mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-11-04 22:07:27 +00:00
12d3dc73dc
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@189124 91177308-0d34-0410-b5e6-96231b3b80d8
296 lines
11 KiB
C++
296 lines
11 KiB
C++
//===- TargetRegisterInfo.cpp - Target Register Information Implementation ===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the TargetRegisterInfo interface.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Target/TargetRegisterInfo.h"
|
|
#include "llvm/ADT/BitVector.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/VirtRegMap.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
using namespace llvm;
|
|
|
|
TargetRegisterInfo::TargetRegisterInfo(const TargetRegisterInfoDesc *ID,
|
|
regclass_iterator RCB, regclass_iterator RCE,
|
|
const char *const *SRINames,
|
|
const unsigned *SRILaneMasks,
|
|
unsigned SRICoveringLanes)
|
|
: InfoDesc(ID), SubRegIndexNames(SRINames),
|
|
SubRegIndexLaneMasks(SRILaneMasks),
|
|
RegClassBegin(RCB), RegClassEnd(RCE),
|
|
CoveringLanes(SRICoveringLanes) {
|
|
}
|
|
|
|
TargetRegisterInfo::~TargetRegisterInfo() {}
|
|
|
|
void PrintReg::print(raw_ostream &OS) const {
|
|
if (!Reg)
|
|
OS << "%noreg";
|
|
else if (TargetRegisterInfo::isStackSlot(Reg))
|
|
OS << "SS#" << TargetRegisterInfo::stackSlot2Index(Reg);
|
|
else if (TargetRegisterInfo::isVirtualRegister(Reg))
|
|
OS << "%vreg" << TargetRegisterInfo::virtReg2Index(Reg);
|
|
else if (TRI && Reg < TRI->getNumRegs())
|
|
OS << '%' << TRI->getName(Reg);
|
|
else
|
|
OS << "%physreg" << Reg;
|
|
if (SubIdx) {
|
|
if (TRI)
|
|
OS << ':' << TRI->getSubRegIndexName(SubIdx);
|
|
else
|
|
OS << ":sub(" << SubIdx << ')';
|
|
}
|
|
}
|
|
|
|
void PrintRegUnit::print(raw_ostream &OS) const {
|
|
// Generic printout when TRI is missing.
|
|
if (!TRI) {
|
|
OS << "Unit~" << Unit;
|
|
return;
|
|
}
|
|
|
|
// Check for invalid register units.
|
|
if (Unit >= TRI->getNumRegUnits()) {
|
|
OS << "BadUnit~" << Unit;
|
|
return;
|
|
}
|
|
|
|
// Normal units have at least one root.
|
|
MCRegUnitRootIterator Roots(Unit, TRI);
|
|
assert(Roots.isValid() && "Unit has no roots.");
|
|
OS << TRI->getName(*Roots);
|
|
for (++Roots; Roots.isValid(); ++Roots)
|
|
OS << '~' << TRI->getName(*Roots);
|
|
}
|
|
|
|
void PrintVRegOrUnit::print(raw_ostream &OS) const {
|
|
if (TRI && TRI->isVirtualRegister(Unit)) {
|
|
OS << "%vreg" << TargetRegisterInfo::virtReg2Index(Unit);
|
|
return;
|
|
}
|
|
PrintRegUnit::print(OS);
|
|
}
|
|
|
|
/// getAllocatableClass - Return the maximal subclass of the given register
|
|
/// class that is alloctable, or NULL.
|
|
const TargetRegisterClass *
|
|
TargetRegisterInfo::getAllocatableClass(const TargetRegisterClass *RC) const {
|
|
if (!RC || RC->isAllocatable())
|
|
return RC;
|
|
|
|
const unsigned *SubClass = RC->getSubClassMask();
|
|
for (unsigned Base = 0, BaseE = getNumRegClasses();
|
|
Base < BaseE; Base += 32) {
|
|
unsigned Idx = Base;
|
|
for (unsigned Mask = *SubClass++; Mask; Mask >>= 1) {
|
|
unsigned Offset = countTrailingZeros(Mask);
|
|
const TargetRegisterClass *SubRC = getRegClass(Idx + Offset);
|
|
if (SubRC->isAllocatable())
|
|
return SubRC;
|
|
Mask >>= Offset;
|
|
Idx += Offset + 1;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/// getMinimalPhysRegClass - Returns the Register Class of a physical
|
|
/// register of the given type, picking the most sub register class of
|
|
/// the right type that contains this physreg.
|
|
const TargetRegisterClass *
|
|
TargetRegisterInfo::getMinimalPhysRegClass(unsigned reg, EVT VT) const {
|
|
assert(isPhysicalRegister(reg) && "reg must be a physical register");
|
|
|
|
// Pick the most sub register class of the right type that contains
|
|
// this physreg.
|
|
const TargetRegisterClass* BestRC = 0;
|
|
for (regclass_iterator I = regclass_begin(), E = regclass_end(); I != E; ++I){
|
|
const TargetRegisterClass* RC = *I;
|
|
if ((VT == MVT::Other || RC->hasType(VT)) && RC->contains(reg) &&
|
|
(!BestRC || BestRC->hasSubClass(RC)))
|
|
BestRC = RC;
|
|
}
|
|
|
|
assert(BestRC && "Couldn't find the register class");
|
|
return BestRC;
|
|
}
|
|
|
|
/// getAllocatableSetForRC - Toggle the bits that represent allocatable
|
|
/// registers for the specific register class.
|
|
static void getAllocatableSetForRC(const MachineFunction &MF,
|
|
const TargetRegisterClass *RC, BitVector &R){
|
|
assert(RC->isAllocatable() && "invalid for nonallocatable sets");
|
|
ArrayRef<uint16_t> Order = RC->getRawAllocationOrder(MF);
|
|
for (unsigned i = 0; i != Order.size(); ++i)
|
|
R.set(Order[i]);
|
|
}
|
|
|
|
BitVector TargetRegisterInfo::getAllocatableSet(const MachineFunction &MF,
|
|
const TargetRegisterClass *RC) const {
|
|
BitVector Allocatable(getNumRegs());
|
|
if (RC) {
|
|
// A register class with no allocatable subclass returns an empty set.
|
|
const TargetRegisterClass *SubClass = getAllocatableClass(RC);
|
|
if (SubClass)
|
|
getAllocatableSetForRC(MF, SubClass, Allocatable);
|
|
} else {
|
|
for (TargetRegisterInfo::regclass_iterator I = regclass_begin(),
|
|
E = regclass_end(); I != E; ++I)
|
|
if ((*I)->isAllocatable())
|
|
getAllocatableSetForRC(MF, *I, Allocatable);
|
|
}
|
|
|
|
// Mask out the reserved registers
|
|
BitVector Reserved = getReservedRegs(MF);
|
|
Allocatable &= Reserved.flip();
|
|
|
|
return Allocatable;
|
|
}
|
|
|
|
static inline
|
|
const TargetRegisterClass *firstCommonClass(const uint32_t *A,
|
|
const uint32_t *B,
|
|
const TargetRegisterInfo *TRI) {
|
|
for (unsigned I = 0, E = TRI->getNumRegClasses(); I < E; I += 32)
|
|
if (unsigned Common = *A++ & *B++)
|
|
return TRI->getRegClass(I + countTrailingZeros(Common));
|
|
return 0;
|
|
}
|
|
|
|
const TargetRegisterClass *
|
|
TargetRegisterInfo::getCommonSubClass(const TargetRegisterClass *A,
|
|
const TargetRegisterClass *B) const {
|
|
// First take care of the trivial cases.
|
|
if (A == B)
|
|
return A;
|
|
if (!A || !B)
|
|
return 0;
|
|
|
|
// Register classes are ordered topologically, so the largest common
|
|
// sub-class it the common sub-class with the smallest ID.
|
|
return firstCommonClass(A->getSubClassMask(), B->getSubClassMask(), this);
|
|
}
|
|
|
|
const TargetRegisterClass *
|
|
TargetRegisterInfo::getMatchingSuperRegClass(const TargetRegisterClass *A,
|
|
const TargetRegisterClass *B,
|
|
unsigned Idx) const {
|
|
assert(A && B && "Missing register class");
|
|
assert(Idx && "Bad sub-register index");
|
|
|
|
// Find Idx in the list of super-register indices.
|
|
for (SuperRegClassIterator RCI(B, this); RCI.isValid(); ++RCI)
|
|
if (RCI.getSubReg() == Idx)
|
|
// The bit mask contains all register classes that are projected into B
|
|
// by Idx. Find a class that is also a sub-class of A.
|
|
return firstCommonClass(RCI.getMask(), A->getSubClassMask(), this);
|
|
return 0;
|
|
}
|
|
|
|
const TargetRegisterClass *TargetRegisterInfo::
|
|
getCommonSuperRegClass(const TargetRegisterClass *RCA, unsigned SubA,
|
|
const TargetRegisterClass *RCB, unsigned SubB,
|
|
unsigned &PreA, unsigned &PreB) const {
|
|
assert(RCA && SubA && RCB && SubB && "Invalid arguments");
|
|
|
|
// Search all pairs of sub-register indices that project into RCA and RCB
|
|
// respectively. This is quadratic, but usually the sets are very small. On
|
|
// most targets like X86, there will only be a single sub-register index
|
|
// (e.g., sub_16bit projecting into GR16).
|
|
//
|
|
// The worst case is a register class like DPR on ARM.
|
|
// We have indices dsub_0..dsub_7 projecting into that class.
|
|
//
|
|
// It is very common that one register class is a sub-register of the other.
|
|
// Arrange for RCA to be the larger register so the answer will be found in
|
|
// the first iteration. This makes the search linear for the most common
|
|
// case.
|
|
const TargetRegisterClass *BestRC = 0;
|
|
unsigned *BestPreA = &PreA;
|
|
unsigned *BestPreB = &PreB;
|
|
if (RCA->getSize() < RCB->getSize()) {
|
|
std::swap(RCA, RCB);
|
|
std::swap(SubA, SubB);
|
|
std::swap(BestPreA, BestPreB);
|
|
}
|
|
|
|
// Also terminate the search one we have found a register class as small as
|
|
// RCA.
|
|
unsigned MinSize = RCA->getSize();
|
|
|
|
for (SuperRegClassIterator IA(RCA, this, true); IA.isValid(); ++IA) {
|
|
unsigned FinalA = composeSubRegIndices(IA.getSubReg(), SubA);
|
|
for (SuperRegClassIterator IB(RCB, this, true); IB.isValid(); ++IB) {
|
|
// Check if a common super-register class exists for this index pair.
|
|
const TargetRegisterClass *RC =
|
|
firstCommonClass(IA.getMask(), IB.getMask(), this);
|
|
if (!RC || RC->getSize() < MinSize)
|
|
continue;
|
|
|
|
// The indexes must compose identically: PreA+SubA == PreB+SubB.
|
|
unsigned FinalB = composeSubRegIndices(IB.getSubReg(), SubB);
|
|
if (FinalA != FinalB)
|
|
continue;
|
|
|
|
// Is RC a better candidate than BestRC?
|
|
if (BestRC && RC->getSize() >= BestRC->getSize())
|
|
continue;
|
|
|
|
// Yes, RC is the smallest super-register seen so far.
|
|
BestRC = RC;
|
|
*BestPreA = IA.getSubReg();
|
|
*BestPreB = IB.getSubReg();
|
|
|
|
// Bail early if we reached MinSize. We won't find a better candidate.
|
|
if (BestRC->getSize() == MinSize)
|
|
return BestRC;
|
|
}
|
|
}
|
|
return BestRC;
|
|
}
|
|
|
|
// Compute target-independent register allocator hints to help eliminate copies.
|
|
void
|
|
TargetRegisterInfo::getRegAllocationHints(unsigned VirtReg,
|
|
ArrayRef<MCPhysReg> Order,
|
|
SmallVectorImpl<MCPhysReg> &Hints,
|
|
const MachineFunction &MF,
|
|
const VirtRegMap *VRM) const {
|
|
const MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
std::pair<unsigned, unsigned> Hint = MRI.getRegAllocationHint(VirtReg);
|
|
|
|
// Hints with HintType != 0 were set by target-dependent code.
|
|
// Such targets must provide their own implementation of
|
|
// TRI::getRegAllocationHints to interpret those hint types.
|
|
assert(Hint.first == 0 && "Target must implement TRI::getRegAllocationHints");
|
|
|
|
// Target-independent hints are either a physical or a virtual register.
|
|
unsigned Phys = Hint.second;
|
|
if (VRM && isVirtualRegister(Phys))
|
|
Phys = VRM->getPhys(Phys);
|
|
|
|
// Check that Phys is a valid hint in VirtReg's register class.
|
|
if (!isPhysicalRegister(Phys))
|
|
return;
|
|
if (MRI.isReserved(Phys))
|
|
return;
|
|
// Check that Phys is in the allocation order. We shouldn't heed hints
|
|
// from VirtReg's register class if they aren't in the allocation order. The
|
|
// target probably has a reason for removing the register.
|
|
if (std::find(Order.begin(), Order.end(), Phys) == Order.end())
|
|
return;
|
|
|
|
// All clear, tell the register allocator to prefer this register.
|
|
Hints.push_back(Phys);
|
|
}
|