mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-05 12:31:33 +00:00
cd52a7a381
Apparently, the style needs to be agreed upon first. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@240390 91177308-0d34-0410-b5e6-96231b3b80d8
836 lines
29 KiB
C++
836 lines
29 KiB
C++
//===- BasicTTIImpl.h -------------------------------------------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
/// \file
|
|
/// This file provides a helper that implements much of the TTI interface in
|
|
/// terms of the target-independent code generator and TargetLowering
|
|
/// interfaces.
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_CODEGEN_BASICTTIIMPL_H
|
|
#define LLVM_CODEGEN_BASICTTIIMPL_H
|
|
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/Analysis/TargetTransformInfoImpl.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Target/TargetLowering.h"
|
|
#include "llvm/Target/TargetSubtargetInfo.h"
|
|
#include "llvm/Analysis/TargetLibraryInfo.h"
|
|
|
|
namespace llvm {
|
|
|
|
extern cl::opt<unsigned> PartialUnrollingThreshold;
|
|
|
|
/// \brief Base class which can be used to help build a TTI implementation.
|
|
///
|
|
/// This class provides as much implementation of the TTI interface as is
|
|
/// possible using the target independent parts of the code generator.
|
|
///
|
|
/// In order to subclass it, your class must implement a getST() method to
|
|
/// return the subtarget, and a getTLI() method to return the target lowering.
|
|
/// We need these methods implemented in the derived class so that this class
|
|
/// doesn't have to duplicate storage for them.
|
|
template <typename T>
|
|
class BasicTTIImplBase : public TargetTransformInfoImplCRTPBase<T> {
|
|
private:
|
|
typedef TargetTransformInfoImplCRTPBase<T> BaseT;
|
|
typedef TargetTransformInfo TTI;
|
|
|
|
/// Estimate the overhead of scalarizing an instruction. Insert and Extract
|
|
/// are set if the result needs to be inserted and/or extracted from vectors.
|
|
unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) {
|
|
assert(Ty->isVectorTy() && "Can only scalarize vectors");
|
|
unsigned Cost = 0;
|
|
|
|
for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) {
|
|
if (Insert)
|
|
Cost += static_cast<T *>(this)
|
|
->getVectorInstrCost(Instruction::InsertElement, Ty, i);
|
|
if (Extract)
|
|
Cost += static_cast<T *>(this)
|
|
->getVectorInstrCost(Instruction::ExtractElement, Ty, i);
|
|
}
|
|
|
|
return Cost;
|
|
}
|
|
|
|
/// Estimate the cost overhead of SK_Alternate shuffle.
|
|
unsigned getAltShuffleOverhead(Type *Ty) {
|
|
assert(Ty->isVectorTy() && "Can only shuffle vectors");
|
|
unsigned Cost = 0;
|
|
// Shuffle cost is equal to the cost of extracting element from its argument
|
|
// plus the cost of inserting them onto the result vector.
|
|
|
|
// e.g. <4 x float> has a mask of <0,5,2,7> i.e we need to extract from
|
|
// index 0 of first vector, index 1 of second vector,index 2 of first
|
|
// vector and finally index 3 of second vector and insert them at index
|
|
// <0,1,2,3> of result vector.
|
|
for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) {
|
|
Cost += static_cast<T *>(this)
|
|
->getVectorInstrCost(Instruction::InsertElement, Ty, i);
|
|
Cost += static_cast<T *>(this)
|
|
->getVectorInstrCost(Instruction::ExtractElement, Ty, i);
|
|
}
|
|
return Cost;
|
|
}
|
|
|
|
/// \brief Local query method delegates up to T which *must* implement this!
|
|
const TargetSubtargetInfo *getST() const {
|
|
return static_cast<const T *>(this)->getST();
|
|
}
|
|
|
|
/// \brief Local query method delegates up to T which *must* implement this!
|
|
const TargetLoweringBase *getTLI() const {
|
|
return static_cast<const T *>(this)->getTLI();
|
|
}
|
|
|
|
protected:
|
|
explicit BasicTTIImplBase(const TargetMachine *TM)
|
|
: BaseT(TM->getDataLayout()) {}
|
|
|
|
public:
|
|
// Provide value semantics. MSVC requires that we spell all of these out.
|
|
BasicTTIImplBase(const BasicTTIImplBase &Arg)
|
|
: BaseT(static_cast<const BaseT &>(Arg)) {}
|
|
BasicTTIImplBase(BasicTTIImplBase &&Arg)
|
|
: BaseT(std::move(static_cast<BaseT &>(Arg))) {}
|
|
BasicTTIImplBase &operator=(const BasicTTIImplBase &RHS) {
|
|
BaseT::operator=(static_cast<const BaseT &>(RHS));
|
|
return *this;
|
|
}
|
|
BasicTTIImplBase &operator=(BasicTTIImplBase &&RHS) {
|
|
BaseT::operator=(std::move(static_cast<BaseT &>(RHS)));
|
|
return *this;
|
|
}
|
|
|
|
/// \name Scalar TTI Implementations
|
|
/// @{
|
|
|
|
bool hasBranchDivergence() { return false; }
|
|
|
|
bool isSourceOfDivergence(const Value *V) { return false; }
|
|
|
|
bool isLegalAddImmediate(int64_t imm) {
|
|
return getTLI()->isLegalAddImmediate(imm);
|
|
}
|
|
|
|
bool isLegalICmpImmediate(int64_t imm) {
|
|
return getTLI()->isLegalICmpImmediate(imm);
|
|
}
|
|
|
|
bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
|
|
bool HasBaseReg, int64_t Scale,
|
|
unsigned AddrSpace) {
|
|
TargetLoweringBase::AddrMode AM;
|
|
AM.BaseGV = BaseGV;
|
|
AM.BaseOffs = BaseOffset;
|
|
AM.HasBaseReg = HasBaseReg;
|
|
AM.Scale = Scale;
|
|
return getTLI()->isLegalAddressingMode(AM, Ty, AddrSpace);
|
|
}
|
|
|
|
int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
|
|
bool HasBaseReg, int64_t Scale, unsigned AddrSpace) {
|
|
TargetLoweringBase::AddrMode AM;
|
|
AM.BaseGV = BaseGV;
|
|
AM.BaseOffs = BaseOffset;
|
|
AM.HasBaseReg = HasBaseReg;
|
|
AM.Scale = Scale;
|
|
return getTLI()->getScalingFactorCost(AM, Ty, AddrSpace);
|
|
}
|
|
|
|
bool isTruncateFree(Type *Ty1, Type *Ty2) {
|
|
return getTLI()->isTruncateFree(Ty1, Ty2);
|
|
}
|
|
|
|
bool isProfitableToHoist(Instruction *I) {
|
|
return getTLI()->isProfitableToHoist(I);
|
|
}
|
|
|
|
bool isTypeLegal(Type *Ty) {
|
|
EVT VT = getTLI()->getValueType(Ty);
|
|
return getTLI()->isTypeLegal(VT);
|
|
}
|
|
|
|
unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
|
|
ArrayRef<const Value *> Arguments) {
|
|
return BaseT::getIntrinsicCost(IID, RetTy, Arguments);
|
|
}
|
|
|
|
unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
|
|
ArrayRef<Type *> ParamTys) {
|
|
if (IID == Intrinsic::cttz) {
|
|
if (getTLI()->isCheapToSpeculateCttz())
|
|
return TargetTransformInfo::TCC_Basic;
|
|
return TargetTransformInfo::TCC_Expensive;
|
|
}
|
|
|
|
if (IID == Intrinsic::ctlz) {
|
|
if (getTLI()->isCheapToSpeculateCtlz())
|
|
return TargetTransformInfo::TCC_Basic;
|
|
return TargetTransformInfo::TCC_Expensive;
|
|
}
|
|
|
|
return BaseT::getIntrinsicCost(IID, RetTy, ParamTys);
|
|
}
|
|
|
|
unsigned getJumpBufAlignment() { return getTLI()->getJumpBufAlignment(); }
|
|
|
|
unsigned getJumpBufSize() { return getTLI()->getJumpBufSize(); }
|
|
|
|
bool shouldBuildLookupTables() {
|
|
const TargetLoweringBase *TLI = getTLI();
|
|
return TLI->isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
|
|
TLI->isOperationLegalOrCustom(ISD::BRIND, MVT::Other);
|
|
}
|
|
|
|
bool haveFastSqrt(Type *Ty) {
|
|
const TargetLoweringBase *TLI = getTLI();
|
|
EVT VT = TLI->getValueType(Ty);
|
|
return TLI->isTypeLegal(VT) &&
|
|
TLI->isOperationLegalOrCustom(ISD::FSQRT, VT);
|
|
}
|
|
|
|
unsigned getFPOpCost(Type *Ty) {
|
|
// By default, FP instructions are no more expensive since they are
|
|
// implemented in HW. Target specific TTI can override this.
|
|
return TargetTransformInfo::TCC_Basic;
|
|
}
|
|
|
|
unsigned getOperationCost(unsigned Opcode, Type *Ty, Type *OpTy) {
|
|
const TargetLoweringBase *TLI = getTLI();
|
|
switch (Opcode) {
|
|
default: break;
|
|
case Instruction::Trunc: {
|
|
if (TLI->isTruncateFree(OpTy, Ty))
|
|
return TargetTransformInfo::TCC_Free;
|
|
return TargetTransformInfo::TCC_Basic;
|
|
}
|
|
case Instruction::ZExt: {
|
|
if (TLI->isZExtFree(OpTy, Ty))
|
|
return TargetTransformInfo::TCC_Free;
|
|
return TargetTransformInfo::TCC_Basic;
|
|
}
|
|
}
|
|
|
|
return BaseT::getOperationCost(Opcode, Ty, OpTy);
|
|
}
|
|
|
|
void getUnrollingPreferences(Loop *L, TTI::UnrollingPreferences &UP) {
|
|
// This unrolling functionality is target independent, but to provide some
|
|
// motivation for its intended use, for x86:
|
|
|
|
// According to the Intel 64 and IA-32 Architectures Optimization Reference
|
|
// Manual, Intel Core models and later have a loop stream detector (and
|
|
// associated uop queue) that can benefit from partial unrolling.
|
|
// The relevant requirements are:
|
|
// - The loop must have no more than 4 (8 for Nehalem and later) branches
|
|
// taken, and none of them may be calls.
|
|
// - The loop can have no more than 18 (28 for Nehalem and later) uops.
|
|
|
|
// According to the Software Optimization Guide for AMD Family 15h
|
|
// Processors, models 30h-4fh (Steamroller and later) have a loop predictor
|
|
// and loop buffer which can benefit from partial unrolling.
|
|
// The relevant requirements are:
|
|
// - The loop must have fewer than 16 branches
|
|
// - The loop must have less than 40 uops in all executed loop branches
|
|
|
|
// The number of taken branches in a loop is hard to estimate here, and
|
|
// benchmarking has revealed that it is better not to be conservative when
|
|
// estimating the branch count. As a result, we'll ignore the branch limits
|
|
// until someone finds a case where it matters in practice.
|
|
|
|
unsigned MaxOps;
|
|
const TargetSubtargetInfo *ST = getST();
|
|
if (PartialUnrollingThreshold.getNumOccurrences() > 0)
|
|
MaxOps = PartialUnrollingThreshold;
|
|
else if (ST->getSchedModel().LoopMicroOpBufferSize > 0)
|
|
MaxOps = ST->getSchedModel().LoopMicroOpBufferSize;
|
|
else
|
|
return;
|
|
|
|
// Scan the loop: don't unroll loops with calls.
|
|
for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); I != E;
|
|
++I) {
|
|
BasicBlock *BB = *I;
|
|
|
|
for (BasicBlock::iterator J = BB->begin(), JE = BB->end(); J != JE; ++J)
|
|
if (isa<CallInst>(J) || isa<InvokeInst>(J)) {
|
|
ImmutableCallSite CS(J);
|
|
if (const Function *F = CS.getCalledFunction()) {
|
|
if (!static_cast<T *>(this)->isLoweredToCall(F))
|
|
continue;
|
|
}
|
|
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Enable runtime and partial unrolling up to the specified size.
|
|
UP.Partial = UP.Runtime = true;
|
|
UP.PartialThreshold = UP.PartialOptSizeThreshold = MaxOps;
|
|
}
|
|
|
|
/// @}
|
|
|
|
/// \name Vector TTI Implementations
|
|
/// @{
|
|
|
|
unsigned getNumberOfRegisters(bool Vector) { return 1; }
|
|
|
|
unsigned getRegisterBitWidth(bool Vector) { return 32; }
|
|
|
|
unsigned getMaxInterleaveFactor(unsigned VF) { return 1; }
|
|
|
|
unsigned getArithmeticInstrCost(
|
|
unsigned Opcode, Type *Ty,
|
|
TTI::OperandValueKind Opd1Info = TTI::OK_AnyValue,
|
|
TTI::OperandValueKind Opd2Info = TTI::OK_AnyValue,
|
|
TTI::OperandValueProperties Opd1PropInfo = TTI::OP_None,
|
|
TTI::OperandValueProperties Opd2PropInfo = TTI::OP_None) {
|
|
// Check if any of the operands are vector operands.
|
|
const TargetLoweringBase *TLI = getTLI();
|
|
int ISD = TLI->InstructionOpcodeToISD(Opcode);
|
|
assert(ISD && "Invalid opcode");
|
|
|
|
std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Ty);
|
|
|
|
bool IsFloat = Ty->getScalarType()->isFloatingPointTy();
|
|
// Assume that floating point arithmetic operations cost twice as much as
|
|
// integer operations.
|
|
unsigned OpCost = (IsFloat ? 2 : 1);
|
|
|
|
if (TLI->isOperationLegalOrPromote(ISD, LT.second)) {
|
|
// The operation is legal. Assume it costs 1.
|
|
// If the type is split to multiple registers, assume that there is some
|
|
// overhead to this.
|
|
// TODO: Once we have extract/insert subvector cost we need to use them.
|
|
if (LT.first > 1)
|
|
return LT.first * 2 * OpCost;
|
|
return LT.first * 1 * OpCost;
|
|
}
|
|
|
|
if (!TLI->isOperationExpand(ISD, LT.second)) {
|
|
// If the operation is custom lowered then assume
|
|
// thare the code is twice as expensive.
|
|
return LT.first * 2 * OpCost;
|
|
}
|
|
|
|
// Else, assume that we need to scalarize this op.
|
|
if (Ty->isVectorTy()) {
|
|
unsigned Num = Ty->getVectorNumElements();
|
|
unsigned Cost = static_cast<T *>(this)
|
|
->getArithmeticInstrCost(Opcode, Ty->getScalarType());
|
|
// return the cost of multiple scalar invocation plus the cost of
|
|
// inserting
|
|
// and extracting the values.
|
|
return getScalarizationOverhead(Ty, true, true) + Num * Cost;
|
|
}
|
|
|
|
// We don't know anything about this scalar instruction.
|
|
return OpCost;
|
|
}
|
|
|
|
unsigned getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
|
|
Type *SubTp) {
|
|
if (Kind == TTI::SK_Alternate) {
|
|
return getAltShuffleOverhead(Tp);
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
unsigned getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) {
|
|
const TargetLoweringBase *TLI = getTLI();
|
|
int ISD = TLI->InstructionOpcodeToISD(Opcode);
|
|
assert(ISD && "Invalid opcode");
|
|
|
|
std::pair<unsigned, MVT> SrcLT = TLI->getTypeLegalizationCost(Src);
|
|
std::pair<unsigned, MVT> DstLT = TLI->getTypeLegalizationCost(Dst);
|
|
|
|
// Check for NOOP conversions.
|
|
if (SrcLT.first == DstLT.first &&
|
|
SrcLT.second.getSizeInBits() == DstLT.second.getSizeInBits()) {
|
|
|
|
// Bitcast between types that are legalized to the same type are free.
|
|
if (Opcode == Instruction::BitCast || Opcode == Instruction::Trunc)
|
|
return 0;
|
|
}
|
|
|
|
if (Opcode == Instruction::Trunc &&
|
|
TLI->isTruncateFree(SrcLT.second, DstLT.second))
|
|
return 0;
|
|
|
|
if (Opcode == Instruction::ZExt &&
|
|
TLI->isZExtFree(SrcLT.second, DstLT.second))
|
|
return 0;
|
|
|
|
// If the cast is marked as legal (or promote) then assume low cost.
|
|
if (SrcLT.first == DstLT.first &&
|
|
TLI->isOperationLegalOrPromote(ISD, DstLT.second))
|
|
return 1;
|
|
|
|
// Handle scalar conversions.
|
|
if (!Src->isVectorTy() && !Dst->isVectorTy()) {
|
|
|
|
// Scalar bitcasts are usually free.
|
|
if (Opcode == Instruction::BitCast)
|
|
return 0;
|
|
|
|
// Just check the op cost. If the operation is legal then assume it costs
|
|
// 1.
|
|
if (!TLI->isOperationExpand(ISD, DstLT.second))
|
|
return 1;
|
|
|
|
// Assume that illegal scalar instruction are expensive.
|
|
return 4;
|
|
}
|
|
|
|
// Check vector-to-vector casts.
|
|
if (Dst->isVectorTy() && Src->isVectorTy()) {
|
|
|
|
// If the cast is between same-sized registers, then the check is simple.
|
|
if (SrcLT.first == DstLT.first &&
|
|
SrcLT.second.getSizeInBits() == DstLT.second.getSizeInBits()) {
|
|
|
|
// Assume that Zext is done using AND.
|
|
if (Opcode == Instruction::ZExt)
|
|
return 1;
|
|
|
|
// Assume that sext is done using SHL and SRA.
|
|
if (Opcode == Instruction::SExt)
|
|
return 2;
|
|
|
|
// Just check the op cost. If the operation is legal then assume it
|
|
// costs
|
|
// 1 and multiply by the type-legalization overhead.
|
|
if (!TLI->isOperationExpand(ISD, DstLT.second))
|
|
return SrcLT.first * 1;
|
|
}
|
|
|
|
// If we are converting vectors and the operation is illegal, or
|
|
// if the vectors are legalized to different types, estimate the
|
|
// scalarization costs.
|
|
unsigned Num = Dst->getVectorNumElements();
|
|
unsigned Cost = static_cast<T *>(this)->getCastInstrCost(
|
|
Opcode, Dst->getScalarType(), Src->getScalarType());
|
|
|
|
// Return the cost of multiple scalar invocation plus the cost of
|
|
// inserting and extracting the values.
|
|
return getScalarizationOverhead(Dst, true, true) + Num * Cost;
|
|
}
|
|
|
|
// We already handled vector-to-vector and scalar-to-scalar conversions.
|
|
// This
|
|
// is where we handle bitcast between vectors and scalars. We need to assume
|
|
// that the conversion is scalarized in one way or another.
|
|
if (Opcode == Instruction::BitCast)
|
|
// Illegal bitcasts are done by storing and loading from a stack slot.
|
|
return (Src->isVectorTy() ? getScalarizationOverhead(Src, false, true)
|
|
: 0) +
|
|
(Dst->isVectorTy() ? getScalarizationOverhead(Dst, true, false)
|
|
: 0);
|
|
|
|
llvm_unreachable("Unhandled cast");
|
|
}
|
|
|
|
unsigned getCFInstrCost(unsigned Opcode) {
|
|
// Branches are assumed to be predicted.
|
|
return 0;
|
|
}
|
|
|
|
unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy) {
|
|
const TargetLoweringBase *TLI = getTLI();
|
|
int ISD = TLI->InstructionOpcodeToISD(Opcode);
|
|
assert(ISD && "Invalid opcode");
|
|
|
|
// Selects on vectors are actually vector selects.
|
|
if (ISD == ISD::SELECT) {
|
|
assert(CondTy && "CondTy must exist");
|
|
if (CondTy->isVectorTy())
|
|
ISD = ISD::VSELECT;
|
|
}
|
|
|
|
std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(ValTy);
|
|
|
|
if (!(ValTy->isVectorTy() && !LT.second.isVector()) &&
|
|
!TLI->isOperationExpand(ISD, LT.second)) {
|
|
// The operation is legal. Assume it costs 1. Multiply
|
|
// by the type-legalization overhead.
|
|
return LT.first * 1;
|
|
}
|
|
|
|
// Otherwise, assume that the cast is scalarized.
|
|
if (ValTy->isVectorTy()) {
|
|
unsigned Num = ValTy->getVectorNumElements();
|
|
if (CondTy)
|
|
CondTy = CondTy->getScalarType();
|
|
unsigned Cost = static_cast<T *>(this)->getCmpSelInstrCost(
|
|
Opcode, ValTy->getScalarType(), CondTy);
|
|
|
|
// Return the cost of multiple scalar invocation plus the cost of
|
|
// inserting
|
|
// and extracting the values.
|
|
return getScalarizationOverhead(ValTy, true, false) + Num * Cost;
|
|
}
|
|
|
|
// Unknown scalar opcode.
|
|
return 1;
|
|
}
|
|
|
|
unsigned getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) {
|
|
std::pair<unsigned, MVT> LT =
|
|
getTLI()->getTypeLegalizationCost(Val->getScalarType());
|
|
|
|
return LT.first;
|
|
}
|
|
|
|
unsigned getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
|
|
unsigned AddressSpace) {
|
|
assert(!Src->isVoidTy() && "Invalid type");
|
|
std::pair<unsigned, MVT> LT = getTLI()->getTypeLegalizationCost(Src);
|
|
|
|
// Assuming that all loads of legal types cost 1.
|
|
unsigned Cost = LT.first;
|
|
|
|
if (Src->isVectorTy() &&
|
|
Src->getPrimitiveSizeInBits() < LT.second.getSizeInBits()) {
|
|
// This is a vector load that legalizes to a larger type than the vector
|
|
// itself. Unless the corresponding extending load or truncating store is
|
|
// legal, then this will scalarize.
|
|
TargetLowering::LegalizeAction LA = TargetLowering::Expand;
|
|
EVT MemVT = getTLI()->getValueType(Src, true);
|
|
if (MemVT.isSimple() && MemVT != MVT::Other) {
|
|
if (Opcode == Instruction::Store)
|
|
LA = getTLI()->getTruncStoreAction(LT.second, MemVT.getSimpleVT());
|
|
else
|
|
LA = getTLI()->getLoadExtAction(ISD::EXTLOAD, LT.second, MemVT);
|
|
}
|
|
|
|
if (LA != TargetLowering::Legal && LA != TargetLowering::Custom) {
|
|
// This is a vector load/store for some illegal type that is scalarized.
|
|
// We must account for the cost of building or decomposing the vector.
|
|
Cost += getScalarizationOverhead(Src, Opcode != Instruction::Store,
|
|
Opcode == Instruction::Store);
|
|
}
|
|
}
|
|
|
|
return Cost;
|
|
}
|
|
|
|
unsigned getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
|
|
unsigned Factor,
|
|
ArrayRef<unsigned> Indices,
|
|
unsigned Alignment,
|
|
unsigned AddressSpace) {
|
|
VectorType *VT = dyn_cast<VectorType>(VecTy);
|
|
assert(VT && "Expect a vector type for interleaved memory op");
|
|
|
|
unsigned NumElts = VT->getNumElements();
|
|
assert(Factor > 1 && NumElts % Factor == 0 && "Invalid interleave factor");
|
|
|
|
unsigned NumSubElts = NumElts / Factor;
|
|
VectorType *SubVT = VectorType::get(VT->getElementType(), NumSubElts);
|
|
|
|
// Firstly, the cost of load/store operation.
|
|
unsigned Cost = getMemoryOpCost(Opcode, VecTy, Alignment, AddressSpace);
|
|
|
|
// Then plus the cost of interleave operation.
|
|
if (Opcode == Instruction::Load) {
|
|
// The interleave cost is similar to extract sub vectors' elements
|
|
// from the wide vector, and insert them into sub vectors.
|
|
//
|
|
// E.g. An interleaved load of factor 2 (with one member of index 0):
|
|
// %vec = load <8 x i32>, <8 x i32>* %ptr
|
|
// %v0 = shuffle %vec, undef, <0, 2, 4, 6> ; Index 0
|
|
// The cost is estimated as extract elements at 0, 2, 4, 6 from the
|
|
// <8 x i32> vector and insert them into a <4 x i32> vector.
|
|
|
|
assert(Indices.size() <= Factor &&
|
|
"Interleaved memory op has too many members");
|
|
for (unsigned Index : Indices) {
|
|
assert(Index < Factor && "Invalid index for interleaved memory op");
|
|
|
|
// Extract elements from loaded vector for each sub vector.
|
|
for (unsigned i = 0; i < NumSubElts; i++)
|
|
Cost += getVectorInstrCost(Instruction::ExtractElement, VT,
|
|
Index + i * Factor);
|
|
}
|
|
|
|
unsigned InsSubCost = 0;
|
|
for (unsigned i = 0; i < NumSubElts; i++)
|
|
InsSubCost += getVectorInstrCost(Instruction::InsertElement, SubVT, i);
|
|
|
|
Cost += Indices.size() * InsSubCost;
|
|
} else {
|
|
// The interleave cost is extract all elements from sub vectors, and
|
|
// insert them into the wide vector.
|
|
//
|
|
// E.g. An interleaved store of factor 2:
|
|
// %v0_v1 = shuffle %v0, %v1, <0, 4, 1, 5, 2, 6, 3, 7>
|
|
// store <8 x i32> %interleaved.vec, <8 x i32>* %ptr
|
|
// The cost is estimated as extract all elements from both <4 x i32>
|
|
// vectors and insert into the <8 x i32> vector.
|
|
|
|
unsigned ExtSubCost = 0;
|
|
for (unsigned i = 0; i < NumSubElts; i++)
|
|
ExtSubCost += getVectorInstrCost(Instruction::ExtractElement, SubVT, i);
|
|
|
|
Cost += Factor * ExtSubCost;
|
|
|
|
for (unsigned i = 0; i < NumElts; i++)
|
|
Cost += getVectorInstrCost(Instruction::InsertElement, VT, i);
|
|
}
|
|
|
|
return Cost;
|
|
}
|
|
|
|
unsigned getIntrinsicInstrCost(Intrinsic::ID IID, Type *RetTy,
|
|
ArrayRef<Type *> Tys) {
|
|
unsigned ISD = 0;
|
|
switch (IID) {
|
|
default: {
|
|
// Assume that we need to scalarize this intrinsic.
|
|
unsigned ScalarizationCost = 0;
|
|
unsigned ScalarCalls = 1;
|
|
Type *ScalarRetTy = RetTy;
|
|
if (RetTy->isVectorTy()) {
|
|
ScalarizationCost = getScalarizationOverhead(RetTy, true, false);
|
|
ScalarCalls = std::max(ScalarCalls, RetTy->getVectorNumElements());
|
|
ScalarRetTy = RetTy->getScalarType();
|
|
}
|
|
SmallVector<Type *, 4> ScalarTys;
|
|
for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) {
|
|
Type *Ty = Tys[i];
|
|
if (Ty->isVectorTy()) {
|
|
ScalarizationCost += getScalarizationOverhead(Ty, false, true);
|
|
ScalarCalls = std::max(ScalarCalls, Ty->getVectorNumElements());
|
|
Ty = Ty->getScalarType();
|
|
}
|
|
ScalarTys.push_back(Ty);
|
|
}
|
|
if (ScalarCalls == 1)
|
|
return 1; // Return cost of a scalar intrinsic. Assume it to be cheap.
|
|
|
|
unsigned ScalarCost = static_cast<T *>(this)->getIntrinsicInstrCost(
|
|
IID, ScalarRetTy, ScalarTys);
|
|
|
|
return ScalarCalls * ScalarCost + ScalarizationCost;
|
|
}
|
|
// Look for intrinsics that can be lowered directly or turned into a scalar
|
|
// intrinsic call.
|
|
case Intrinsic::sqrt:
|
|
ISD = ISD::FSQRT;
|
|
break;
|
|
case Intrinsic::sin:
|
|
ISD = ISD::FSIN;
|
|
break;
|
|
case Intrinsic::cos:
|
|
ISD = ISD::FCOS;
|
|
break;
|
|
case Intrinsic::exp:
|
|
ISD = ISD::FEXP;
|
|
break;
|
|
case Intrinsic::exp2:
|
|
ISD = ISD::FEXP2;
|
|
break;
|
|
case Intrinsic::log:
|
|
ISD = ISD::FLOG;
|
|
break;
|
|
case Intrinsic::log10:
|
|
ISD = ISD::FLOG10;
|
|
break;
|
|
case Intrinsic::log2:
|
|
ISD = ISD::FLOG2;
|
|
break;
|
|
case Intrinsic::fabs:
|
|
ISD = ISD::FABS;
|
|
break;
|
|
case Intrinsic::minnum:
|
|
ISD = ISD::FMINNUM;
|
|
break;
|
|
case Intrinsic::maxnum:
|
|
ISD = ISD::FMAXNUM;
|
|
break;
|
|
case Intrinsic::copysign:
|
|
ISD = ISD::FCOPYSIGN;
|
|
break;
|
|
case Intrinsic::floor:
|
|
ISD = ISD::FFLOOR;
|
|
break;
|
|
case Intrinsic::ceil:
|
|
ISD = ISD::FCEIL;
|
|
break;
|
|
case Intrinsic::trunc:
|
|
ISD = ISD::FTRUNC;
|
|
break;
|
|
case Intrinsic::nearbyint:
|
|
ISD = ISD::FNEARBYINT;
|
|
break;
|
|
case Intrinsic::rint:
|
|
ISD = ISD::FRINT;
|
|
break;
|
|
case Intrinsic::round:
|
|
ISD = ISD::FROUND;
|
|
break;
|
|
case Intrinsic::pow:
|
|
ISD = ISD::FPOW;
|
|
break;
|
|
case Intrinsic::fma:
|
|
ISD = ISD::FMA;
|
|
break;
|
|
case Intrinsic::fmuladd:
|
|
ISD = ISD::FMA;
|
|
break;
|
|
// FIXME: We should return 0 whenever getIntrinsicCost == TCC_Free.
|
|
case Intrinsic::lifetime_start:
|
|
case Intrinsic::lifetime_end:
|
|
return 0;
|
|
case Intrinsic::masked_store:
|
|
return static_cast<T *>(this)
|
|
->getMaskedMemoryOpCost(Instruction::Store, Tys[0], 0, 0);
|
|
case Intrinsic::masked_load:
|
|
return static_cast<T *>(this)
|
|
->getMaskedMemoryOpCost(Instruction::Load, RetTy, 0, 0);
|
|
}
|
|
|
|
const TargetLoweringBase *TLI = getTLI();
|
|
std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(RetTy);
|
|
|
|
if (TLI->isOperationLegalOrPromote(ISD, LT.second)) {
|
|
// The operation is legal. Assume it costs 1.
|
|
// If the type is split to multiple registers, assume that there is some
|
|
// overhead to this.
|
|
// TODO: Once we have extract/insert subvector cost we need to use them.
|
|
if (LT.first > 1)
|
|
return LT.first * 2;
|
|
return LT.first * 1;
|
|
}
|
|
|
|
if (!TLI->isOperationExpand(ISD, LT.second)) {
|
|
// If the operation is custom lowered then assume
|
|
// thare the code is twice as expensive.
|
|
return LT.first * 2;
|
|
}
|
|
|
|
// If we can't lower fmuladd into an FMA estimate the cost as a floating
|
|
// point mul followed by an add.
|
|
if (IID == Intrinsic::fmuladd)
|
|
return static_cast<T *>(this)
|
|
->getArithmeticInstrCost(BinaryOperator::FMul, RetTy) +
|
|
static_cast<T *>(this)
|
|
->getArithmeticInstrCost(BinaryOperator::FAdd, RetTy);
|
|
|
|
// Else, assume that we need to scalarize this intrinsic. For math builtins
|
|
// this will emit a costly libcall, adding call overhead and spills. Make it
|
|
// very expensive.
|
|
if (RetTy->isVectorTy()) {
|
|
unsigned ScalarizationCost = getScalarizationOverhead(RetTy, true, false);
|
|
unsigned ScalarCalls = RetTy->getVectorNumElements();
|
|
SmallVector<Type *, 4> ScalarTys;
|
|
for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) {
|
|
Type *Ty = Tys[i];
|
|
if (Ty->isVectorTy())
|
|
Ty = Ty->getScalarType();
|
|
ScalarTys.push_back(Ty);
|
|
}
|
|
unsigned ScalarCost = static_cast<T *>(this)->getIntrinsicInstrCost(
|
|
IID, RetTy->getScalarType(), ScalarTys);
|
|
for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) {
|
|
if (Tys[i]->isVectorTy()) {
|
|
ScalarizationCost += getScalarizationOverhead(Tys[i], false, true);
|
|
ScalarCalls = std::max(ScalarCalls, Tys[i]->getVectorNumElements());
|
|
}
|
|
}
|
|
|
|
return ScalarCalls * ScalarCost + ScalarizationCost;
|
|
}
|
|
|
|
// This is going to be turned into a library call, make it expensive.
|
|
return 10;
|
|
}
|
|
|
|
/// \brief Compute a cost of the given call instruction.
|
|
///
|
|
/// Compute the cost of calling function F with return type RetTy and
|
|
/// argument types Tys. F might be nullptr, in this case the cost of an
|
|
/// arbitrary call with the specified signature will be returned.
|
|
/// This is used, for instance, when we estimate call of a vector
|
|
/// counterpart of the given function.
|
|
/// \param F Called function, might be nullptr.
|
|
/// \param RetTy Return value types.
|
|
/// \param Tys Argument types.
|
|
/// \returns The cost of Call instruction.
|
|
unsigned getCallInstrCost(Function *F, Type *RetTy, ArrayRef<Type *> Tys) {
|
|
return 10;
|
|
}
|
|
|
|
unsigned getNumberOfParts(Type *Tp) {
|
|
std::pair<unsigned, MVT> LT = getTLI()->getTypeLegalizationCost(Tp);
|
|
return LT.first;
|
|
}
|
|
|
|
unsigned getAddressComputationCost(Type *Ty, bool IsComplex) { return 0; }
|
|
|
|
unsigned getReductionCost(unsigned Opcode, Type *Ty, bool IsPairwise) {
|
|
assert(Ty->isVectorTy() && "Expect a vector type");
|
|
unsigned NumVecElts = Ty->getVectorNumElements();
|
|
unsigned NumReduxLevels = Log2_32(NumVecElts);
|
|
unsigned ArithCost =
|
|
NumReduxLevels *
|
|
static_cast<T *>(this)->getArithmeticInstrCost(Opcode, Ty);
|
|
// Assume the pairwise shuffles add a cost.
|
|
unsigned ShuffleCost =
|
|
NumReduxLevels * (IsPairwise + 1) *
|
|
static_cast<T *>(this)
|
|
->getShuffleCost(TTI::SK_ExtractSubvector, Ty, NumVecElts / 2, Ty);
|
|
return ShuffleCost + ArithCost + getScalarizationOverhead(Ty, false, true);
|
|
}
|
|
|
|
/// @}
|
|
};
|
|
|
|
/// \brief Concrete BasicTTIImpl that can be used if no further customization
|
|
/// is needed.
|
|
class BasicTTIImpl : public BasicTTIImplBase<BasicTTIImpl> {
|
|
typedef BasicTTIImplBase<BasicTTIImpl> BaseT;
|
|
friend class BasicTTIImplBase<BasicTTIImpl>;
|
|
|
|
const TargetSubtargetInfo *ST;
|
|
const TargetLoweringBase *TLI;
|
|
|
|
const TargetSubtargetInfo *getST() const { return ST; }
|
|
const TargetLoweringBase *getTLI() const { return TLI; }
|
|
|
|
public:
|
|
explicit BasicTTIImpl(const TargetMachine *ST, Function &F);
|
|
|
|
// Provide value semantics. MSVC requires that we spell all of these out.
|
|
BasicTTIImpl(const BasicTTIImpl &Arg)
|
|
: BaseT(static_cast<const BaseT &>(Arg)), ST(Arg.ST), TLI(Arg.TLI) {}
|
|
BasicTTIImpl(BasicTTIImpl &&Arg)
|
|
: BaseT(std::move(static_cast<BaseT &>(Arg))), ST(std::move(Arg.ST)),
|
|
TLI(std::move(Arg.TLI)) {}
|
|
BasicTTIImpl &operator=(const BasicTTIImpl &RHS) {
|
|
BaseT::operator=(static_cast<const BaseT &>(RHS));
|
|
ST = RHS.ST;
|
|
TLI = RHS.TLI;
|
|
return *this;
|
|
}
|
|
BasicTTIImpl &operator=(BasicTTIImpl &&RHS) {
|
|
BaseT::operator=(std::move(static_cast<BaseT &>(RHS)));
|
|
ST = std::move(RHS.ST);
|
|
TLI = std::move(RHS.TLI);
|
|
return *this;
|
|
}
|
|
};
|
|
|
|
}
|
|
|
|
#endif
|