Juergen Ributzka 30f9ff4bee [FastISel] Add target-independent patchpoint intrinsic support. WIP.
This implements the target-independent lowering for the patchpoint
intrinsic. Targets have to implement the FastLowerCall
hook to support this intrinsic.

Related to <rdar://problem/17427052>

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212849 91177308-0d34-0410-b5e6-96231b3b80d8
2014-07-11 22:19:02 +00:00

586 lines
22 KiB
C++

//===-- FastISel.h - Definition of the FastISel class ---*- C++ -*---------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file defines the FastISel class.
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_FASTISEL_H
#define LLVM_CODEGEN_FASTISEL_H
#include "llvm/ADT/DenseMap.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/IR/CallingConv.h"
namespace llvm {
class AllocaInst;
class Constant;
class ConstantFP;
class CallInst;
class DataLayout;
class FunctionLoweringInfo;
class Instruction;
class IntrinsicInst;
class LoadInst;
class MVT;
class MachineConstantPool;
class MachineFrameInfo;
class MachineFunction;
class MachineInstr;
class MachineRegisterInfo;
class TargetInstrInfo;
class TargetLibraryInfo;
class TargetLowering;
class TargetMachine;
class TargetRegisterClass;
class TargetRegisterInfo;
class User;
class Value;
/// This is a fast-path instruction selection class that generates poor code and
/// doesn't support illegal types or non-trivial lowering, but runs quickly.
class FastISel {
public:
struct ArgListEntry {
Value *Val;
Type *Ty;
bool isSExt : 1;
bool isZExt : 1;
bool isInReg : 1;
bool isSRet : 1;
bool isNest : 1;
bool isByVal : 1;
bool isInAlloca : 1;
bool isReturned : 1;
uint16_t Alignment;
ArgListEntry()
: Val(nullptr), Ty(nullptr), isSExt(false), isZExt(false), isInReg(false),
isSRet(false), isNest(false), isByVal(false), isInAlloca(false),
isReturned(false), Alignment(0) { }
void setAttributes(ImmutableCallSite *CS, unsigned AttrIdx);
};
typedef std::vector<ArgListEntry> ArgListTy;
struct CallLoweringInfo {
Type *RetTy;
bool RetSExt : 1;
bool RetZExt : 1;
bool IsVarArg : 1;
bool IsInReg : 1;
bool DoesNotReturn : 1;
bool IsReturnValueUsed : 1;
// IsTailCall should be modified by implementations of
// FastLowerCall that perform tail call conversions.
bool IsTailCall;
unsigned NumFixedArgs;
CallingConv::ID CallConv;
const Value *Callee;
const char *SymName;
ArgListTy Args;
ImmutableCallSite *CS;
MachineInstr *Call;
unsigned ResultReg;
unsigned NumResultRegs;
SmallVector<Value *, 16> OutVals;
SmallVector<ISD::ArgFlagsTy, 16> OutFlags;
SmallVector<unsigned, 16> OutRegs;
SmallVector<ISD::InputArg, 4> Ins;
SmallVector<unsigned, 4> InRegs;
CallLoweringInfo()
: RetTy(nullptr), RetSExt(false), RetZExt(false), IsVarArg(false),
IsInReg(false), DoesNotReturn(false), IsReturnValueUsed(true),
IsTailCall(false), NumFixedArgs(-1), CallConv(CallingConv::C),
Callee(nullptr), SymName(nullptr), CS(nullptr), Call(nullptr),
ResultReg(0), NumResultRegs(0)
{}
CallLoweringInfo &setCallee(Type *ResultTy, FunctionType *FuncTy,
const Value *Target, ArgListTy &&ArgsList,
ImmutableCallSite &Call) {
RetTy = ResultTy;
Callee = Target;
IsInReg = Call.paramHasAttr(0, Attribute::InReg);
DoesNotReturn = Call.doesNotReturn();
IsVarArg = FuncTy->isVarArg();
IsReturnValueUsed = !Call.getInstruction()->use_empty();
RetSExt = Call.paramHasAttr(0, Attribute::SExt);
RetZExt = Call.paramHasAttr(0, Attribute::ZExt);
CallConv = Call.getCallingConv();
NumFixedArgs = FuncTy->getNumParams();
Args = std::move(ArgsList);
CS = &Call;
return *this;
}
CallLoweringInfo &setCallee(Type *ResultTy, FunctionType *FuncTy,
const char *Target, ArgListTy &&ArgsList,
ImmutableCallSite &Call,
unsigned FixedArgs = ~0U) {
RetTy = ResultTy;
Callee = Call.getCalledValue();
SymName = Target;
IsInReg = Call.paramHasAttr(0, Attribute::InReg);
DoesNotReturn = Call.doesNotReturn();
IsVarArg = FuncTy->isVarArg();
IsReturnValueUsed = !Call.getInstruction()->use_empty();
RetSExt = Call.paramHasAttr(0, Attribute::SExt);
RetZExt = Call.paramHasAttr(0, Attribute::ZExt);
CallConv = Call.getCallingConv();
NumFixedArgs = (FixedArgs == ~0U) ? FuncTy->getNumParams() : FixedArgs;
Args = std::move(ArgsList);
CS = &Call;
return *this;
}
CallLoweringInfo &setCallee(CallingConv::ID CC, Type *ResultTy,
const Value *Target, ArgListTy &&ArgsList,
unsigned FixedArgs = ~0U) {
RetTy = ResultTy;
Callee = Target;
CallConv = CC;
NumFixedArgs = (FixedArgs == ~0U) ? Args.size() : FixedArgs;
Args = std::move(ArgsList);
return *this;
}
CallLoweringInfo &setTailCall(bool Value = true) {
IsTailCall = Value;
return *this;
}
ArgListTy &getArgs() {
return Args;
}
void clearOuts() {
OutVals.clear();
OutFlags.clear();
OutRegs.clear();
}
void clearIns() {
Ins.clear();
InRegs.clear();
}
};
protected:
DenseMap<const Value *, unsigned> LocalValueMap;
FunctionLoweringInfo &FuncInfo;
MachineFunction *MF;
MachineRegisterInfo &MRI;
MachineFrameInfo &MFI;
MachineConstantPool &MCP;
DebugLoc DbgLoc;
const TargetMachine &TM;
const DataLayout &DL;
const TargetInstrInfo &TII;
const TargetLowering &TLI;
const TargetRegisterInfo &TRI;
const TargetLibraryInfo *LibInfo;
/// The position of the last instruction for materializing constants for use
/// in the current block. It resets to EmitStartPt when it makes sense (for
/// example, it's usually profitable to avoid function calls between the
/// definition and the use)
MachineInstr *LastLocalValue;
/// The top most instruction in the current block that is allowed for emitting
/// local variables. LastLocalValue resets to EmitStartPt when it makes sense
/// (for example, on function calls)
MachineInstr *EmitStartPt;
public:
/// Return the position of the last instruction emitted for materializing
/// constants for use in the current block.
MachineInstr *getLastLocalValue() { return LastLocalValue; }
/// Update the position of the last instruction emitted for materializing
/// constants for use in the current block.
void setLastLocalValue(MachineInstr *I) {
EmitStartPt = I;
LastLocalValue = I;
}
/// Set the current block to which generated machine instructions will be
/// appended, and clear the local CSE map.
void startNewBlock();
/// Return current debug location information.
DebugLoc getCurDebugLoc() const { return DbgLoc; }
/// Do "fast" instruction selection for function arguments and append machine
/// instructions to the current block. Return true if it is successful.
bool LowerArguments();
/// Do "fast" instruction selection for the given LLVM IR instruction, and
/// append generated machine instructions to the current block. Return true if
/// selection was successful.
bool SelectInstruction(const Instruction *I);
/// Do "fast" instruction selection for the given LLVM IR operator
/// (Instruction or ConstantExpr), and append generated machine instructions
/// to the current block. Return true if selection was successful.
bool SelectOperator(const User *I, unsigned Opcode);
/// Create a virtual register and arrange for it to be assigned the value for
/// the given LLVM value.
unsigned getRegForValue(const Value *V);
/// Look up the value to see if its value is already cached in a register. It
/// may be defined by instructions across blocks or defined locally.
unsigned lookUpRegForValue(const Value *V);
/// This is a wrapper around getRegForValue that also takes care of truncating
/// or sign-extending the given getelementptr index value.
std::pair<unsigned, bool> getRegForGEPIndex(const Value *V);
/// \brief We're checking to see if we can fold \p LI into \p FoldInst. Note
/// that we could have a sequence where multiple LLVM IR instructions are
/// folded into the same machineinstr. For example we could have:
///
/// A: x = load i32 *P
/// B: y = icmp A, 42
/// C: br y, ...
///
/// In this scenario, \p LI is "A", and \p FoldInst is "C". We know about "B"
/// (and any other folded instructions) because it is between A and C.
///
/// If we succeed folding, return true.
bool tryToFoldLoad(const LoadInst *LI, const Instruction *FoldInst);
/// \brief The specified machine instr operand is a vreg, and that vreg is
/// being provided by the specified load instruction. If possible, try to
/// fold the load as an operand to the instruction, returning true if
/// possible.
///
/// This method should be implemented by targets.
virtual bool tryToFoldLoadIntoMI(MachineInstr * /*MI*/, unsigned /*OpNo*/,
const LoadInst * /*LI*/) {
return false;
}
/// Reset InsertPt to prepare for inserting instructions into the current
/// block.
void recomputeInsertPt();
/// Remove all dead instructions between the I and E.
void removeDeadCode(MachineBasicBlock::iterator I,
MachineBasicBlock::iterator E);
struct SavePoint {
MachineBasicBlock::iterator InsertPt;
DebugLoc DL;
};
/// Prepare InsertPt to begin inserting instructions into the local value area
/// and return the old insert position.
SavePoint enterLocalValueArea();
/// Reset InsertPt to the given old insert position.
void leaveLocalValueArea(SavePoint Old);
virtual ~FastISel();
protected:
explicit FastISel(FunctionLoweringInfo &funcInfo,
const TargetLibraryInfo *libInfo);
/// This method is called by target-independent code when the normal FastISel
/// process fails to select an instruction. This gives targets a chance to
/// emit code for anything that doesn't fit into FastISel's framework. It
/// returns true if it was successful.
virtual bool TargetSelectInstruction(const Instruction *I) = 0;
/// This method is called by target-independent code to do target specific
/// argument lowering. It returns true if it was successful.
virtual bool FastLowerArguments();
/// \brief This method is called by target-independent code to do target
/// specific call lowering. It returns true if it was successful.
virtual bool FastLowerCall(CallLoweringInfo &CLI);
/// \brief This method is called by target-independent code to do target
/// specific intrinsic lowering. It returns true if it was successful.
virtual bool FastLowerIntrinsicCall(const IntrinsicInst *II);
/// This method is called by target-independent code to request that an
/// instruction with the given type and opcode be emitted.
virtual unsigned FastEmit_(MVT VT,
MVT RetVT,
unsigned Opcode);
/// This method is called by target-independent code to request that an
/// instruction with the given type, opcode, and register operand be emitted.
virtual unsigned FastEmit_r(MVT VT,
MVT RetVT,
unsigned Opcode,
unsigned Op0, bool Op0IsKill);
/// This method is called by target-independent code to request that an
/// instruction with the given type, opcode, and register operands be emitted.
virtual unsigned FastEmit_rr(MVT VT,
MVT RetVT,
unsigned Opcode,
unsigned Op0, bool Op0IsKill,
unsigned Op1, bool Op1IsKill);
/// This method is called by target-independent code to request that an
/// instruction with the given type, opcode, and register and immediate
/// operands be emitted.
virtual unsigned FastEmit_ri(MVT VT,
MVT RetVT,
unsigned Opcode,
unsigned Op0, bool Op0IsKill,
uint64_t Imm);
/// This method is called by target-independent code to request that an
/// instruction with the given type, opcode, and register and floating-point
/// immediate operands be emitted.
virtual unsigned FastEmit_rf(MVT VT,
MVT RetVT,
unsigned Opcode,
unsigned Op0, bool Op0IsKill,
const ConstantFP *FPImm);
/// This method is called by target-independent code to request that an
/// instruction with the given type, opcode, and register and immediate
/// operands be emitted.
virtual unsigned FastEmit_rri(MVT VT,
MVT RetVT,
unsigned Opcode,
unsigned Op0, bool Op0IsKill,
unsigned Op1, bool Op1IsKill,
uint64_t Imm);
/// \brief This method is a wrapper of FastEmit_ri.
///
/// It first tries to emit an instruction with an immediate operand using
/// FastEmit_ri. If that fails, it materializes the immediate into a register
/// and try FastEmit_rr instead.
unsigned FastEmit_ri_(MVT VT,
unsigned Opcode,
unsigned Op0, bool Op0IsKill,
uint64_t Imm, MVT ImmType);
/// This method is called by target-independent code to request that an
/// instruction with the given type, opcode, and immediate operand be emitted.
virtual unsigned FastEmit_i(MVT VT,
MVT RetVT,
unsigned Opcode,
uint64_t Imm);
/// This method is called by target-independent code to request that an
/// instruction with the given type, opcode, and floating-point immediate
/// operand be emitted.
virtual unsigned FastEmit_f(MVT VT,
MVT RetVT,
unsigned Opcode,
const ConstantFP *FPImm);
/// Emit a MachineInstr with no operands and a result register in the given
/// register class.
unsigned FastEmitInst_(unsigned MachineInstOpcode,
const TargetRegisterClass *RC);
/// Emit a MachineInstr with one register operand and a result register in the
/// given register class.
unsigned FastEmitInst_r(unsigned MachineInstOpcode,
const TargetRegisterClass *RC,
unsigned Op0, bool Op0IsKill);
/// Emit a MachineInstr with two register operands and a result register in
/// the given register class.
unsigned FastEmitInst_rr(unsigned MachineInstOpcode,
const TargetRegisterClass *RC,
unsigned Op0, bool Op0IsKill,
unsigned Op1, bool Op1IsKill);
/// Emit a MachineInstr with three register operands and a result register in
/// the given register class.
unsigned FastEmitInst_rrr(unsigned MachineInstOpcode,
const TargetRegisterClass *RC,
unsigned Op0, bool Op0IsKill,
unsigned Op1, bool Op1IsKill,
unsigned Op2, bool Op2IsKill);
/// Emit a MachineInstr with a register operand, an immediate, and a result
/// register in the given register class.
unsigned FastEmitInst_ri(unsigned MachineInstOpcode,
const TargetRegisterClass *RC,
unsigned Op0, bool Op0IsKill,
uint64_t Imm);
/// Emit a MachineInstr with one register operand and two immediate operands.
unsigned FastEmitInst_rii(unsigned MachineInstOpcode,
const TargetRegisterClass *RC,
unsigned Op0, bool Op0IsKill,
uint64_t Imm1, uint64_t Imm2);
/// Emit a MachineInstr with two register operands and a result register in
/// the given register class.
unsigned FastEmitInst_rf(unsigned MachineInstOpcode,
const TargetRegisterClass *RC,
unsigned Op0, bool Op0IsKill,
const ConstantFP *FPImm);
/// Emit a MachineInstr with two register operands, an immediate, and a result
/// register in the given register class.
unsigned FastEmitInst_rri(unsigned MachineInstOpcode,
const TargetRegisterClass *RC,
unsigned Op0, bool Op0IsKill,
unsigned Op1, bool Op1IsKill,
uint64_t Imm);
/// Emit a MachineInstr with two register operands, two immediates operands,
/// and a result register in the given register class.
unsigned FastEmitInst_rrii(unsigned MachineInstOpcode,
const TargetRegisterClass *RC,
unsigned Op0, bool Op0IsKill,
unsigned Op1, bool Op1IsKill,
uint64_t Imm1, uint64_t Imm2);
/// Emit a MachineInstr with a single immediate operand, and a result register
/// in the given register class.
unsigned FastEmitInst_i(unsigned MachineInstrOpcode,
const TargetRegisterClass *RC,
uint64_t Imm);
/// Emit a MachineInstr with a two immediate operands.
unsigned FastEmitInst_ii(unsigned MachineInstrOpcode,
const TargetRegisterClass *RC,
uint64_t Imm1, uint64_t Imm2);
/// Emit a MachineInstr for an extract_subreg from a specified index of a
/// superregister to a specified type.
unsigned FastEmitInst_extractsubreg(MVT RetVT,
unsigned Op0, bool Op0IsKill,
uint32_t Idx);
/// Emit MachineInstrs to compute the value of Op with all but the least
/// significant bit set to zero.
unsigned FastEmitZExtFromI1(MVT VT,
unsigned Op0, bool Op0IsKill);
/// Emit an unconditional branch to the given block, unless it is the
/// immediate (fall-through) successor, and update the CFG.
void FastEmitBranch(MachineBasicBlock *MBB, DebugLoc DL);
void UpdateValueMap(const Value* I, unsigned Reg, unsigned NumRegs = 1);
unsigned createResultReg(const TargetRegisterClass *RC);
/// Try to constrain Op so that it is usable by argument OpNum of the provided
/// MCInstrDesc. If this fails, create a new virtual register in the correct
/// class and COPY the value there.
unsigned constrainOperandRegClass(const MCInstrDesc &II, unsigned Op,
unsigned OpNum);
/// Emit a constant in a register using target-specific logic, such as
/// constant pool loads.
virtual unsigned TargetMaterializeConstant(const Constant* C) {
return 0;
}
/// Emit an alloca address in a register using target-specific logic.
virtual unsigned TargetMaterializeAlloca(const AllocaInst* C) {
return 0;
}
virtual unsigned TargetMaterializeFloatZero(const ConstantFP* CF) {
return 0;
}
/// \brief Check if \c Add is an add that can be safely folded into \c GEP.
///
/// \c Add can be folded into \c GEP if:
/// - \c Add is an add,
/// - \c Add's size matches \c GEP's,
/// - \c Add is in the same basic block as \c GEP, and
/// - \c Add has a constant operand.
bool canFoldAddIntoGEP(const User *GEP, const Value *Add);
/// Test whether the given value has exactly one use.
bool hasTrivialKill(const Value *V) const;
/// \brief Create a machine mem operand from the given instruction.
MachineMemOperand *createMachineMemOperandFor(const Instruction *I) const;
bool LowerCallTo(const CallInst *CI, const char *SymName, unsigned NumArgs);
bool LowerCallTo(CallLoweringInfo &CLI);
private:
bool SelectBinaryOp(const User *I, unsigned ISDOpcode);
bool SelectFNeg(const User *I);
bool SelectGetElementPtr(const User *I);
bool SelectStackmap(const CallInst *I);
bool SelectPatchpoint(const CallInst *I);
bool LowerCall(const CallInst *I);
bool SelectCall(const User *Call);
bool SelectIntrinsicCall(const IntrinsicInst *II);
bool SelectBitCast(const User *I);
bool SelectCast(const User *I, unsigned Opcode);
bool SelectExtractValue(const User *I);
bool SelectInsertValue(const User *I);
/// \brief Handle PHI nodes in successor blocks.
///
/// Emit code to ensure constants are copied into registers when needed.
/// Remember the virtual registers that need to be added to the Machine PHI
/// nodes as input. We cannot just directly add them, because expansion might
/// result in multiple MBB's for one BB. As such, the start of the BB might
/// correspond to a different MBB than the end.
bool HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB);
/// Helper for getRegForVale. This function is called when the value isn't
/// already available in a register and must be materialized with new
/// instructions.
unsigned materializeRegForValue(const Value *V, MVT VT);
/// Clears LocalValueMap and moves the area for the new local variables to the
/// beginning of the block. It helps to avoid spilling cached variables across
/// heavy instructions like calls.
void flushLocalValueMap();
bool addStackMapLiveVars(SmallVectorImpl<MachineOperand> &Ops,
const CallInst *CI, unsigned StartIdx);
bool lowerCallOperands(const CallInst *CI, unsigned ArgIdx, unsigned NumArgs,
const Value *Callee, bool ForceRetVoidTy,
CallLoweringInfo &CLI);
};
}
#endif