mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-15 04:30:12 +00:00
2938a00f29
1. Be careful with cse "cheap" expressions. e.g. constant materialization. Only cse them when the common expression is local or in a direct predecessor. We don't want cse of cheap instruction causing other expressions to be spilled. 2. Watch out for the case where the expression doesn't itself uses a virtual register. e.g. lea of frame object. If the common expression itself is used by copies (common for passing addresses to function calls), don't perform the cse. Since these expressions do not use a register, it creates a live range but doesn't close any, we want to be very careful with increasing register pressure. Note these are heuristics so machine cse doesn't make register allocator unhappy. Once we have proper live range splitting and re-materialization support in place, these should be evaluated again. Now machine cse is almost always a win on llvm nightly tests on x86 and x86_64. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@98121 91177308-0d34-0410-b5e6-96231b3b80d8
367 lines
12 KiB
C++
367 lines
12 KiB
C++
//===-- MachineCSE.cpp - Machine Common Subexpression Elimination Pass ----===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This pass performs global common subexpression elimination on machine
|
|
// instructions using a scoped hash table based value numbering scheme. It
|
|
// must be run while the machine function is still in SSA form.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "machine-cse"
|
|
#include "llvm/CodeGen/Passes.h"
|
|
#include "llvm/CodeGen/MachineDominators.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
#include "llvm/ADT/ScopedHashTable.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Support/Debug.h"
|
|
|
|
using namespace llvm;
|
|
|
|
STATISTIC(NumCoalesces, "Number of copies coalesced");
|
|
STATISTIC(NumCSEs, "Number of common subexpression eliminated");
|
|
|
|
namespace {
|
|
class MachineCSE : public MachineFunctionPass {
|
|
const TargetInstrInfo *TII;
|
|
const TargetRegisterInfo *TRI;
|
|
AliasAnalysis *AA;
|
|
MachineDominatorTree *DT;
|
|
MachineRegisterInfo *MRI;
|
|
public:
|
|
static char ID; // Pass identification
|
|
MachineCSE() : MachineFunctionPass(&ID), CurrVN(0) {}
|
|
|
|
virtual bool runOnMachineFunction(MachineFunction &MF);
|
|
|
|
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.setPreservesCFG();
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
|
AU.addRequired<AliasAnalysis>();
|
|
AU.addRequired<MachineDominatorTree>();
|
|
AU.addPreserved<MachineDominatorTree>();
|
|
}
|
|
|
|
private:
|
|
unsigned CurrVN;
|
|
ScopedHashTable<MachineInstr*, unsigned, MachineInstrExpressionTrait> VNT;
|
|
SmallVector<MachineInstr*, 64> Exps;
|
|
|
|
bool PerformTrivialCoalescing(MachineInstr *MI, MachineBasicBlock *MBB);
|
|
bool isPhysDefTriviallyDead(unsigned Reg,
|
|
MachineBasicBlock::const_iterator I,
|
|
MachineBasicBlock::const_iterator E);
|
|
bool hasLivePhysRegDefUse(MachineInstr *MI, MachineBasicBlock *MBB);
|
|
bool isCSECandidate(MachineInstr *MI);
|
|
bool isProfitableToCSE(unsigned CSReg, unsigned Reg,
|
|
MachineInstr *CSMI, MachineInstr *MI);
|
|
bool ProcessBlock(MachineDomTreeNode *Node);
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
char MachineCSE::ID = 0;
|
|
static RegisterPass<MachineCSE>
|
|
X("machine-cse", "Machine Common Subexpression Elimination");
|
|
|
|
FunctionPass *llvm::createMachineCSEPass() { return new MachineCSE(); }
|
|
|
|
bool MachineCSE::PerformTrivialCoalescing(MachineInstr *MI,
|
|
MachineBasicBlock *MBB) {
|
|
bool Changed = false;
|
|
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
|
|
MachineOperand &MO = MI->getOperand(i);
|
|
if (!MO.isReg() || !MO.isUse())
|
|
continue;
|
|
unsigned Reg = MO.getReg();
|
|
if (!Reg || TargetRegisterInfo::isPhysicalRegister(Reg))
|
|
continue;
|
|
if (!MRI->hasOneUse(Reg))
|
|
// Only coalesce single use copies. This ensure the copy will be
|
|
// deleted.
|
|
continue;
|
|
MachineInstr *DefMI = MRI->getVRegDef(Reg);
|
|
if (DefMI->getParent() != MBB)
|
|
continue;
|
|
unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
|
|
if (TII->isMoveInstr(*DefMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx) &&
|
|
TargetRegisterInfo::isVirtualRegister(SrcReg) &&
|
|
!SrcSubIdx && !DstSubIdx) {
|
|
const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg);
|
|
const TargetRegisterClass *RC = MRI->getRegClass(Reg);
|
|
const TargetRegisterClass *NewRC = getCommonSubClass(RC, SRC);
|
|
if (!NewRC)
|
|
continue;
|
|
DEBUG(dbgs() << "Coalescing: " << *DefMI);
|
|
DEBUG(dbgs() << "*** to: " << *MI);
|
|
MO.setReg(SrcReg);
|
|
if (NewRC != SRC)
|
|
MRI->setRegClass(SrcReg, NewRC);
|
|
DefMI->eraseFromParent();
|
|
++NumCoalesces;
|
|
Changed = true;
|
|
}
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
bool MachineCSE::isPhysDefTriviallyDead(unsigned Reg,
|
|
MachineBasicBlock::const_iterator I,
|
|
MachineBasicBlock::const_iterator E) {
|
|
unsigned LookAheadLeft = 5;
|
|
while (LookAheadLeft--) {
|
|
if (I == E)
|
|
// Reached end of block, register is obviously dead.
|
|
return true;
|
|
|
|
if (I->isDebugValue())
|
|
continue;
|
|
bool SeenDef = false;
|
|
for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
|
|
const MachineOperand &MO = I->getOperand(i);
|
|
if (!MO.isReg() || !MO.getReg())
|
|
continue;
|
|
if (!TRI->regsOverlap(MO.getReg(), Reg))
|
|
continue;
|
|
if (MO.isUse())
|
|
return false;
|
|
SeenDef = true;
|
|
}
|
|
if (SeenDef)
|
|
// See a def of Reg (or an alias) before encountering any use, it's
|
|
// trivially dead.
|
|
return true;
|
|
++I;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// hasLivePhysRegDefUse - Return true if the specified instruction read / write
|
|
/// physical registers (except for dead defs of physical registers).
|
|
bool MachineCSE::hasLivePhysRegDefUse(MachineInstr *MI, MachineBasicBlock *MBB){
|
|
unsigned PhysDef = 0;
|
|
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
|
|
MachineOperand &MO = MI->getOperand(i);
|
|
if (!MO.isReg())
|
|
continue;
|
|
unsigned Reg = MO.getReg();
|
|
if (!Reg)
|
|
continue;
|
|
if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
|
|
if (MO.isUse())
|
|
// Can't touch anything to read a physical register.
|
|
return true;
|
|
if (MO.isDead())
|
|
// If the def is dead, it's ok.
|
|
continue;
|
|
// Ok, this is a physical register def that's not marked "dead". That's
|
|
// common since this pass is run before livevariables. We can scan
|
|
// forward a few instructions and check if it is obviously dead.
|
|
if (PhysDef)
|
|
// Multiple physical register defs. These are rare, forget about it.
|
|
return true;
|
|
PhysDef = Reg;
|
|
}
|
|
}
|
|
|
|
if (PhysDef) {
|
|
MachineBasicBlock::iterator I = MI; I = llvm::next(I);
|
|
if (!isPhysDefTriviallyDead(PhysDef, I, MBB->end()))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool isCopy(const MachineInstr *MI, const TargetInstrInfo *TII) {
|
|
unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
|
|
return TII->isMoveInstr(*MI, SrcReg, DstReg, SrcSubIdx, DstSubIdx) ||
|
|
MI->isExtractSubreg() || MI->isInsertSubreg() || MI->isSubregToReg();
|
|
}
|
|
|
|
bool MachineCSE::isCSECandidate(MachineInstr *MI) {
|
|
if (MI->isLabel() || MI->isPHI() || MI->isImplicitDef() ||
|
|
MI->isKill() || MI->isInlineAsm())
|
|
return false;
|
|
|
|
// Ignore copies.
|
|
if (isCopy(MI, TII))
|
|
return false;
|
|
|
|
// Ignore stuff that we obviously can't move.
|
|
const TargetInstrDesc &TID = MI->getDesc();
|
|
if (TID.mayStore() || TID.isCall() || TID.isTerminator() ||
|
|
TID.hasUnmodeledSideEffects())
|
|
return false;
|
|
|
|
if (TID.mayLoad()) {
|
|
// Okay, this instruction does a load. As a refinement, we allow the target
|
|
// to decide whether the loaded value is actually a constant. If so, we can
|
|
// actually use it as a load.
|
|
if (!MI->isInvariantLoad(AA))
|
|
// FIXME: we should be able to hoist loads with no other side effects if
|
|
// there are no other instructions which can change memory in this loop.
|
|
// This is a trivial form of alias analysis.
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// isProfitableToCSE - Return true if it's profitable to eliminate MI with a
|
|
/// common expression that defines Reg.
|
|
bool MachineCSE::isProfitableToCSE(unsigned CSReg, unsigned Reg,
|
|
MachineInstr *CSMI, MachineInstr *MI) {
|
|
// FIXME: Heuristics that works around the lack the live range splitting.
|
|
|
|
// Heuristics #1: Don't cse "cheap" computating if the def is not local or in an
|
|
// immediate predecessor. We don't want to increase register pressure and end up
|
|
// causing other computation to be spilled.
|
|
if (MI->getDesc().isAsCheapAsAMove()) {
|
|
MachineBasicBlock *CSBB = CSMI->getParent();
|
|
MachineBasicBlock *BB = MI->getParent();
|
|
if (CSBB != BB &&
|
|
find(CSBB->succ_begin(), CSBB->succ_end(), BB) == CSBB->succ_end())
|
|
return false;
|
|
}
|
|
|
|
// Heuristics #2: If the expression doesn't not use a vr and the only use
|
|
// of the redundant computation are copies, do not cse.
|
|
bool HasVRegUse = false;
|
|
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
|
|
const MachineOperand &MO = MI->getOperand(i);
|
|
if (MO.isReg() && MO.isUse() && MO.getReg() &&
|
|
TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
|
|
HasVRegUse = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!HasVRegUse) {
|
|
bool HasNonCopyUse = false;
|
|
for (MachineRegisterInfo::use_nodbg_iterator I = MRI->use_nodbg_begin(Reg),
|
|
E = MRI->use_nodbg_end(); I != E; ++I) {
|
|
MachineInstr *Use = &*I;
|
|
// Ignore copies.
|
|
if (!isCopy(Use, TII)) {
|
|
HasNonCopyUse = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!HasNonCopyUse)
|
|
return false;
|
|
}
|
|
|
|
// Heuristics #3: If the common subexpression is used by PHIs, do not reuse
|
|
// it unless the defined value is already used in the BB of the new use.
|
|
bool HasPHI = false;
|
|
SmallPtrSet<MachineBasicBlock*, 4> CSBBs;
|
|
for (MachineRegisterInfo::use_nodbg_iterator I = MRI->use_nodbg_begin(CSReg),
|
|
E = MRI->use_nodbg_end(); I != E; ++I) {
|
|
MachineInstr *Use = &*I;
|
|
HasPHI |= Use->isPHI();
|
|
CSBBs.insert(Use->getParent());
|
|
}
|
|
|
|
if (!HasPHI)
|
|
return true;
|
|
return CSBBs.count(MI->getParent());
|
|
}
|
|
|
|
bool MachineCSE::ProcessBlock(MachineDomTreeNode *Node) {
|
|
bool Changed = false;
|
|
|
|
SmallVector<std::pair<unsigned, unsigned>, 8> CSEPairs;
|
|
ScopedHashTableScope<MachineInstr*, unsigned,
|
|
MachineInstrExpressionTrait> VNTS(VNT);
|
|
MachineBasicBlock *MBB = Node->getBlock();
|
|
for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; ) {
|
|
MachineInstr *MI = &*I;
|
|
++I;
|
|
|
|
if (!isCSECandidate(MI))
|
|
continue;
|
|
|
|
bool FoundCSE = VNT.count(MI);
|
|
if (!FoundCSE) {
|
|
// Look for trivial copy coalescing opportunities.
|
|
if (PerformTrivialCoalescing(MI, MBB))
|
|
FoundCSE = VNT.count(MI);
|
|
}
|
|
// FIXME: commute commutable instructions?
|
|
|
|
// If the instruction defines a physical register and the value *may* be
|
|
// used, then it's not safe to replace it with a common subexpression.
|
|
if (FoundCSE && hasLivePhysRegDefUse(MI, MBB))
|
|
FoundCSE = false;
|
|
|
|
if (!FoundCSE) {
|
|
VNT.insert(MI, CurrVN++);
|
|
Exps.push_back(MI);
|
|
continue;
|
|
}
|
|
|
|
// Found a common subexpression, eliminate it.
|
|
unsigned CSVN = VNT.lookup(MI);
|
|
MachineInstr *CSMI = Exps[CSVN];
|
|
DEBUG(dbgs() << "Examining: " << *MI);
|
|
DEBUG(dbgs() << "*** Found a common subexpression: " << *CSMI);
|
|
|
|
// Check if it's profitable to perform this CSE.
|
|
bool DoCSE = true;
|
|
unsigned NumDefs = MI->getDesc().getNumDefs();
|
|
for (unsigned i = 0, e = MI->getNumOperands(); NumDefs && i != e; ++i) {
|
|
MachineOperand &MO = MI->getOperand(i);
|
|
if (!MO.isReg() || !MO.isDef())
|
|
continue;
|
|
unsigned OldReg = MO.getReg();
|
|
unsigned NewReg = CSMI->getOperand(i).getReg();
|
|
if (OldReg == NewReg)
|
|
continue;
|
|
assert(TargetRegisterInfo::isVirtualRegister(OldReg) &&
|
|
TargetRegisterInfo::isVirtualRegister(NewReg) &&
|
|
"Do not CSE physical register defs!");
|
|
if (!isProfitableToCSE(NewReg, OldReg, CSMI, MI)) {
|
|
DoCSE = false;
|
|
break;
|
|
}
|
|
CSEPairs.push_back(std::make_pair(OldReg, NewReg));
|
|
--NumDefs;
|
|
}
|
|
|
|
// Actually perform the elimination.
|
|
if (DoCSE) {
|
|
for (unsigned i = 0, e = CSEPairs.size(); i != e; ++i)
|
|
MRI->replaceRegWith(CSEPairs[i].first, CSEPairs[i].second);
|
|
MI->eraseFromParent();
|
|
++NumCSEs;
|
|
} else {
|
|
DEBUG(dbgs() << "*** Not profitable, avoid CSE!\n");
|
|
VNT.insert(MI, CurrVN++);
|
|
Exps.push_back(MI);
|
|
}
|
|
CSEPairs.clear();
|
|
}
|
|
|
|
// Recursively call ProcessBlock with childred.
|
|
const std::vector<MachineDomTreeNode*> &Children = Node->getChildren();
|
|
for (unsigned i = 0, e = Children.size(); i != e; ++i)
|
|
Changed |= ProcessBlock(Children[i]);
|
|
|
|
return Changed;
|
|
}
|
|
|
|
bool MachineCSE::runOnMachineFunction(MachineFunction &MF) {
|
|
TII = MF.getTarget().getInstrInfo();
|
|
TRI = MF.getTarget().getRegisterInfo();
|
|
MRI = &MF.getRegInfo();
|
|
AA = &getAnalysis<AliasAnalysis>();
|
|
DT = &getAnalysis<MachineDominatorTree>();
|
|
return ProcessBlock(DT->getRootNode());
|
|
}
|