mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-07 11:33:44 +00:00
851b04c920
This change, which allows @llvm.assume to be used from within computeKnownBits (and other associated functions in ValueTracking), adds some (optional) parameters to computeKnownBits and friends. These functions now (optionally) take a "context" instruction pointer, an AssumptionTracker pointer, and also a DomTree pointer, and most of the changes are just to pass this new information when it is easily available from InstSimplify, InstCombine, etc. As explained below, the significant conceptual change is that known properties of a value might depend on the control-flow location of the use (because we care that the @llvm.assume dominates the use because assumptions have control-flow dependencies). This means that, when we ask if bits are known in a value, we might get different answers for different uses. The significant changes are all in ValueTracking. Two main changes: First, as with the rest of the code, new parameters need to be passed around. To make this easier, I grouped them into a structure, and I made internal static versions of the relevant functions that take this structure as a parameter. The new code does as you might expect, it looks for @llvm.assume calls that make use of the value we're trying to learn something about (often indirectly), attempts to pattern match that expression, and uses the result if successful. By making use of the AssumptionTracker, the process of finding @llvm.assume calls is not expensive. Part of the structure being passed around inside ValueTracking is a set of already-considered @llvm.assume calls. This is to prevent a query using, for example, the assume(a == b), to recurse on itself. The context and DT params are used to find applicable assumptions. An assumption needs to dominate the context instruction, or come after it deterministically. In this latter case we only handle the specific case where both the assumption and the context instruction are in the same block, and we need to exclude assumptions from being used to simplify their own ephemeral values (those which contribute only to the assumption) because otherwise the assumption would prove its feeding comparison trivial and would be removed. This commit adds the plumbing and the logic for a simple masked-bit propagation (just enough to write a regression test). Future commits add more patterns (and, correspondingly, more regression tests). git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217342 91177308-0d34-0410-b5e6-96231b3b80d8
854 lines
33 KiB
C++
854 lines
33 KiB
C++
//===- InstCombineLoadStoreAlloca.cpp -------------------------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the visit functions for load, store and alloca.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "InstCombine.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/Loads.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "instcombine"
|
|
|
|
STATISTIC(NumDeadStore, "Number of dead stores eliminated");
|
|
STATISTIC(NumGlobalCopies, "Number of allocas copied from constant global");
|
|
|
|
/// pointsToConstantGlobal - Return true if V (possibly indirectly) points to
|
|
/// some part of a constant global variable. This intentionally only accepts
|
|
/// constant expressions because we can't rewrite arbitrary instructions.
|
|
static bool pointsToConstantGlobal(Value *V) {
|
|
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
|
|
return GV->isConstant();
|
|
|
|
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
|
|
if (CE->getOpcode() == Instruction::BitCast ||
|
|
CE->getOpcode() == Instruction::AddrSpaceCast ||
|
|
CE->getOpcode() == Instruction::GetElementPtr)
|
|
return pointsToConstantGlobal(CE->getOperand(0));
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
|
|
/// pointer to an alloca. Ignore any reads of the pointer, return false if we
|
|
/// see any stores or other unknown uses. If we see pointer arithmetic, keep
|
|
/// track of whether it moves the pointer (with IsOffset) but otherwise traverse
|
|
/// the uses. If we see a memcpy/memmove that targets an unoffseted pointer to
|
|
/// the alloca, and if the source pointer is a pointer to a constant global, we
|
|
/// can optimize this.
|
|
static bool
|
|
isOnlyCopiedFromConstantGlobal(Value *V, MemTransferInst *&TheCopy,
|
|
SmallVectorImpl<Instruction *> &ToDelete) {
|
|
// We track lifetime intrinsics as we encounter them. If we decide to go
|
|
// ahead and replace the value with the global, this lets the caller quickly
|
|
// eliminate the markers.
|
|
|
|
SmallVector<std::pair<Value *, bool>, 35> ValuesToInspect;
|
|
ValuesToInspect.push_back(std::make_pair(V, false));
|
|
while (!ValuesToInspect.empty()) {
|
|
auto ValuePair = ValuesToInspect.pop_back_val();
|
|
const bool IsOffset = ValuePair.second;
|
|
for (auto &U : ValuePair.first->uses()) {
|
|
Instruction *I = cast<Instruction>(U.getUser());
|
|
|
|
if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
|
|
// Ignore non-volatile loads, they are always ok.
|
|
if (!LI->isSimple()) return false;
|
|
continue;
|
|
}
|
|
|
|
if (isa<BitCastInst>(I) || isa<AddrSpaceCastInst>(I)) {
|
|
// If uses of the bitcast are ok, we are ok.
|
|
ValuesToInspect.push_back(std::make_pair(I, IsOffset));
|
|
continue;
|
|
}
|
|
if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
|
|
// If the GEP has all zero indices, it doesn't offset the pointer. If it
|
|
// doesn't, it does.
|
|
ValuesToInspect.push_back(
|
|
std::make_pair(I, IsOffset || !GEP->hasAllZeroIndices()));
|
|
continue;
|
|
}
|
|
|
|
if (CallSite CS = I) {
|
|
// If this is the function being called then we treat it like a load and
|
|
// ignore it.
|
|
if (CS.isCallee(&U))
|
|
continue;
|
|
|
|
// Inalloca arguments are clobbered by the call.
|
|
unsigned ArgNo = CS.getArgumentNo(&U);
|
|
if (CS.isInAllocaArgument(ArgNo))
|
|
return false;
|
|
|
|
// If this is a readonly/readnone call site, then we know it is just a
|
|
// load (but one that potentially returns the value itself), so we can
|
|
// ignore it if we know that the value isn't captured.
|
|
if (CS.onlyReadsMemory() &&
|
|
(CS.getInstruction()->use_empty() || CS.doesNotCapture(ArgNo)))
|
|
continue;
|
|
|
|
// If this is being passed as a byval argument, the caller is making a
|
|
// copy, so it is only a read of the alloca.
|
|
if (CS.isByValArgument(ArgNo))
|
|
continue;
|
|
}
|
|
|
|
// Lifetime intrinsics can be handled by the caller.
|
|
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
|
|
if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
|
|
II->getIntrinsicID() == Intrinsic::lifetime_end) {
|
|
assert(II->use_empty() && "Lifetime markers have no result to use!");
|
|
ToDelete.push_back(II);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// If this is isn't our memcpy/memmove, reject it as something we can't
|
|
// handle.
|
|
MemTransferInst *MI = dyn_cast<MemTransferInst>(I);
|
|
if (!MI)
|
|
return false;
|
|
|
|
// If the transfer is using the alloca as a source of the transfer, then
|
|
// ignore it since it is a load (unless the transfer is volatile).
|
|
if (U.getOperandNo() == 1) {
|
|
if (MI->isVolatile()) return false;
|
|
continue;
|
|
}
|
|
|
|
// If we already have seen a copy, reject the second one.
|
|
if (TheCopy) return false;
|
|
|
|
// If the pointer has been offset from the start of the alloca, we can't
|
|
// safely handle this.
|
|
if (IsOffset) return false;
|
|
|
|
// If the memintrinsic isn't using the alloca as the dest, reject it.
|
|
if (U.getOperandNo() != 0) return false;
|
|
|
|
// If the source of the memcpy/move is not a constant global, reject it.
|
|
if (!pointsToConstantGlobal(MI->getSource()))
|
|
return false;
|
|
|
|
// Otherwise, the transform is safe. Remember the copy instruction.
|
|
TheCopy = MI;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
|
|
/// modified by a copy from a constant global. If we can prove this, we can
|
|
/// replace any uses of the alloca with uses of the global directly.
|
|
static MemTransferInst *
|
|
isOnlyCopiedFromConstantGlobal(AllocaInst *AI,
|
|
SmallVectorImpl<Instruction *> &ToDelete) {
|
|
MemTransferInst *TheCopy = nullptr;
|
|
if (isOnlyCopiedFromConstantGlobal(AI, TheCopy, ToDelete))
|
|
return TheCopy;
|
|
return nullptr;
|
|
}
|
|
|
|
Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) {
|
|
// Ensure that the alloca array size argument has type intptr_t, so that
|
|
// any casting is exposed early.
|
|
if (DL) {
|
|
Type *IntPtrTy = DL->getIntPtrType(AI.getType());
|
|
if (AI.getArraySize()->getType() != IntPtrTy) {
|
|
Value *V = Builder->CreateIntCast(AI.getArraySize(),
|
|
IntPtrTy, false);
|
|
AI.setOperand(0, V);
|
|
return &AI;
|
|
}
|
|
}
|
|
|
|
// Convert: alloca Ty, C - where C is a constant != 1 into: alloca [C x Ty], 1
|
|
if (AI.isArrayAllocation()) { // Check C != 1
|
|
if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) {
|
|
Type *NewTy =
|
|
ArrayType::get(AI.getAllocatedType(), C->getZExtValue());
|
|
AllocaInst *New = Builder->CreateAlloca(NewTy, nullptr, AI.getName());
|
|
New->setAlignment(AI.getAlignment());
|
|
|
|
// Scan to the end of the allocation instructions, to skip over a block of
|
|
// allocas if possible...also skip interleaved debug info
|
|
//
|
|
BasicBlock::iterator It = New;
|
|
while (isa<AllocaInst>(*It) || isa<DbgInfoIntrinsic>(*It)) ++It;
|
|
|
|
// Now that I is pointing to the first non-allocation-inst in the block,
|
|
// insert our getelementptr instruction...
|
|
//
|
|
Type *IdxTy = DL
|
|
? DL->getIntPtrType(AI.getType())
|
|
: Type::getInt64Ty(AI.getContext());
|
|
Value *NullIdx = Constant::getNullValue(IdxTy);
|
|
Value *Idx[2] = { NullIdx, NullIdx };
|
|
Instruction *GEP =
|
|
GetElementPtrInst::CreateInBounds(New, Idx, New->getName() + ".sub");
|
|
InsertNewInstBefore(GEP, *It);
|
|
|
|
// Now make everything use the getelementptr instead of the original
|
|
// allocation.
|
|
return ReplaceInstUsesWith(AI, GEP);
|
|
} else if (isa<UndefValue>(AI.getArraySize())) {
|
|
return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
|
|
}
|
|
}
|
|
|
|
if (DL && AI.getAllocatedType()->isSized()) {
|
|
// If the alignment is 0 (unspecified), assign it the preferred alignment.
|
|
if (AI.getAlignment() == 0)
|
|
AI.setAlignment(DL->getPrefTypeAlignment(AI.getAllocatedType()));
|
|
|
|
// Move all alloca's of zero byte objects to the entry block and merge them
|
|
// together. Note that we only do this for alloca's, because malloc should
|
|
// allocate and return a unique pointer, even for a zero byte allocation.
|
|
if (DL->getTypeAllocSize(AI.getAllocatedType()) == 0) {
|
|
// For a zero sized alloca there is no point in doing an array allocation.
|
|
// This is helpful if the array size is a complicated expression not used
|
|
// elsewhere.
|
|
if (AI.isArrayAllocation()) {
|
|
AI.setOperand(0, ConstantInt::get(AI.getArraySize()->getType(), 1));
|
|
return &AI;
|
|
}
|
|
|
|
// Get the first instruction in the entry block.
|
|
BasicBlock &EntryBlock = AI.getParent()->getParent()->getEntryBlock();
|
|
Instruction *FirstInst = EntryBlock.getFirstNonPHIOrDbg();
|
|
if (FirstInst != &AI) {
|
|
// If the entry block doesn't start with a zero-size alloca then move
|
|
// this one to the start of the entry block. There is no problem with
|
|
// dominance as the array size was forced to a constant earlier already.
|
|
AllocaInst *EntryAI = dyn_cast<AllocaInst>(FirstInst);
|
|
if (!EntryAI || !EntryAI->getAllocatedType()->isSized() ||
|
|
DL->getTypeAllocSize(EntryAI->getAllocatedType()) != 0) {
|
|
AI.moveBefore(FirstInst);
|
|
return &AI;
|
|
}
|
|
|
|
// If the alignment of the entry block alloca is 0 (unspecified),
|
|
// assign it the preferred alignment.
|
|
if (EntryAI->getAlignment() == 0)
|
|
EntryAI->setAlignment(
|
|
DL->getPrefTypeAlignment(EntryAI->getAllocatedType()));
|
|
// Replace this zero-sized alloca with the one at the start of the entry
|
|
// block after ensuring that the address will be aligned enough for both
|
|
// types.
|
|
unsigned MaxAlign = std::max(EntryAI->getAlignment(),
|
|
AI.getAlignment());
|
|
EntryAI->setAlignment(MaxAlign);
|
|
if (AI.getType() != EntryAI->getType())
|
|
return new BitCastInst(EntryAI, AI.getType());
|
|
return ReplaceInstUsesWith(AI, EntryAI);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (AI.getAlignment()) {
|
|
// Check to see if this allocation is only modified by a memcpy/memmove from
|
|
// a constant global whose alignment is equal to or exceeds that of the
|
|
// allocation. If this is the case, we can change all users to use
|
|
// the constant global instead. This is commonly produced by the CFE by
|
|
// constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
|
|
// is only subsequently read.
|
|
SmallVector<Instruction *, 4> ToDelete;
|
|
if (MemTransferInst *Copy = isOnlyCopiedFromConstantGlobal(&AI, ToDelete)) {
|
|
unsigned SourceAlign = getOrEnforceKnownAlignment(Copy->getSource(),
|
|
AI.getAlignment(),
|
|
DL, AT, &AI, DT);
|
|
if (AI.getAlignment() <= SourceAlign) {
|
|
DEBUG(dbgs() << "Found alloca equal to global: " << AI << '\n');
|
|
DEBUG(dbgs() << " memcpy = " << *Copy << '\n');
|
|
for (unsigned i = 0, e = ToDelete.size(); i != e; ++i)
|
|
EraseInstFromFunction(*ToDelete[i]);
|
|
Constant *TheSrc = cast<Constant>(Copy->getSource());
|
|
Constant *Cast
|
|
= ConstantExpr::getPointerBitCastOrAddrSpaceCast(TheSrc, AI.getType());
|
|
Instruction *NewI = ReplaceInstUsesWith(AI, Cast);
|
|
EraseInstFromFunction(*Copy);
|
|
++NumGlobalCopies;
|
|
return NewI;
|
|
}
|
|
}
|
|
}
|
|
|
|
// At last, use the generic allocation site handler to aggressively remove
|
|
// unused allocas.
|
|
return visitAllocSite(AI);
|
|
}
|
|
|
|
|
|
/// InstCombineLoadCast - Fold 'load (cast P)' -> cast (load P)' when possible.
|
|
static Instruction *InstCombineLoadCast(InstCombiner &IC, LoadInst &LI,
|
|
const DataLayout *DL) {
|
|
User *CI = cast<User>(LI.getOperand(0));
|
|
Value *CastOp = CI->getOperand(0);
|
|
|
|
PointerType *DestTy = cast<PointerType>(CI->getType());
|
|
Type *DestPTy = DestTy->getElementType();
|
|
if (PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType())) {
|
|
|
|
// If the address spaces don't match, don't eliminate the cast.
|
|
if (DestTy->getAddressSpace() != SrcTy->getAddressSpace())
|
|
return nullptr;
|
|
|
|
Type *SrcPTy = SrcTy->getElementType();
|
|
|
|
if (DestPTy->isIntegerTy() || DestPTy->isPointerTy() ||
|
|
DestPTy->isVectorTy()) {
|
|
// If the source is an array, the code below will not succeed. Check to
|
|
// see if a trivial 'gep P, 0, 0' will help matters. Only do this for
|
|
// constants.
|
|
if (ArrayType *ASrcTy = dyn_cast<ArrayType>(SrcPTy))
|
|
if (Constant *CSrc = dyn_cast<Constant>(CastOp))
|
|
if (ASrcTy->getNumElements() != 0) {
|
|
Type *IdxTy = DL
|
|
? DL->getIntPtrType(SrcTy)
|
|
: Type::getInt64Ty(SrcTy->getContext());
|
|
Value *Idx = Constant::getNullValue(IdxTy);
|
|
Value *Idxs[2] = { Idx, Idx };
|
|
CastOp = ConstantExpr::getGetElementPtr(CSrc, Idxs);
|
|
SrcTy = cast<PointerType>(CastOp->getType());
|
|
SrcPTy = SrcTy->getElementType();
|
|
}
|
|
|
|
if (IC.getDataLayout() &&
|
|
(SrcPTy->isIntegerTy() || SrcPTy->isPointerTy() ||
|
|
SrcPTy->isVectorTy()) &&
|
|
// Do not allow turning this into a load of an integer, which is then
|
|
// casted to a pointer, this pessimizes pointer analysis a lot.
|
|
(SrcPTy->isPtrOrPtrVectorTy() ==
|
|
LI.getType()->isPtrOrPtrVectorTy()) &&
|
|
IC.getDataLayout()->getTypeSizeInBits(SrcPTy) ==
|
|
IC.getDataLayout()->getTypeSizeInBits(DestPTy)) {
|
|
|
|
// Okay, we are casting from one integer or pointer type to another of
|
|
// the same size. Instead of casting the pointer before the load, cast
|
|
// the result of the loaded value.
|
|
LoadInst *NewLoad =
|
|
IC.Builder->CreateLoad(CastOp, LI.isVolatile(), CI->getName());
|
|
NewLoad->setAlignment(LI.getAlignment());
|
|
NewLoad->setAtomic(LI.getOrdering(), LI.getSynchScope());
|
|
// Now cast the result of the load.
|
|
PointerType *OldTy = dyn_cast<PointerType>(NewLoad->getType());
|
|
PointerType *NewTy = dyn_cast<PointerType>(LI.getType());
|
|
if (OldTy && NewTy &&
|
|
OldTy->getAddressSpace() != NewTy->getAddressSpace()) {
|
|
return new AddrSpaceCastInst(NewLoad, LI.getType());
|
|
}
|
|
|
|
return new BitCastInst(NewLoad, LI.getType());
|
|
}
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
|
|
Value *Op = LI.getOperand(0);
|
|
|
|
// Attempt to improve the alignment.
|
|
if (DL) {
|
|
unsigned KnownAlign =
|
|
getOrEnforceKnownAlignment(Op, DL->getPrefTypeAlignment(LI.getType()),
|
|
DL, AT, &LI, DT);
|
|
unsigned LoadAlign = LI.getAlignment();
|
|
unsigned EffectiveLoadAlign = LoadAlign != 0 ? LoadAlign :
|
|
DL->getABITypeAlignment(LI.getType());
|
|
|
|
if (KnownAlign > EffectiveLoadAlign)
|
|
LI.setAlignment(KnownAlign);
|
|
else if (LoadAlign == 0)
|
|
LI.setAlignment(EffectiveLoadAlign);
|
|
}
|
|
|
|
// load (cast X) --> cast (load X) iff safe.
|
|
if (isa<CastInst>(Op))
|
|
if (Instruction *Res = InstCombineLoadCast(*this, LI, DL))
|
|
return Res;
|
|
|
|
// None of the following transforms are legal for volatile/atomic loads.
|
|
// FIXME: Some of it is okay for atomic loads; needs refactoring.
|
|
if (!LI.isSimple()) return nullptr;
|
|
|
|
// Do really simple store-to-load forwarding and load CSE, to catch cases
|
|
// where there are several consecutive memory accesses to the same location,
|
|
// separated by a few arithmetic operations.
|
|
BasicBlock::iterator BBI = &LI;
|
|
if (Value *AvailableVal = FindAvailableLoadedValue(Op, LI.getParent(), BBI,6))
|
|
return ReplaceInstUsesWith(LI, AvailableVal);
|
|
|
|
// load(gep null, ...) -> unreachable
|
|
if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
|
|
const Value *GEPI0 = GEPI->getOperand(0);
|
|
// TODO: Consider a target hook for valid address spaces for this xform.
|
|
if (isa<ConstantPointerNull>(GEPI0) && GEPI->getPointerAddressSpace() == 0){
|
|
// Insert a new store to null instruction before the load to indicate
|
|
// that this code is not reachable. We do this instead of inserting
|
|
// an unreachable instruction directly because we cannot modify the
|
|
// CFG.
|
|
new StoreInst(UndefValue::get(LI.getType()),
|
|
Constant::getNullValue(Op->getType()), &LI);
|
|
return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
|
|
}
|
|
}
|
|
|
|
// load null/undef -> unreachable
|
|
// TODO: Consider a target hook for valid address spaces for this xform.
|
|
if (isa<UndefValue>(Op) ||
|
|
(isa<ConstantPointerNull>(Op) && LI.getPointerAddressSpace() == 0)) {
|
|
// Insert a new store to null instruction before the load to indicate that
|
|
// this code is not reachable. We do this instead of inserting an
|
|
// unreachable instruction directly because we cannot modify the CFG.
|
|
new StoreInst(UndefValue::get(LI.getType()),
|
|
Constant::getNullValue(Op->getType()), &LI);
|
|
return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
|
|
}
|
|
|
|
// Instcombine load (constantexpr_cast global) -> cast (load global)
|
|
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op))
|
|
if (CE->isCast())
|
|
if (Instruction *Res = InstCombineLoadCast(*this, LI, DL))
|
|
return Res;
|
|
|
|
if (Op->hasOneUse()) {
|
|
// Change select and PHI nodes to select values instead of addresses: this
|
|
// helps alias analysis out a lot, allows many others simplifications, and
|
|
// exposes redundancy in the code.
|
|
//
|
|
// Note that we cannot do the transformation unless we know that the
|
|
// introduced loads cannot trap! Something like this is valid as long as
|
|
// the condition is always false: load (select bool %C, int* null, int* %G),
|
|
// but it would not be valid if we transformed it to load from null
|
|
// unconditionally.
|
|
//
|
|
if (SelectInst *SI = dyn_cast<SelectInst>(Op)) {
|
|
// load (select (Cond, &V1, &V2)) --> select(Cond, load &V1, load &V2).
|
|
unsigned Align = LI.getAlignment();
|
|
if (isSafeToLoadUnconditionally(SI->getOperand(1), SI, Align, DL) &&
|
|
isSafeToLoadUnconditionally(SI->getOperand(2), SI, Align, DL)) {
|
|
LoadInst *V1 = Builder->CreateLoad(SI->getOperand(1),
|
|
SI->getOperand(1)->getName()+".val");
|
|
LoadInst *V2 = Builder->CreateLoad(SI->getOperand(2),
|
|
SI->getOperand(2)->getName()+".val");
|
|
V1->setAlignment(Align);
|
|
V2->setAlignment(Align);
|
|
return SelectInst::Create(SI->getCondition(), V1, V2);
|
|
}
|
|
|
|
// load (select (cond, null, P)) -> load P
|
|
if (Constant *C = dyn_cast<Constant>(SI->getOperand(1)))
|
|
if (C->isNullValue()) {
|
|
LI.setOperand(0, SI->getOperand(2));
|
|
return &LI;
|
|
}
|
|
|
|
// load (select (cond, P, null)) -> load P
|
|
if (Constant *C = dyn_cast<Constant>(SI->getOperand(2)))
|
|
if (C->isNullValue()) {
|
|
LI.setOperand(0, SI->getOperand(1));
|
|
return &LI;
|
|
}
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
/// InstCombineStoreToCast - Fold store V, (cast P) -> store (cast V), P
|
|
/// when possible. This makes it generally easy to do alias analysis and/or
|
|
/// SROA/mem2reg of the memory object.
|
|
static Instruction *InstCombineStoreToCast(InstCombiner &IC, StoreInst &SI) {
|
|
User *CI = cast<User>(SI.getOperand(1));
|
|
Value *CastOp = CI->getOperand(0);
|
|
|
|
Type *DestPTy = CI->getType()->getPointerElementType();
|
|
PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType());
|
|
if (!SrcTy) return nullptr;
|
|
|
|
Type *SrcPTy = SrcTy->getElementType();
|
|
|
|
if (!DestPTy->isIntegerTy() && !DestPTy->isPointerTy())
|
|
return nullptr;
|
|
|
|
/// NewGEPIndices - If SrcPTy is an aggregate type, we can emit a "noop gep"
|
|
/// to its first element. This allows us to handle things like:
|
|
/// store i32 xxx, (bitcast {foo*, float}* %P to i32*)
|
|
/// on 32-bit hosts.
|
|
SmallVector<Value*, 4> NewGEPIndices;
|
|
|
|
// If the source is an array, the code below will not succeed. Check to
|
|
// see if a trivial 'gep P, 0, 0' will help matters. Only do this for
|
|
// constants.
|
|
if (SrcPTy->isArrayTy() || SrcPTy->isStructTy()) {
|
|
// Index through pointer.
|
|
Constant *Zero = Constant::getNullValue(Type::getInt32Ty(SI.getContext()));
|
|
NewGEPIndices.push_back(Zero);
|
|
|
|
while (1) {
|
|
if (StructType *STy = dyn_cast<StructType>(SrcPTy)) {
|
|
if (!STy->getNumElements()) /* Struct can be empty {} */
|
|
break;
|
|
NewGEPIndices.push_back(Zero);
|
|
SrcPTy = STy->getElementType(0);
|
|
} else if (ArrayType *ATy = dyn_cast<ArrayType>(SrcPTy)) {
|
|
NewGEPIndices.push_back(Zero);
|
|
SrcPTy = ATy->getElementType();
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
SrcTy = PointerType::get(SrcPTy, SrcTy->getAddressSpace());
|
|
}
|
|
|
|
if (!SrcPTy->isIntegerTy() && !SrcPTy->isPointerTy())
|
|
return nullptr;
|
|
|
|
// If the pointers point into different address spaces don't do the
|
|
// transformation.
|
|
if (SrcTy->getAddressSpace() != CI->getType()->getPointerAddressSpace())
|
|
return nullptr;
|
|
|
|
// If the pointers point to values of different sizes don't do the
|
|
// transformation.
|
|
if (!IC.getDataLayout() ||
|
|
IC.getDataLayout()->getTypeSizeInBits(SrcPTy) !=
|
|
IC.getDataLayout()->getTypeSizeInBits(DestPTy))
|
|
return nullptr;
|
|
|
|
// If the pointers point to pointers to different address spaces don't do the
|
|
// transformation. It is not safe to introduce an addrspacecast instruction in
|
|
// this case since, depending on the target, addrspacecast may not be a no-op
|
|
// cast.
|
|
if (SrcPTy->isPointerTy() && DestPTy->isPointerTy() &&
|
|
SrcPTy->getPointerAddressSpace() != DestPTy->getPointerAddressSpace())
|
|
return nullptr;
|
|
|
|
// Okay, we are casting from one integer or pointer type to another of
|
|
// the same size. Instead of casting the pointer before
|
|
// the store, cast the value to be stored.
|
|
Value *NewCast;
|
|
Instruction::CastOps opcode = Instruction::BitCast;
|
|
Type* CastSrcTy = DestPTy;
|
|
Type* CastDstTy = SrcPTy;
|
|
if (CastDstTy->isPointerTy()) {
|
|
if (CastSrcTy->isIntegerTy())
|
|
opcode = Instruction::IntToPtr;
|
|
} else if (CastDstTy->isIntegerTy()) {
|
|
if (CastSrcTy->isPointerTy())
|
|
opcode = Instruction::PtrToInt;
|
|
}
|
|
|
|
// SIOp0 is a pointer to aggregate and this is a store to the first field,
|
|
// emit a GEP to index into its first field.
|
|
if (!NewGEPIndices.empty())
|
|
CastOp = IC.Builder->CreateInBoundsGEP(CastOp, NewGEPIndices);
|
|
|
|
Value *SIOp0 = SI.getOperand(0);
|
|
NewCast = IC.Builder->CreateCast(opcode, SIOp0, CastDstTy,
|
|
SIOp0->getName()+".c");
|
|
SI.setOperand(0, NewCast);
|
|
SI.setOperand(1, CastOp);
|
|
return &SI;
|
|
}
|
|
|
|
/// equivalentAddressValues - Test if A and B will obviously have the same
|
|
/// value. This includes recognizing that %t0 and %t1 will have the same
|
|
/// value in code like this:
|
|
/// %t0 = getelementptr \@a, 0, 3
|
|
/// store i32 0, i32* %t0
|
|
/// %t1 = getelementptr \@a, 0, 3
|
|
/// %t2 = load i32* %t1
|
|
///
|
|
static bool equivalentAddressValues(Value *A, Value *B) {
|
|
// Test if the values are trivially equivalent.
|
|
if (A == B) return true;
|
|
|
|
// Test if the values come form identical arithmetic instructions.
|
|
// This uses isIdenticalToWhenDefined instead of isIdenticalTo because
|
|
// its only used to compare two uses within the same basic block, which
|
|
// means that they'll always either have the same value or one of them
|
|
// will have an undefined value.
|
|
if (isa<BinaryOperator>(A) ||
|
|
isa<CastInst>(A) ||
|
|
isa<PHINode>(A) ||
|
|
isa<GetElementPtrInst>(A))
|
|
if (Instruction *BI = dyn_cast<Instruction>(B))
|
|
if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
|
|
return true;
|
|
|
|
// Otherwise they may not be equivalent.
|
|
return false;
|
|
}
|
|
|
|
Instruction *InstCombiner::visitStoreInst(StoreInst &SI) {
|
|
Value *Val = SI.getOperand(0);
|
|
Value *Ptr = SI.getOperand(1);
|
|
|
|
// Attempt to improve the alignment.
|
|
if (DL) {
|
|
unsigned KnownAlign =
|
|
getOrEnforceKnownAlignment(Ptr, DL->getPrefTypeAlignment(Val->getType()),
|
|
DL, AT, &SI, DT);
|
|
unsigned StoreAlign = SI.getAlignment();
|
|
unsigned EffectiveStoreAlign = StoreAlign != 0 ? StoreAlign :
|
|
DL->getABITypeAlignment(Val->getType());
|
|
|
|
if (KnownAlign > EffectiveStoreAlign)
|
|
SI.setAlignment(KnownAlign);
|
|
else if (StoreAlign == 0)
|
|
SI.setAlignment(EffectiveStoreAlign);
|
|
}
|
|
|
|
// Don't hack volatile/atomic stores.
|
|
// FIXME: Some bits are legal for atomic stores; needs refactoring.
|
|
if (!SI.isSimple()) return nullptr;
|
|
|
|
// If the RHS is an alloca with a single use, zapify the store, making the
|
|
// alloca dead.
|
|
if (Ptr->hasOneUse()) {
|
|
if (isa<AllocaInst>(Ptr))
|
|
return EraseInstFromFunction(SI);
|
|
if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
|
|
if (isa<AllocaInst>(GEP->getOperand(0))) {
|
|
if (GEP->getOperand(0)->hasOneUse())
|
|
return EraseInstFromFunction(SI);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Do really simple DSE, to catch cases where there are several consecutive
|
|
// stores to the same location, separated by a few arithmetic operations. This
|
|
// situation often occurs with bitfield accesses.
|
|
BasicBlock::iterator BBI = &SI;
|
|
for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts;
|
|
--ScanInsts) {
|
|
--BBI;
|
|
// Don't count debug info directives, lest they affect codegen,
|
|
// and we skip pointer-to-pointer bitcasts, which are NOPs.
|
|
if (isa<DbgInfoIntrinsic>(BBI) ||
|
|
(isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) {
|
|
ScanInsts++;
|
|
continue;
|
|
}
|
|
|
|
if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) {
|
|
// Prev store isn't volatile, and stores to the same location?
|
|
if (PrevSI->isSimple() && equivalentAddressValues(PrevSI->getOperand(1),
|
|
SI.getOperand(1))) {
|
|
++NumDeadStore;
|
|
++BBI;
|
|
EraseInstFromFunction(*PrevSI);
|
|
continue;
|
|
}
|
|
break;
|
|
}
|
|
|
|
// If this is a load, we have to stop. However, if the loaded value is from
|
|
// the pointer we're loading and is producing the pointer we're storing,
|
|
// then *this* store is dead (X = load P; store X -> P).
|
|
if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
|
|
if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr) &&
|
|
LI->isSimple())
|
|
return EraseInstFromFunction(SI);
|
|
|
|
// Otherwise, this is a load from some other location. Stores before it
|
|
// may not be dead.
|
|
break;
|
|
}
|
|
|
|
// Don't skip over loads or things that can modify memory.
|
|
if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory())
|
|
break;
|
|
}
|
|
|
|
// store X, null -> turns into 'unreachable' in SimplifyCFG
|
|
if (isa<ConstantPointerNull>(Ptr) && SI.getPointerAddressSpace() == 0) {
|
|
if (!isa<UndefValue>(Val)) {
|
|
SI.setOperand(0, UndefValue::get(Val->getType()));
|
|
if (Instruction *U = dyn_cast<Instruction>(Val))
|
|
Worklist.Add(U); // Dropped a use.
|
|
}
|
|
return nullptr; // Do not modify these!
|
|
}
|
|
|
|
// store undef, Ptr -> noop
|
|
if (isa<UndefValue>(Val))
|
|
return EraseInstFromFunction(SI);
|
|
|
|
// If the pointer destination is a cast, see if we can fold the cast into the
|
|
// source instead.
|
|
if (isa<CastInst>(Ptr))
|
|
if (Instruction *Res = InstCombineStoreToCast(*this, SI))
|
|
return Res;
|
|
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
|
|
if (CE->isCast())
|
|
if (Instruction *Res = InstCombineStoreToCast(*this, SI))
|
|
return Res;
|
|
|
|
|
|
// If this store is the last instruction in the basic block (possibly
|
|
// excepting debug info instructions), and if the block ends with an
|
|
// unconditional branch, try to move it to the successor block.
|
|
BBI = &SI;
|
|
do {
|
|
++BBI;
|
|
} while (isa<DbgInfoIntrinsic>(BBI) ||
|
|
(isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy()));
|
|
if (BranchInst *BI = dyn_cast<BranchInst>(BBI))
|
|
if (BI->isUnconditional())
|
|
if (SimplifyStoreAtEndOfBlock(SI))
|
|
return nullptr; // xform done!
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
/// SimplifyStoreAtEndOfBlock - Turn things like:
|
|
/// if () { *P = v1; } else { *P = v2 }
|
|
/// into a phi node with a store in the successor.
|
|
///
|
|
/// Simplify things like:
|
|
/// *P = v1; if () { *P = v2; }
|
|
/// into a phi node with a store in the successor.
|
|
///
|
|
bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) {
|
|
BasicBlock *StoreBB = SI.getParent();
|
|
|
|
// Check to see if the successor block has exactly two incoming edges. If
|
|
// so, see if the other predecessor contains a store to the same location.
|
|
// if so, insert a PHI node (if needed) and move the stores down.
|
|
BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0);
|
|
|
|
// Determine whether Dest has exactly two predecessors and, if so, compute
|
|
// the other predecessor.
|
|
pred_iterator PI = pred_begin(DestBB);
|
|
BasicBlock *P = *PI;
|
|
BasicBlock *OtherBB = nullptr;
|
|
|
|
if (P != StoreBB)
|
|
OtherBB = P;
|
|
|
|
if (++PI == pred_end(DestBB))
|
|
return false;
|
|
|
|
P = *PI;
|
|
if (P != StoreBB) {
|
|
if (OtherBB)
|
|
return false;
|
|
OtherBB = P;
|
|
}
|
|
if (++PI != pred_end(DestBB))
|
|
return false;
|
|
|
|
// Bail out if all the relevant blocks aren't distinct (this can happen,
|
|
// for example, if SI is in an infinite loop)
|
|
if (StoreBB == DestBB || OtherBB == DestBB)
|
|
return false;
|
|
|
|
// Verify that the other block ends in a branch and is not otherwise empty.
|
|
BasicBlock::iterator BBI = OtherBB->getTerminator();
|
|
BranchInst *OtherBr = dyn_cast<BranchInst>(BBI);
|
|
if (!OtherBr || BBI == OtherBB->begin())
|
|
return false;
|
|
|
|
// If the other block ends in an unconditional branch, check for the 'if then
|
|
// else' case. there is an instruction before the branch.
|
|
StoreInst *OtherStore = nullptr;
|
|
if (OtherBr->isUnconditional()) {
|
|
--BBI;
|
|
// Skip over debugging info.
|
|
while (isa<DbgInfoIntrinsic>(BBI) ||
|
|
(isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) {
|
|
if (BBI==OtherBB->begin())
|
|
return false;
|
|
--BBI;
|
|
}
|
|
// If this isn't a store, isn't a store to the same location, or is not the
|
|
// right kind of store, bail out.
|
|
OtherStore = dyn_cast<StoreInst>(BBI);
|
|
if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1) ||
|
|
!SI.isSameOperationAs(OtherStore))
|
|
return false;
|
|
} else {
|
|
// Otherwise, the other block ended with a conditional branch. If one of the
|
|
// destinations is StoreBB, then we have the if/then case.
|
|
if (OtherBr->getSuccessor(0) != StoreBB &&
|
|
OtherBr->getSuccessor(1) != StoreBB)
|
|
return false;
|
|
|
|
// Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an
|
|
// if/then triangle. See if there is a store to the same ptr as SI that
|
|
// lives in OtherBB.
|
|
for (;; --BBI) {
|
|
// Check to see if we find the matching store.
|
|
if ((OtherStore = dyn_cast<StoreInst>(BBI))) {
|
|
if (OtherStore->getOperand(1) != SI.getOperand(1) ||
|
|
!SI.isSameOperationAs(OtherStore))
|
|
return false;
|
|
break;
|
|
}
|
|
// If we find something that may be using or overwriting the stored
|
|
// value, or if we run out of instructions, we can't do the xform.
|
|
if (BBI->mayReadFromMemory() || BBI->mayWriteToMemory() ||
|
|
BBI == OtherBB->begin())
|
|
return false;
|
|
}
|
|
|
|
// In order to eliminate the store in OtherBr, we have to
|
|
// make sure nothing reads or overwrites the stored value in
|
|
// StoreBB.
|
|
for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) {
|
|
// FIXME: This should really be AA driven.
|
|
if (I->mayReadFromMemory() || I->mayWriteToMemory())
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Insert a PHI node now if we need it.
|
|
Value *MergedVal = OtherStore->getOperand(0);
|
|
if (MergedVal != SI.getOperand(0)) {
|
|
PHINode *PN = PHINode::Create(MergedVal->getType(), 2, "storemerge");
|
|
PN->addIncoming(SI.getOperand(0), SI.getParent());
|
|
PN->addIncoming(OtherStore->getOperand(0), OtherBB);
|
|
MergedVal = InsertNewInstBefore(PN, DestBB->front());
|
|
}
|
|
|
|
// Advance to a place where it is safe to insert the new store and
|
|
// insert it.
|
|
BBI = DestBB->getFirstInsertionPt();
|
|
StoreInst *NewSI = new StoreInst(MergedVal, SI.getOperand(1),
|
|
SI.isVolatile(),
|
|
SI.getAlignment(),
|
|
SI.getOrdering(),
|
|
SI.getSynchScope());
|
|
InsertNewInstBefore(NewSI, *BBI);
|
|
NewSI->setDebugLoc(OtherStore->getDebugLoc());
|
|
|
|
// If the two stores had AA tags, merge them.
|
|
AAMDNodes AATags;
|
|
SI.getAAMetadata(AATags);
|
|
if (AATags) {
|
|
OtherStore->getAAMetadata(AATags, /* Merge = */ true);
|
|
NewSI->setAAMetadata(AATags);
|
|
}
|
|
|
|
// Nuke the old stores.
|
|
EraseInstFromFunction(SI);
|
|
EraseInstFromFunction(*OtherStore);
|
|
return true;
|
|
}
|