mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-13 20:32:21 +00:00
86765fbe17
We currently have a duplicated set of call instruction patterns depending on the ABI to be followed (Darwin vs. Linux). This is a bit odd; while the different ABIs will result in different instruction sequences, the actual instructions themselves ought to be independent of the ABI. And in fact it turns out that the only nontrivial difference between the two sets of patterns is that in the PPC64 Linux ABI, the instruction used for indirect calls is marked to take X11 as extra input register (which is indeed used only with that ABI to hold an incoming environment pointer for nested functions). However, this does not need to be hard-coded at the .td pattern level; instead, the C++ code expanding calls can simply add that use, just like it adds uses for argument registers anyway. No change in generated code expected. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177735 91177308-0d34-0410-b5e6-96231b3b80d8
246 lines
8.2 KiB
C++
246 lines
8.2 KiB
C++
//===-- PPCHazardRecognizers.cpp - PowerPC Hazard Recognizer Impls --------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements hazard recognizers for scheduling on PowerPC processors.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "pre-RA-sched"
|
|
#include "PPCHazardRecognizers.h"
|
|
#include "PPC.h"
|
|
#include "PPCInstrInfo.h"
|
|
#include "llvm/CodeGen/ScheduleDAG.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
using namespace llvm;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// PowerPC Scoreboard Hazard Recognizer
|
|
void PPCScoreboardHazardRecognizer::EmitInstruction(SUnit *SU) {
|
|
const MCInstrDesc *MCID = DAG->getInstrDesc(SU);
|
|
if (!MCID)
|
|
// This is a PPC pseudo-instruction.
|
|
return;
|
|
|
|
ScoreboardHazardRecognizer::EmitInstruction(SU);
|
|
}
|
|
|
|
ScheduleHazardRecognizer::HazardType
|
|
PPCScoreboardHazardRecognizer::getHazardType(SUnit *SU, int Stalls) {
|
|
return ScoreboardHazardRecognizer::getHazardType(SU, Stalls);
|
|
}
|
|
|
|
void PPCScoreboardHazardRecognizer::AdvanceCycle() {
|
|
ScoreboardHazardRecognizer::AdvanceCycle();
|
|
}
|
|
|
|
void PPCScoreboardHazardRecognizer::Reset() {
|
|
ScoreboardHazardRecognizer::Reset();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// PowerPC 970 Hazard Recognizer
|
|
//
|
|
// This models the dispatch group formation of the PPC970 processor. Dispatch
|
|
// groups are bundles of up to five instructions that can contain various mixes
|
|
// of instructions. The PPC970 can dispatch a peak of 4 non-branch and one
|
|
// branch instruction per-cycle.
|
|
//
|
|
// There are a number of restrictions to dispatch group formation: some
|
|
// instructions can only be issued in the first slot of a dispatch group, & some
|
|
// instructions fill an entire dispatch group. Additionally, only branches can
|
|
// issue in the 5th (last) slot.
|
|
//
|
|
// Finally, there are a number of "structural" hazards on the PPC970. These
|
|
// conditions cause large performance penalties due to misprediction, recovery,
|
|
// and replay logic that has to happen. These cases include setting a CTR and
|
|
// branching through it in the same dispatch group, and storing to an address,
|
|
// then loading from the same address within a dispatch group. To avoid these
|
|
// conditions, we insert no-op instructions when appropriate.
|
|
//
|
|
// FIXME: This is missing some significant cases:
|
|
// 1. Modeling of microcoded instructions.
|
|
// 2. Handling of serialized operations.
|
|
// 3. Handling of the esoteric cases in "Resource-based Instruction Grouping".
|
|
//
|
|
|
|
PPCHazardRecognizer970::PPCHazardRecognizer970(const TargetInstrInfo &tii)
|
|
: TII(tii) {
|
|
EndDispatchGroup();
|
|
}
|
|
|
|
void PPCHazardRecognizer970::EndDispatchGroup() {
|
|
DEBUG(errs() << "=== Start of dispatch group\n");
|
|
NumIssued = 0;
|
|
|
|
// Structural hazard info.
|
|
HasCTRSet = false;
|
|
NumStores = 0;
|
|
}
|
|
|
|
|
|
PPCII::PPC970_Unit
|
|
PPCHazardRecognizer970::GetInstrType(unsigned Opcode,
|
|
bool &isFirst, bool &isSingle,
|
|
bool &isCracked,
|
|
bool &isLoad, bool &isStore) {
|
|
const MCInstrDesc &MCID = TII.get(Opcode);
|
|
|
|
isLoad = MCID.mayLoad();
|
|
isStore = MCID.mayStore();
|
|
|
|
uint64_t TSFlags = MCID.TSFlags;
|
|
|
|
isFirst = TSFlags & PPCII::PPC970_First;
|
|
isSingle = TSFlags & PPCII::PPC970_Single;
|
|
isCracked = TSFlags & PPCII::PPC970_Cracked;
|
|
return (PPCII::PPC970_Unit)(TSFlags & PPCII::PPC970_Mask);
|
|
}
|
|
|
|
/// isLoadOfStoredAddress - If we have a load from the previously stored pointer
|
|
/// as indicated by StorePtr1/StorePtr2/StoreSize, return true.
|
|
bool PPCHazardRecognizer970::
|
|
isLoadOfStoredAddress(uint64_t LoadSize, int64_t LoadOffset,
|
|
const Value *LoadValue) const {
|
|
for (unsigned i = 0, e = NumStores; i != e; ++i) {
|
|
// Handle exact and commuted addresses.
|
|
if (LoadValue == StoreValue[i] && LoadOffset == StoreOffset[i])
|
|
return true;
|
|
|
|
// Okay, we don't have an exact match, if this is an indexed offset, see if
|
|
// we have overlap (which happens during fp->int conversion for example).
|
|
if (StoreValue[i] == LoadValue) {
|
|
// Okay the base pointers match, so we have [c1+r] vs [c2+r]. Check
|
|
// to see if the load and store actually overlap.
|
|
if (StoreOffset[i] < LoadOffset) {
|
|
if (int64_t(StoreOffset[i]+StoreSize[i]) > LoadOffset) return true;
|
|
} else {
|
|
if (int64_t(LoadOffset+LoadSize) > StoreOffset[i]) return true;
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// getHazardType - We return hazard for any non-branch instruction that would
|
|
/// terminate the dispatch group. We turn NoopHazard for any
|
|
/// instructions that wouldn't terminate the dispatch group that would cause a
|
|
/// pipeline flush.
|
|
ScheduleHazardRecognizer::HazardType PPCHazardRecognizer970::
|
|
getHazardType(SUnit *SU, int Stalls) {
|
|
assert(Stalls == 0 && "PPC hazards don't support scoreboard lookahead");
|
|
|
|
MachineInstr *MI = SU->getInstr();
|
|
|
|
if (MI->isDebugValue())
|
|
return NoHazard;
|
|
|
|
unsigned Opcode = MI->getOpcode();
|
|
bool isFirst, isSingle, isCracked, isLoad, isStore;
|
|
PPCII::PPC970_Unit InstrType =
|
|
GetInstrType(Opcode, isFirst, isSingle, isCracked,
|
|
isLoad, isStore);
|
|
if (InstrType == PPCII::PPC970_Pseudo) return NoHazard;
|
|
|
|
// We can only issue a PPC970_First/PPC970_Single instruction (such as
|
|
// crand/mtspr/etc) if this is the first cycle of the dispatch group.
|
|
if (NumIssued != 0 && (isFirst || isSingle))
|
|
return Hazard;
|
|
|
|
// If this instruction is cracked into two ops by the decoder, we know that
|
|
// it is not a branch and that it cannot issue if 3 other instructions are
|
|
// already in the dispatch group.
|
|
if (isCracked && NumIssued > 2)
|
|
return Hazard;
|
|
|
|
switch (InstrType) {
|
|
default: llvm_unreachable("Unknown instruction type!");
|
|
case PPCII::PPC970_FXU:
|
|
case PPCII::PPC970_LSU:
|
|
case PPCII::PPC970_FPU:
|
|
case PPCII::PPC970_VALU:
|
|
case PPCII::PPC970_VPERM:
|
|
// We can only issue a branch as the last instruction in a group.
|
|
if (NumIssued == 4) return Hazard;
|
|
break;
|
|
case PPCII::PPC970_CRU:
|
|
// We can only issue a CR instruction in the first two slots.
|
|
if (NumIssued >= 2) return Hazard;
|
|
break;
|
|
case PPCII::PPC970_BRU:
|
|
break;
|
|
}
|
|
|
|
// Do not allow MTCTR and BCTRL to be in the same dispatch group.
|
|
if (HasCTRSet && Opcode == PPC::BCTRL)
|
|
return NoopHazard;
|
|
|
|
// If this is a load following a store, make sure it's not to the same or
|
|
// overlapping address.
|
|
if (isLoad && NumStores && !MI->memoperands_empty()) {
|
|
MachineMemOperand *MO = *MI->memoperands_begin();
|
|
if (isLoadOfStoredAddress(MO->getSize(),
|
|
MO->getOffset(), MO->getValue()))
|
|
return NoopHazard;
|
|
}
|
|
|
|
return NoHazard;
|
|
}
|
|
|
|
void PPCHazardRecognizer970::EmitInstruction(SUnit *SU) {
|
|
MachineInstr *MI = SU->getInstr();
|
|
|
|
if (MI->isDebugValue())
|
|
return;
|
|
|
|
unsigned Opcode = MI->getOpcode();
|
|
bool isFirst, isSingle, isCracked, isLoad, isStore;
|
|
PPCII::PPC970_Unit InstrType =
|
|
GetInstrType(Opcode, isFirst, isSingle, isCracked,
|
|
isLoad, isStore);
|
|
if (InstrType == PPCII::PPC970_Pseudo) return;
|
|
|
|
// Update structural hazard information.
|
|
if (Opcode == PPC::MTCTR || Opcode == PPC::MTCTR8) HasCTRSet = true;
|
|
|
|
// Track the address stored to.
|
|
if (isStore && NumStores < 4 && !MI->memoperands_empty()) {
|
|
MachineMemOperand *MO = *MI->memoperands_begin();
|
|
StoreSize[NumStores] = MO->getSize();
|
|
StoreOffset[NumStores] = MO->getOffset();
|
|
StoreValue[NumStores] = MO->getValue();
|
|
++NumStores;
|
|
}
|
|
|
|
if (InstrType == PPCII::PPC970_BRU || isSingle)
|
|
NumIssued = 4; // Terminate a d-group.
|
|
++NumIssued;
|
|
|
|
// If this instruction is cracked into two ops by the decoder, remember that
|
|
// we issued two pieces.
|
|
if (isCracked)
|
|
++NumIssued;
|
|
|
|
if (NumIssued == 5)
|
|
EndDispatchGroup();
|
|
}
|
|
|
|
void PPCHazardRecognizer970::AdvanceCycle() {
|
|
assert(NumIssued < 5 && "Illegal dispatch group!");
|
|
++NumIssued;
|
|
if (NumIssued == 5)
|
|
EndDispatchGroup();
|
|
}
|
|
|
|
void PPCHazardRecognizer970::Reset() {
|
|
EndDispatchGroup();
|
|
}
|
|
|