
}
|
|
}
|
|
}
|
|
|
|
// Now check all the basic blocks in this live segment.
|
|
MachineFunction::const_iterator MFI = MBB;
|
|
// Is this live range the beginning of a non-PHIDef VN?
|
|
if (I->start == VNI->def && !VNI->isPHIDef()) {
|
|
// Not live-in to any blocks.
|
|
if (MBB == EndMBB)
|
|
return;
|
|
// Skip this block.
|
|
++MFI;
|
|
}
|
|
for (;;) {
|
|
assert(LiveInts->isLiveInToMBB(LI, MFI));
|
|
// We don't know how to track physregs into a landing pad.
|
|
if (!TargetRegisterInfo::isVirtualRegister(LI.reg) &&
|
|
MFI->isLandingPad()) {
|
|
if (&*MFI == EndMBB)
|
|
break;
|
|
++MFI;
|
|
continue;
|
|
}
|
|
|
|
// Is VNI a PHI-def in the current block?
|
|
bool IsPHI = VNI->isPHIDef() &&
|
|
VNI->def == LiveInts->getMBBStartIdx(MFI);
|
|
|
|
// Check that VNI is live-out of all predecessors.
|
|
for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(),
|
|
PE = MFI->pred_end(); PI != PE; ++PI) {
|
|
SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI);
|
|
const VNInfo *PVNI = LI.getVNInfoBefore(PEnd);
|
|
|
|
// All predecessors must have a live-out value.
|
|
if (!PVNI) {
|
|
report("Register not marked live out of predecessor", *PI, LI);
|
|
*OS << "Valno #" << VNI->id << " live into BB#" << MFI->getNumber()
|
|
<< '@' << LiveInts->getMBBStartIdx(MFI) << ", not live before "
|
|
<< PEnd << '\n';
|
|
continue;
|
|
}
|
|
|
|
// Only PHI-defs can take different predecessor values.
|
|
if (!IsPHI && PVNI != VNI) {
|
|
report("Different value live out of predecessor", *PI, LI);
|
|
*OS << "Valno #" << PVNI->id << " live out of BB#"
|
|
<< (*PI)->getNumber() << '@' << PEnd
|
|
<< "\nValno #" << VNI->id << " live into BB#" << MFI->getNumber()
|
|
<< '@' << LiveInts->getMBBStartIdx(MFI) << '\n';
|
|
}
|
|
}
|
|
if (&*MFI == EndMBB)
|
|
break;
|
|
++MFI;
|
|
}
|
|
}
|
|
|
|
void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) {
|
|
for (LiveInterval::const_vni_iterator I = LI.vni_begin(), E = LI.vni_end();
|
|
I!=E; ++I)
|
|
verifyLiveIntervalValue(LI, *I);
|
|
|
|
for (LiveInterval::const_iterator I = LI.begin(), E = LI.end(); I!=E; ++I)
|
|
verifyLiveIntervalSegment(LI, I);
|
|
|
|
// Check the LI only has one connected component.
|
|
if (TargetRegisterInfo::isVirtualRegister(LI.reg)) {
|
|
ConnectedVNInfoEqClasses ConEQ(*LiveInts);
|
|
unsigned NumComp = ConEQ.Classify(&LI);
|
|
if (NumComp > 1) {
|
|
report("Multiple connected components in live interval", MF, LI);
|
|
for (unsigned comp = 0; comp != NumComp; ++comp) {
|
|
*OS << comp << ": valnos";
|
|
for (LiveInterval::const_vni_iterator I = LI.vni_begin(),
|
|
E = LI.vni_end(); I!=E; ++I)
|
|
if (comp == ConEQ.getEqClass(*I))
|
|
*OS << ' ' << (*I)->id;
|
|
*OS << '\n';
|
|
}
|
|
}
|
|
}
|
|
}
|