mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-23 15:29:51 +00:00
3ef1aae2b5
This change teaches LazyValueInfo to use the @llvm.assume intrinsic. Like with the known-bits change (r217342), this requires feeding a "context" instruction pointer through many functions. Aside from a little refactoring to reuse the logic that turns predicates into constant ranges in LVI, the only new code is that which can 'merge' the range from an assumption into that otherwise computed. There is also a small addition to JumpThreading so that it can have LVI use assumptions in the same block as the comparison feeding a conditional branch. With this patch, we can now simplify this as expected: int foo(int a) { __builtin_assume(a > 5); if (a > 3) { bar(); return 1; } return 0; } git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217345 91177308-0d34-0410-b5e6-96231b3b80d8
330 lines
11 KiB
C++
330 lines
11 KiB
C++
//===- CorrelatedValuePropagation.cpp - Propagate CFG-derived info --------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the Correlated Value Propagation pass.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/InstructionSimplify.h"
|
|
#include "llvm/Analysis/LazyValueInfo.h"
|
|
#include "llvm/IR/CFG.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "correlated-value-propagation"
|
|
|
|
STATISTIC(NumPhis, "Number of phis propagated");
|
|
STATISTIC(NumSelects, "Number of selects propagated");
|
|
STATISTIC(NumMemAccess, "Number of memory access targets propagated");
|
|
STATISTIC(NumCmps, "Number of comparisons propagated");
|
|
STATISTIC(NumDeadCases, "Number of switch cases removed");
|
|
|
|
namespace {
|
|
class CorrelatedValuePropagation : public FunctionPass {
|
|
LazyValueInfo *LVI;
|
|
|
|
bool processSelect(SelectInst *SI);
|
|
bool processPHI(PHINode *P);
|
|
bool processMemAccess(Instruction *I);
|
|
bool processCmp(CmpInst *C);
|
|
bool processSwitch(SwitchInst *SI);
|
|
|
|
public:
|
|
static char ID;
|
|
CorrelatedValuePropagation(): FunctionPass(ID) {
|
|
initializeCorrelatedValuePropagationPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
bool runOnFunction(Function &F) override;
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.addRequired<LazyValueInfo>();
|
|
}
|
|
};
|
|
}
|
|
|
|
char CorrelatedValuePropagation::ID = 0;
|
|
INITIALIZE_PASS_BEGIN(CorrelatedValuePropagation, "correlated-propagation",
|
|
"Value Propagation", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(LazyValueInfo)
|
|
INITIALIZE_PASS_END(CorrelatedValuePropagation, "correlated-propagation",
|
|
"Value Propagation", false, false)
|
|
|
|
// Public interface to the Value Propagation pass
|
|
Pass *llvm::createCorrelatedValuePropagationPass() {
|
|
return new CorrelatedValuePropagation();
|
|
}
|
|
|
|
bool CorrelatedValuePropagation::processSelect(SelectInst *S) {
|
|
if (S->getType()->isVectorTy()) return false;
|
|
if (isa<Constant>(S->getOperand(0))) return false;
|
|
|
|
Constant *C = LVI->getConstant(S->getOperand(0), S->getParent(), S);
|
|
if (!C) return false;
|
|
|
|
ConstantInt *CI = dyn_cast<ConstantInt>(C);
|
|
if (!CI) return false;
|
|
|
|
Value *ReplaceWith = S->getOperand(1);
|
|
Value *Other = S->getOperand(2);
|
|
if (!CI->isOne()) std::swap(ReplaceWith, Other);
|
|
if (ReplaceWith == S) ReplaceWith = UndefValue::get(S->getType());
|
|
|
|
S->replaceAllUsesWith(ReplaceWith);
|
|
S->eraseFromParent();
|
|
|
|
++NumSelects;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool CorrelatedValuePropagation::processPHI(PHINode *P) {
|
|
bool Changed = false;
|
|
|
|
BasicBlock *BB = P->getParent();
|
|
for (unsigned i = 0, e = P->getNumIncomingValues(); i < e; ++i) {
|
|
Value *Incoming = P->getIncomingValue(i);
|
|
if (isa<Constant>(Incoming)) continue;
|
|
|
|
Value *V = LVI->getConstantOnEdge(Incoming, P->getIncomingBlock(i), BB, P);
|
|
|
|
// Look if the incoming value is a select with a constant but LVI tells us
|
|
// that the incoming value can never be that constant. In that case replace
|
|
// the incoming value with the other value of the select. This often allows
|
|
// us to remove the select later.
|
|
if (!V) {
|
|
SelectInst *SI = dyn_cast<SelectInst>(Incoming);
|
|
if (!SI) continue;
|
|
|
|
Constant *C = dyn_cast<Constant>(SI->getFalseValue());
|
|
if (!C) continue;
|
|
|
|
if (LVI->getPredicateOnEdge(ICmpInst::ICMP_EQ, SI, C,
|
|
P->getIncomingBlock(i), BB, P) !=
|
|
LazyValueInfo::False)
|
|
continue;
|
|
|
|
DEBUG(dbgs() << "CVP: Threading PHI over " << *SI << '\n');
|
|
V = SI->getTrueValue();
|
|
}
|
|
|
|
P->setIncomingValue(i, V);
|
|
Changed = true;
|
|
}
|
|
|
|
// FIXME: Provide DL, TLI, DT, AT to SimplifyInstruction.
|
|
if (Value *V = SimplifyInstruction(P)) {
|
|
P->replaceAllUsesWith(V);
|
|
P->eraseFromParent();
|
|
Changed = true;
|
|
}
|
|
|
|
if (Changed)
|
|
++NumPhis;
|
|
|
|
return Changed;
|
|
}
|
|
|
|
bool CorrelatedValuePropagation::processMemAccess(Instruction *I) {
|
|
Value *Pointer = nullptr;
|
|
if (LoadInst *L = dyn_cast<LoadInst>(I))
|
|
Pointer = L->getPointerOperand();
|
|
else
|
|
Pointer = cast<StoreInst>(I)->getPointerOperand();
|
|
|
|
if (isa<Constant>(Pointer)) return false;
|
|
|
|
Constant *C = LVI->getConstant(Pointer, I->getParent(), I);
|
|
if (!C) return false;
|
|
|
|
++NumMemAccess;
|
|
I->replaceUsesOfWith(Pointer, C);
|
|
return true;
|
|
}
|
|
|
|
/// processCmp - If the value of this comparison could be determined locally,
|
|
/// constant propagation would already have figured it out. Instead, walk
|
|
/// the predecessors and statically evaluate the comparison based on information
|
|
/// available on that edge. If a given static evaluation is true on ALL
|
|
/// incoming edges, then it's true universally and we can simplify the compare.
|
|
bool CorrelatedValuePropagation::processCmp(CmpInst *C) {
|
|
Value *Op0 = C->getOperand(0);
|
|
if (isa<Instruction>(Op0) &&
|
|
cast<Instruction>(Op0)->getParent() == C->getParent())
|
|
return false;
|
|
|
|
Constant *Op1 = dyn_cast<Constant>(C->getOperand(1));
|
|
if (!Op1) return false;
|
|
|
|
pred_iterator PI = pred_begin(C->getParent()), PE = pred_end(C->getParent());
|
|
if (PI == PE) return false;
|
|
|
|
LazyValueInfo::Tristate Result = LVI->getPredicateOnEdge(C->getPredicate(),
|
|
C->getOperand(0), Op1, *PI,
|
|
C->getParent(), C);
|
|
if (Result == LazyValueInfo::Unknown) return false;
|
|
|
|
++PI;
|
|
while (PI != PE) {
|
|
LazyValueInfo::Tristate Res = LVI->getPredicateOnEdge(C->getPredicate(),
|
|
C->getOperand(0), Op1, *PI,
|
|
C->getParent(), C);
|
|
if (Res != Result) return false;
|
|
++PI;
|
|
}
|
|
|
|
++NumCmps;
|
|
|
|
if (Result == LazyValueInfo::True)
|
|
C->replaceAllUsesWith(ConstantInt::getTrue(C->getContext()));
|
|
else
|
|
C->replaceAllUsesWith(ConstantInt::getFalse(C->getContext()));
|
|
|
|
C->eraseFromParent();
|
|
|
|
return true;
|
|
}
|
|
|
|
/// processSwitch - Simplify a switch instruction by removing cases which can
|
|
/// never fire. If the uselessness of a case could be determined locally then
|
|
/// constant propagation would already have figured it out. Instead, walk the
|
|
/// predecessors and statically evaluate cases based on information available
|
|
/// on that edge. Cases that cannot fire no matter what the incoming edge can
|
|
/// safely be removed. If a case fires on every incoming edge then the entire
|
|
/// switch can be removed and replaced with a branch to the case destination.
|
|
bool CorrelatedValuePropagation::processSwitch(SwitchInst *SI) {
|
|
Value *Cond = SI->getCondition();
|
|
BasicBlock *BB = SI->getParent();
|
|
|
|
// If the condition was defined in same block as the switch then LazyValueInfo
|
|
// currently won't say anything useful about it, though in theory it could.
|
|
if (isa<Instruction>(Cond) && cast<Instruction>(Cond)->getParent() == BB)
|
|
return false;
|
|
|
|
// If the switch is unreachable then trying to improve it is a waste of time.
|
|
pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
|
|
if (PB == PE) return false;
|
|
|
|
// Analyse each switch case in turn. This is done in reverse order so that
|
|
// removing a case doesn't cause trouble for the iteration.
|
|
bool Changed = false;
|
|
for (SwitchInst::CaseIt CI = SI->case_end(), CE = SI->case_begin(); CI-- != CE;
|
|
) {
|
|
ConstantInt *Case = CI.getCaseValue();
|
|
|
|
// Check to see if the switch condition is equal to/not equal to the case
|
|
// value on every incoming edge, equal/not equal being the same each time.
|
|
LazyValueInfo::Tristate State = LazyValueInfo::Unknown;
|
|
for (pred_iterator PI = PB; PI != PE; ++PI) {
|
|
// Is the switch condition equal to the case value?
|
|
LazyValueInfo::Tristate Value = LVI->getPredicateOnEdge(CmpInst::ICMP_EQ,
|
|
Cond, Case, *PI,
|
|
BB, SI);
|
|
// Give up on this case if nothing is known.
|
|
if (Value == LazyValueInfo::Unknown) {
|
|
State = LazyValueInfo::Unknown;
|
|
break;
|
|
}
|
|
|
|
// If this was the first edge to be visited, record that all other edges
|
|
// need to give the same result.
|
|
if (PI == PB) {
|
|
State = Value;
|
|
continue;
|
|
}
|
|
|
|
// If this case is known to fire for some edges and known not to fire for
|
|
// others then there is nothing we can do - give up.
|
|
if (Value != State) {
|
|
State = LazyValueInfo::Unknown;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (State == LazyValueInfo::False) {
|
|
// This case never fires - remove it.
|
|
CI.getCaseSuccessor()->removePredecessor(BB);
|
|
SI->removeCase(CI); // Does not invalidate the iterator.
|
|
|
|
// The condition can be modified by removePredecessor's PHI simplification
|
|
// logic.
|
|
Cond = SI->getCondition();
|
|
|
|
++NumDeadCases;
|
|
Changed = true;
|
|
} else if (State == LazyValueInfo::True) {
|
|
// This case always fires. Arrange for the switch to be turned into an
|
|
// unconditional branch by replacing the switch condition with the case
|
|
// value.
|
|
SI->setCondition(Case);
|
|
NumDeadCases += SI->getNumCases();
|
|
Changed = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (Changed)
|
|
// If the switch has been simplified to the point where it can be replaced
|
|
// by a branch then do so now.
|
|
ConstantFoldTerminator(BB);
|
|
|
|
return Changed;
|
|
}
|
|
|
|
bool CorrelatedValuePropagation::runOnFunction(Function &F) {
|
|
if (skipOptnoneFunction(F))
|
|
return false;
|
|
|
|
LVI = &getAnalysis<LazyValueInfo>();
|
|
|
|
bool FnChanged = false;
|
|
|
|
for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) {
|
|
bool BBChanged = false;
|
|
for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); BI != BE; ) {
|
|
Instruction *II = BI++;
|
|
switch (II->getOpcode()) {
|
|
case Instruction::Select:
|
|
BBChanged |= processSelect(cast<SelectInst>(II));
|
|
break;
|
|
case Instruction::PHI:
|
|
BBChanged |= processPHI(cast<PHINode>(II));
|
|
break;
|
|
case Instruction::ICmp:
|
|
case Instruction::FCmp:
|
|
BBChanged |= processCmp(cast<CmpInst>(II));
|
|
break;
|
|
case Instruction::Load:
|
|
case Instruction::Store:
|
|
BBChanged |= processMemAccess(II);
|
|
break;
|
|
}
|
|
}
|
|
|
|
Instruction *Term = FI->getTerminator();
|
|
switch (Term->getOpcode()) {
|
|
case Instruction::Switch:
|
|
BBChanged |= processSwitch(cast<SwitchInst>(Term));
|
|
break;
|
|
}
|
|
|
|
FnChanged |= BBChanged;
|
|
}
|
|
|
|
return FnChanged;
|
|
}
|