1
0
mirror of https://github.com/c64scene-ar/llvm-6502.git synced 2024-12-23 15:29:51 +00:00
llvm-6502/include/llvm/CodeGen/ScheduleDAG.h
Dan Gohman a1e6d363e5 Factor out the code for verifying the work of the scheduler,
extend it a bit, and make use of it in all schedulers, to
ensure consistent checking.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@59689 91177308-0d34-0410-b5e6-96231b3b80d8
2008-11-20 01:26:25 +00:00

403 lines
15 KiB
C++

//===------- llvm/CodeGen/ScheduleDAG.h - Common Base Class------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the ScheduleDAG class, which is used as the common
// base class for instruction schedulers.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_SCHEDULEDAG_H
#define LLVM_CODEGEN_SCHEDULEDAG_H
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/SmallVector.h"
namespace llvm {
struct SUnit;
class MachineConstantPool;
class MachineFunction;
class MachineModuleInfo;
class MachineRegisterInfo;
class MachineInstr;
class TargetRegisterInfo;
class ScheduleDAG;
class SelectionDAG;
class SDNode;
class TargetInstrInfo;
class TargetInstrDesc;
class TargetLowering;
class TargetMachine;
class TargetRegisterClass;
template<class Graph> class GraphWriter;
/// SDep - Scheduling dependency. It keeps track of dependent nodes,
/// cost of the depdenency, etc.
struct SDep {
SUnit *Dep; // Dependent - either a predecessor or a successor.
unsigned Reg; // If non-zero, this dep is a phy register dependency.
int Cost; // Cost of the dependency.
bool isCtrl : 1; // True iff it's a control dependency.
bool isSpecial : 1; // True iff it's a special ctrl dep added during sched.
SDep(SUnit *d, unsigned r, int t, bool c, bool s)
: Dep(d), Reg(r), Cost(t), isCtrl(c), isSpecial(s) {}
};
/// SUnit - Scheduling unit. This is a node in the scheduling DAG.
struct SUnit {
private:
SDNode *Node; // Representative node.
MachineInstr *Instr; // Alternatively, a MachineInstr.
public:
SUnit *OrigNode; // If not this, the node from which
// this node was cloned.
// Preds/Succs - The SUnits before/after us in the graph. The boolean value
// is true if the edge is a token chain edge, false if it is a value edge.
SmallVector<SDep, 4> Preds; // All sunit predecessors.
SmallVector<SDep, 4> Succs; // All sunit successors.
typedef SmallVector<SDep, 4>::iterator pred_iterator;
typedef SmallVector<SDep, 4>::iterator succ_iterator;
typedef SmallVector<SDep, 4>::const_iterator const_pred_iterator;
typedef SmallVector<SDep, 4>::const_iterator const_succ_iterator;
unsigned NodeNum; // Entry # of node in the node vector.
unsigned NodeQueueId; // Queue id of node.
unsigned short Latency; // Node latency.
short NumPreds; // # of non-control preds.
short NumSuccs; // # of non-control sucss.
short NumPredsLeft; // # of preds not scheduled.
short NumSuccsLeft; // # of succs not scheduled.
bool isTwoAddress : 1; // Is a two-address instruction.
bool isCommutable : 1; // Is a commutable instruction.
bool hasPhysRegDefs : 1; // Has physreg defs that are being used.
bool isPending : 1; // True once pending.
bool isAvailable : 1; // True once available.
bool isScheduled : 1; // True once scheduled.
unsigned CycleBound; // Upper/lower cycle to be scheduled at.
unsigned Cycle; // Once scheduled, the cycle of the op.
unsigned Depth; // Node depth;
unsigned Height; // Node height;
const TargetRegisterClass *CopyDstRC; // Is a special copy node if not null.
const TargetRegisterClass *CopySrcRC;
/// SUnit - Construct an SUnit for pre-regalloc scheduling to represent
/// an SDNode and any nodes flagged to it.
SUnit(SDNode *node, unsigned nodenum)
: Node(node), Instr(0), OrigNode(0), NodeNum(nodenum), NodeQueueId(0),
Latency(0), NumPreds(0), NumSuccs(0), NumPredsLeft(0), NumSuccsLeft(0),
isTwoAddress(false), isCommutable(false), hasPhysRegDefs(false),
isPending(false), isAvailable(false), isScheduled(false),
CycleBound(0), Cycle(~0u), Depth(0), Height(0),
CopyDstRC(NULL), CopySrcRC(NULL) {}
/// SUnit - Construct an SUnit for post-regalloc scheduling to represent
/// a MachineInstr.
SUnit(MachineInstr *instr, unsigned nodenum)
: Node(0), Instr(instr), OrigNode(0), NodeNum(nodenum), NodeQueueId(0),
Latency(0), NumPreds(0), NumSuccs(0), NumPredsLeft(0), NumSuccsLeft(0),
isTwoAddress(false), isCommutable(false), hasPhysRegDefs(false),
isPending(false), isAvailable(false), isScheduled(false),
CycleBound(0), Cycle(~0u), Depth(0), Height(0),
CopyDstRC(NULL), CopySrcRC(NULL) {}
/// setNode - Assign the representative SDNode for this SUnit.
/// This may be used during pre-regalloc scheduling.
void setNode(SDNode *N) {
assert(!Instr && "Setting SDNode of SUnit with MachineInstr!");
Node = N;
}
/// getNode - Return the representative SDNode for this SUnit.
/// This may be used during pre-regalloc scheduling.
SDNode *getNode() const {
assert(!Instr && "Reading SDNode of SUnit with MachineInstr!");
return Node;
}
/// setInstr - Assign the instruction for the SUnit.
/// This may be used during post-regalloc scheduling.
void setInstr(MachineInstr *MI) {
assert(!Node && "Setting MachineInstr of SUnit with SDNode!");
Instr = MI;
}
/// getInstr - Return the representative MachineInstr for this SUnit.
/// This may be used during post-regalloc scheduling.
MachineInstr *getInstr() const {
assert(!Node && "Reading MachineInstr of SUnit with SDNode!");
return Instr;
}
/// addPred - This adds the specified node as a pred of the current node if
/// not already. This returns true if this is a new pred.
bool addPred(SUnit *N, bool isCtrl, bool isSpecial,
unsigned PhyReg = 0, int Cost = 1) {
for (unsigned i = 0, e = (unsigned)Preds.size(); i != e; ++i)
if (Preds[i].Dep == N &&
Preds[i].isCtrl == isCtrl && Preds[i].isSpecial == isSpecial)
return false;
Preds.push_back(SDep(N, PhyReg, Cost, isCtrl, isSpecial));
N->Succs.push_back(SDep(this, PhyReg, Cost, isCtrl, isSpecial));
if (!isCtrl) {
++NumPreds;
++N->NumSuccs;
}
if (!N->isScheduled)
++NumPredsLeft;
if (!isScheduled)
++N->NumSuccsLeft;
return true;
}
bool removePred(SUnit *N, bool isCtrl, bool isSpecial) {
for (SmallVector<SDep, 4>::iterator I = Preds.begin(), E = Preds.end();
I != E; ++I)
if (I->Dep == N && I->isCtrl == isCtrl && I->isSpecial == isSpecial) {
bool FoundSucc = false;
for (SmallVector<SDep, 4>::iterator II = N->Succs.begin(),
EE = N->Succs.end(); II != EE; ++II)
if (II->Dep == this &&
II->isCtrl == isCtrl && II->isSpecial == isSpecial) {
FoundSucc = true;
N->Succs.erase(II);
break;
}
assert(FoundSucc && "Mismatching preds / succs lists!");
Preds.erase(I);
if (!isCtrl) {
--NumPreds;
--N->NumSuccs;
}
if (!N->isScheduled)
--NumPredsLeft;
if (!isScheduled)
--N->NumSuccsLeft;
return true;
}
return false;
}
bool isPred(SUnit *N) {
for (unsigned i = 0, e = (unsigned)Preds.size(); i != e; ++i)
if (Preds[i].Dep == N)
return true;
return false;
}
bool isSucc(SUnit *N) {
for (unsigned i = 0, e = (unsigned)Succs.size(); i != e; ++i)
if (Succs[i].Dep == N)
return true;
return false;
}
void dump(const ScheduleDAG *G) const;
void dumpAll(const ScheduleDAG *G) const;
void print(raw_ostream &O, const ScheduleDAG *G) const;
};
//===--------------------------------------------------------------------===//
/// SchedulingPriorityQueue - This interface is used to plug different
/// priorities computation algorithms into the list scheduler. It implements
/// the interface of a standard priority queue, where nodes are inserted in
/// arbitrary order and returned in priority order. The computation of the
/// priority and the representation of the queue are totally up to the
/// implementation to decide.
///
class SchedulingPriorityQueue {
public:
virtual ~SchedulingPriorityQueue() {}
virtual void initNodes(std::vector<SUnit> &SUnits) = 0;
virtual void addNode(const SUnit *SU) = 0;
virtual void updateNode(const SUnit *SU) = 0;
virtual void releaseState() = 0;
virtual unsigned size() const = 0;
virtual bool empty() const = 0;
virtual void push(SUnit *U) = 0;
virtual void push_all(const std::vector<SUnit *> &Nodes) = 0;
virtual SUnit *pop() = 0;
virtual void remove(SUnit *SU) = 0;
/// ScheduledNode - As each node is scheduled, this method is invoked. This
/// allows the priority function to adjust the priority of related
/// unscheduled nodes, for example.
///
virtual void ScheduledNode(SUnit *) {}
virtual void UnscheduledNode(SUnit *) {}
};
class ScheduleDAG {
public:
SelectionDAG *DAG; // DAG of the current basic block
MachineBasicBlock *BB; // Current basic block
const TargetMachine &TM; // Target processor
const TargetInstrInfo *TII; // Target instruction information
const TargetRegisterInfo *TRI; // Target processor register info
TargetLowering *TLI; // Target lowering info
MachineFunction *MF; // Machine function
MachineRegisterInfo &MRI; // Virtual/real register map
MachineConstantPool *ConstPool; // Target constant pool
std::vector<SUnit*> Sequence; // The schedule. Null SUnit*'s
// represent noop instructions.
std::vector<SUnit> SUnits; // The scheduling units.
ScheduleDAG(SelectionDAG *dag, MachineBasicBlock *bb,
const TargetMachine &tm);
virtual ~ScheduleDAG();
/// viewGraph - Pop up a GraphViz/gv window with the ScheduleDAG rendered
/// using 'dot'.
///
void viewGraph();
/// Run - perform scheduling.
///
void Run();
/// BuildSchedUnits - Build SUnits and set up their Preds and Succs
/// to form the scheduling dependency graph.
///
virtual void BuildSchedUnits() = 0;
/// ComputeLatency - Compute node latency.
///
virtual void ComputeLatency(SUnit *SU) { SU->Latency = 1; }
/// CalculateDepths, CalculateHeights - Calculate node depth / height.
///
void CalculateDepths();
void CalculateHeights();
protected:
/// EmitNoop - Emit a noop instruction.
///
void EmitNoop();
public:
virtual MachineBasicBlock *EmitSchedule() = 0;
void dumpSchedule() const;
/// Schedule - Order nodes according to selected style, filling
/// in the Sequence member.
///
virtual void Schedule() = 0;
virtual void dumpNode(const SUnit *SU) const = 0;
/// getGraphNodeLabel - Return a label for an SUnit node in a visualization
/// of the ScheduleDAG.
virtual std::string getGraphNodeLabel(const SUnit *SU) const = 0;
/// addCustomGraphFeatures - Add custom features for a visualization of
/// the ScheduleDAG.
virtual void addCustomGraphFeatures(GraphWriter<ScheduleDAG*> &GW) const {}
#ifndef NDEBUG
/// VerifySchedule - Verify that all SUnits were scheduled and that
/// their state is consistent.
void VerifySchedule(bool isBottomUp);
#endif
protected:
void AddMemOperand(MachineInstr *MI, const MachineMemOperand &MO);
void EmitCrossRCCopy(SUnit *SU, DenseMap<SUnit*, unsigned> &VRBaseMap);
private:
/// EmitLiveInCopy - Emit a copy for a live in physical register. If the
/// physical register has only a single copy use, then coalesced the copy
/// if possible.
void EmitLiveInCopy(MachineBasicBlock *MBB,
MachineBasicBlock::iterator &InsertPos,
unsigned VirtReg, unsigned PhysReg,
const TargetRegisterClass *RC,
DenseMap<MachineInstr*, unsigned> &CopyRegMap);
/// EmitLiveInCopies - If this is the first basic block in the function,
/// and if it has live ins that need to be copied into vregs, emit the
/// copies into the top of the block.
void EmitLiveInCopies(MachineBasicBlock *MBB);
};
class SUnitIterator : public forward_iterator<SUnit, ptrdiff_t> {
SUnit *Node;
unsigned Operand;
SUnitIterator(SUnit *N, unsigned Op) : Node(N), Operand(Op) {}
public:
bool operator==(const SUnitIterator& x) const {
return Operand == x.Operand;
}
bool operator!=(const SUnitIterator& x) const { return !operator==(x); }
const SUnitIterator &operator=(const SUnitIterator &I) {
assert(I.Node == Node && "Cannot assign iterators to two different nodes!");
Operand = I.Operand;
return *this;
}
pointer operator*() const {
return Node->Preds[Operand].Dep;
}
pointer operator->() const { return operator*(); }
SUnitIterator& operator++() { // Preincrement
++Operand;
return *this;
}
SUnitIterator operator++(int) { // Postincrement
SUnitIterator tmp = *this; ++*this; return tmp;
}
static SUnitIterator begin(SUnit *N) { return SUnitIterator(N, 0); }
static SUnitIterator end (SUnit *N) {
return SUnitIterator(N, (unsigned)N->Preds.size());
}
unsigned getOperand() const { return Operand; }
const SUnit *getNode() const { return Node; }
bool isCtrlDep() const { return Node->Preds[Operand].isCtrl; }
bool isSpecialDep() const { return Node->Preds[Operand].isSpecial; }
};
template <> struct GraphTraits<SUnit*> {
typedef SUnit NodeType;
typedef SUnitIterator ChildIteratorType;
static inline NodeType *getEntryNode(SUnit *N) { return N; }
static inline ChildIteratorType child_begin(NodeType *N) {
return SUnitIterator::begin(N);
}
static inline ChildIteratorType child_end(NodeType *N) {
return SUnitIterator::end(N);
}
};
template <> struct GraphTraits<ScheduleDAG*> : public GraphTraits<SUnit*> {
typedef std::vector<SUnit>::iterator nodes_iterator;
static nodes_iterator nodes_begin(ScheduleDAG *G) {
return G->SUnits.begin();
}
static nodes_iterator nodes_end(ScheduleDAG *G) {
return G->SUnits.end();
}
};
}
#endif