mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-27 13:30:05 +00:00
b19b899181
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@24551 91177308-0d34-0410-b5e6-96231b3b80d8
756 lines
29 KiB
C++
756 lines
29 KiB
C++
//===---- IA64ISelDAGToDAG.cpp - IA64 pattern matching inst selector ------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by Duraid Madina and is distributed under
|
|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines a pattern matching instruction selector for IA64,
|
|
// converting a legalized dag to an IA64 dag.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "IA64.h"
|
|
#include "IA64TargetMachine.h"
|
|
#include "IA64ISelLowering.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/SSARegMap.h"
|
|
#include "llvm/CodeGen/SelectionDAG.h"
|
|
#include "llvm/CodeGen/SelectionDAGISel.h"
|
|
#include "llvm/Target/TargetOptions.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/GlobalValue.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
Statistic<> FusedFP ("ia64-codegen", "Number of fused fp operations");
|
|
Statistic<> FrameOff("ia64-codegen", "Number of frame idx offsets collapsed");
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
/// IA64DAGToDAGISel - IA64 specific code to select IA64 machine
|
|
/// instructions for SelectionDAG operations.
|
|
///
|
|
class IA64DAGToDAGISel : public SelectionDAGISel {
|
|
IA64TargetLowering IA64Lowering;
|
|
unsigned GlobalBaseReg;
|
|
public:
|
|
IA64DAGToDAGISel(TargetMachine &TM)
|
|
: SelectionDAGISel(IA64Lowering), IA64Lowering(TM) {}
|
|
|
|
virtual bool runOnFunction(Function &Fn) {
|
|
// Make sure we re-emit a set of the global base reg if necessary
|
|
GlobalBaseReg = 0;
|
|
return SelectionDAGISel::runOnFunction(Fn);
|
|
}
|
|
|
|
/// getI64Imm - Return a target constant with the specified value, of type
|
|
/// i64.
|
|
inline SDOperand getI64Imm(uint64_t Imm) {
|
|
return CurDAG->getTargetConstant(Imm, MVT::i64);
|
|
}
|
|
|
|
/// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC
|
|
/// base register. Return the virtual register that holds this value.
|
|
// SDOperand getGlobalBaseReg(); TODO: hmm
|
|
|
|
// Select - Convert the specified operand from a target-independent to a
|
|
// target-specific node if it hasn't already been changed.
|
|
SDOperand Select(SDOperand Op);
|
|
|
|
SDNode *SelectIntImmediateExpr(SDOperand LHS, SDOperand RHS,
|
|
unsigned OCHi, unsigned OCLo,
|
|
bool IsArithmetic = false,
|
|
bool Negate = false);
|
|
SDNode *SelectBitfieldInsert(SDNode *N);
|
|
|
|
/// SelectCC - Select a comparison of the specified values with the
|
|
/// specified condition code, returning the CR# of the expression.
|
|
SDOperand SelectCC(SDOperand LHS, SDOperand RHS, ISD::CondCode CC);
|
|
|
|
/// SelectAddr - Given the specified address, return the two operands for a
|
|
/// load/store instruction, and return true if it should be an indexed [r+r]
|
|
/// operation.
|
|
bool SelectAddr(SDOperand Addr, SDOperand &Op1, SDOperand &Op2);
|
|
|
|
SDOperand BuildSDIVSequence(SDNode *N);
|
|
SDOperand BuildUDIVSequence(SDNode *N);
|
|
|
|
/// InstructionSelectBasicBlock - This callback is invoked by
|
|
/// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
|
|
virtual void InstructionSelectBasicBlock(SelectionDAG &DAG);
|
|
|
|
virtual const char *getPassName() const {
|
|
return "IA64 (Itanium) DAG->DAG Instruction Selector";
|
|
}
|
|
|
|
// Include the pieces autogenerated from the target description.
|
|
#include "IA64GenDAGISel.inc"
|
|
|
|
private:
|
|
SDOperand SelectDIV(SDOperand Op);
|
|
SDOperand SelectCALL(SDOperand Op);
|
|
};
|
|
}
|
|
|
|
/// InstructionSelectBasicBlock - This callback is invoked by
|
|
/// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
|
|
void IA64DAGToDAGISel::InstructionSelectBasicBlock(SelectionDAG &DAG) {
|
|
DEBUG(BB->dump());
|
|
|
|
// The selection process is inherently a bottom-up recursive process (users
|
|
// select their uses before themselves). Given infinite stack space, we
|
|
// could just start selecting on the root and traverse the whole graph. In
|
|
// practice however, this causes us to run out of stack space on large basic
|
|
// blocks. To avoid this problem, select the entry node, then all its uses,
|
|
// iteratively instead of recursively.
|
|
std::vector<SDOperand> Worklist;
|
|
Worklist.push_back(DAG.getEntryNode());
|
|
|
|
// Note that we can do this in the IA64 target (scanning forward across token
|
|
// chain edges) because no nodes ever get folded across these edges. On a
|
|
// target like X86 which supports load/modify/store operations, this would
|
|
// have to be more careful.
|
|
while (!Worklist.empty()) {
|
|
SDOperand Node = Worklist.back();
|
|
Worklist.pop_back();
|
|
|
|
// Chose from the least deep of the top two nodes.
|
|
if (!Worklist.empty() &&
|
|
Worklist.back().Val->getNodeDepth() < Node.Val->getNodeDepth())
|
|
std::swap(Worklist.back(), Node);
|
|
|
|
if ((Node.Val->getOpcode() >= ISD::BUILTIN_OP_END &&
|
|
Node.Val->getOpcode() < IA64ISD::FIRST_NUMBER) ||
|
|
CodeGenMap.count(Node)) continue;
|
|
|
|
for (SDNode::use_iterator UI = Node.Val->use_begin(),
|
|
E = Node.Val->use_end(); UI != E; ++UI) {
|
|
// Scan the values. If this use has a value that is a token chain, add it
|
|
// to the worklist.
|
|
SDNode *User = *UI;
|
|
for (unsigned i = 0, e = User->getNumValues(); i != e; ++i)
|
|
if (User->getValueType(i) == MVT::Other) {
|
|
Worklist.push_back(SDOperand(User, i));
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Finally, legalize this node.
|
|
Select(Node);
|
|
}
|
|
|
|
// Select target instructions for the DAG.
|
|
DAG.setRoot(Select(DAG.getRoot()));
|
|
CodeGenMap.clear();
|
|
DAG.RemoveDeadNodes();
|
|
|
|
// Emit machine code to BB.
|
|
ScheduleAndEmitDAG(DAG);
|
|
}
|
|
|
|
SDOperand IA64DAGToDAGISel::SelectDIV(SDOperand Op) {
|
|
SDNode *N = Op.Val;
|
|
SDOperand Chain = Select(N->getOperand(0));
|
|
|
|
SDOperand Tmp1 = Select(N->getOperand(0));
|
|
SDOperand Tmp2 = Select(N->getOperand(1));
|
|
|
|
bool isFP=false;
|
|
|
|
if(MVT::isFloatingPoint(Tmp1.getValueType()))
|
|
isFP=true;
|
|
|
|
bool isModulus=false; // is it a division or a modulus?
|
|
bool isSigned=false;
|
|
|
|
switch(N->getOpcode()) {
|
|
case ISD::FDIV:
|
|
case ISD::SDIV: isModulus=false; isSigned=true; break;
|
|
case ISD::UDIV: isModulus=false; isSigned=false; break;
|
|
case ISD::FREM:
|
|
case ISD::SREM: isModulus=true; isSigned=true; break;
|
|
case ISD::UREM: isModulus=true; isSigned=false; break;
|
|
}
|
|
|
|
// TODO: check for integer divides by powers of 2 (or other simple patterns?)
|
|
|
|
SDOperand TmpPR, TmpPR2;
|
|
SDOperand TmpF1, TmpF2, TmpF3, TmpF4, TmpF5, TmpF6, TmpF7, TmpF8;
|
|
SDOperand TmpF9, TmpF10,TmpF11,TmpF12,TmpF13,TmpF14,TmpF15;
|
|
SDOperand Result;
|
|
|
|
// OK, emit some code:
|
|
|
|
if(!isFP) {
|
|
// first, load the inputs into FP regs.
|
|
TmpF1 = CurDAG->getTargetNode(IA64::SETFSIG, MVT::f64, Tmp1);
|
|
Chain = TmpF1.getValue(1);
|
|
TmpF2 = CurDAG->getTargetNode(IA64::SETFSIG, MVT::f64, Tmp2);
|
|
Chain = TmpF2.getValue(1);
|
|
|
|
// next, convert the inputs to FP
|
|
if(isSigned) {
|
|
TmpF3 = CurDAG->getTargetNode(IA64::FCVTXF, MVT::f64, TmpF1);
|
|
Chain = TmpF3.getValue(1);
|
|
TmpF4 = CurDAG->getTargetNode(IA64::FCVTXF, MVT::f64, TmpF2);
|
|
Chain = TmpF4.getValue(1);
|
|
} else {
|
|
TmpF3 = CurDAG->getTargetNode(IA64::FCVTXUFS1, MVT::f64, TmpF1);
|
|
Chain = TmpF3.getValue(1);
|
|
TmpF4 = CurDAG->getTargetNode(IA64::FCVTXUFS1, MVT::f64, TmpF2);
|
|
Chain = TmpF4.getValue(1);
|
|
}
|
|
|
|
} else { // this is an FP divide/remainder, so we 'leak' some temp
|
|
// regs and assign TmpF3=Tmp1, TmpF4=Tmp2
|
|
TmpF3=Tmp1;
|
|
TmpF4=Tmp2;
|
|
}
|
|
|
|
// we start by computing an approximate reciprocal (good to 9 bits?)
|
|
// note, this instruction writes _both_ TmpF5 (answer) and TmpPR (predicate)
|
|
TmpF5 = CurDAG->getTargetNode(IA64::FRCPAS1, MVT::f64, MVT::i1,
|
|
TmpF3, TmpF4);
|
|
TmpPR = TmpF5.getValue(1);
|
|
Chain = TmpF5.getValue(2);
|
|
|
|
if(!isModulus) { // if this is a divide, we worry about div-by-zero
|
|
SDOperand bogusPR = CurDAG->getTargetNode(IA64::CMPEQ, MVT::i1,
|
|
CurDAG->getRegister(IA64::r0, MVT::i64),
|
|
CurDAG->getRegister(IA64::r0, MVT::i64));
|
|
Chain = bogusPR.getValue(1);
|
|
TmpPR2 = CurDAG->getTargetNode(IA64::TPCMPNE, MVT::i1, bogusPR,
|
|
CurDAG->getRegister(IA64::r0, MVT::i64),
|
|
CurDAG->getRegister(IA64::r0, MVT::i64), TmpPR);
|
|
Chain = TmpPR2.getValue(1);
|
|
}
|
|
|
|
SDOperand F0 = CurDAG->getRegister(IA64::F0, MVT::f64);
|
|
SDOperand F1 = CurDAG->getRegister(IA64::F1, MVT::f64);
|
|
|
|
// now we apply newton's method, thrice! (FIXME: this is ~72 bits of
|
|
// precision, don't need this much for f32/i32)
|
|
TmpF6 = CurDAG->getTargetNode(IA64::CFNMAS1, MVT::f64,
|
|
TmpF4, TmpF5, F1, TmpPR);
|
|
Chain = TmpF6.getValue(1);
|
|
TmpF7 = CurDAG->getTargetNode(IA64::CFMAS1, MVT::f64,
|
|
TmpF3, TmpF5, F0, TmpPR);
|
|
Chain = TmpF7.getValue(1);
|
|
TmpF8 = CurDAG->getTargetNode(IA64::CFMAS1, MVT::f64,
|
|
TmpF6, TmpF6, F0, TmpPR);
|
|
Chain = TmpF8.getValue(1);
|
|
TmpF9 = CurDAG->getTargetNode(IA64::CFMAS1, MVT::f64,
|
|
TmpF6, TmpF7, TmpF7, TmpPR);
|
|
Chain = TmpF9.getValue(1);
|
|
TmpF10 = CurDAG->getTargetNode(IA64::CFMAS1, MVT::f64,
|
|
TmpF6, TmpF5, TmpF5, TmpPR);
|
|
Chain = TmpF10.getValue(1);
|
|
TmpF11 = CurDAG->getTargetNode(IA64::CFMAS1, MVT::f64,
|
|
TmpF8, TmpF9, TmpF9, TmpPR);
|
|
Chain = TmpF11.getValue(1);
|
|
TmpF12 = CurDAG->getTargetNode(IA64::CFMAS1, MVT::f64,
|
|
TmpF8, TmpF10, TmpF10, TmpPR);
|
|
Chain = TmpF12.getValue(1);
|
|
TmpF13 = CurDAG->getTargetNode(IA64::CFNMAS1, MVT::f64,
|
|
TmpF4, TmpF11, TmpF3, TmpPR);
|
|
Chain = TmpF13.getValue(1);
|
|
|
|
// FIXME: this is unfortunate :(
|
|
// the story is that the dest reg of the fnma above and the fma below
|
|
// (and therefore possibly the src of the fcvt.fx[u] as well) cannot
|
|
// be the same register, or this code breaks if the first argument is
|
|
// zero. (e.g. without this hack, 0%8 yields -64, not 0.)
|
|
TmpF14 = CurDAG->getTargetNode(IA64::CFMAS1, MVT::f64,
|
|
TmpF13, TmpF12, TmpF11, TmpPR);
|
|
Chain = TmpF14.getValue(1);
|
|
|
|
if(isModulus) { // XXX: fragile! fixes _only_ mod, *breaks* div! !
|
|
SDOperand bogus = CurDAG->getTargetNode(IA64::IUSE, MVT::Other, TmpF13); // hack :(
|
|
Chain = bogus.getValue(0); // hmmm
|
|
}
|
|
|
|
if(!isFP) {
|
|
// round to an integer
|
|
if(isSigned) {
|
|
TmpF15 = CurDAG->getTargetNode(IA64::FCVTFXTRUNCS1, MVT::i64, TmpF14);
|
|
Chain = TmpF15.getValue(1);
|
|
}
|
|
else {
|
|
TmpF15 = CurDAG->getTargetNode(IA64::FCVTFXUTRUNCS1, MVT::i64, TmpF14);
|
|
Chain = TmpF15.getValue(1);
|
|
}
|
|
} else {
|
|
TmpF15 = TmpF14;
|
|
// EXERCISE: can you see why TmpF15=TmpF14 does not work here, and
|
|
// we really do need the above FMOV? ;)
|
|
}
|
|
|
|
if(!isModulus) {
|
|
if(isFP) { // extra worrying about div-by-zero
|
|
// we do a 'conditional fmov' (of the correct result, depending
|
|
// on how the frcpa predicate turned out)
|
|
SDOperand bogoResult = CurDAG->getTargetNode(IA64::PFMOV, MVT::f64,
|
|
TmpF12, TmpPR2);
|
|
Chain = bogoResult.getValue(1);
|
|
Result = CurDAG->getTargetNode(IA64::CFMOV, MVT::f64, bogoResult,
|
|
TmpF15, TmpPR);
|
|
Chain = Result.getValue(1);
|
|
}
|
|
else {
|
|
Result = CurDAG->getTargetNode(IA64::GETFSIG, MVT::i64, TmpF15);
|
|
Chain = Result.getValue(1);
|
|
}
|
|
} else { // this is a modulus
|
|
if(!isFP) {
|
|
// answer = q * (-b) + a
|
|
SDOperand TmpI = CurDAG->getTargetNode(IA64::SUB, MVT::i64,
|
|
CurDAG->getRegister(IA64::r0, MVT::i64), Tmp2);
|
|
Chain = TmpI.getValue(1);
|
|
SDOperand TmpF = CurDAG->getTargetNode(IA64::SETFSIG, MVT::f64, TmpI);
|
|
Chain = TmpF.getValue(1);
|
|
SDOperand ModulusResult = CurDAG->getTargetNode(IA64::XMAL, MVT::f64,
|
|
TmpF15, TmpF, TmpF1);
|
|
Chain = ModulusResult.getValue(1);
|
|
Result = CurDAG->getTargetNode(IA64::GETFSIG, MVT::i64, ModulusResult);
|
|
Chain = Result.getValue(1);
|
|
} else { // FP modulus! The horror... the horror....
|
|
assert(0 && "sorry, no FP modulus just yet!\n!\n");
|
|
}
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
|
|
SDOperand IA64DAGToDAGISel::SelectCALL(SDOperand Op) {
|
|
SDNode *N = Op.Val;
|
|
SDOperand Chain = Select(N->getOperand(0));
|
|
|
|
unsigned CallOpcode;
|
|
std::vector<SDOperand> CallOperands;
|
|
|
|
// save the current GP, SP and RP : FIXME: do we need to do all 3 always?
|
|
SDOperand GPBeforeCall = CurDAG->getCopyFromReg(Chain, IA64::r1, MVT::i64);
|
|
Chain = GPBeforeCall.getValue(1);
|
|
SDOperand SPBeforeCall = CurDAG->getCopyFromReg(Chain, IA64::r12, MVT::i64);
|
|
Chain = SPBeforeCall.getValue(1);
|
|
SDOperand RPBeforeCall = CurDAG->getCopyFromReg(Chain, IA64::rp, MVT::i64);
|
|
Chain = RPBeforeCall.getValue(1);
|
|
|
|
// if we can call directly, do so
|
|
if (GlobalAddressSDNode *GASD =
|
|
dyn_cast<GlobalAddressSDNode>(N->getOperand(1))) {
|
|
CallOpcode = IA64::BRCALL_IPREL;
|
|
CallOperands.push_back(CurDAG->getTargetGlobalAddress(GASD->getGlobal(),
|
|
MVT::i64));
|
|
} else if (ExternalSymbolSDNode *ESSDN = // FIXME: we currently NEED this
|
|
// case for correctness, to avoid
|
|
// "non-pic code with imm reloc.n
|
|
// against dynamic symbol" errors
|
|
dyn_cast<ExternalSymbolSDNode>(N->getOperand(1))) {
|
|
CallOpcode = IA64::BRCALL_IPREL;
|
|
CallOperands.push_back(N->getOperand(1));
|
|
} else {
|
|
// otherwise we need to load the function descriptor,
|
|
// load the branch target (function)'s entry point and GP,
|
|
// branch (call) then restore the GP
|
|
|
|
SDOperand FnDescriptor = Select(N->getOperand(1));
|
|
|
|
// load the branch target's entry point [mem] and
|
|
// GP value [mem+8]
|
|
SDOperand targetEntryPoint=CurDAG->getTargetNode(IA64::LD8, MVT::i64,
|
|
FnDescriptor);
|
|
Chain = targetEntryPoint.getValue(1);
|
|
SDOperand targetGPAddr=CurDAG->getTargetNode(IA64::ADDS, MVT::i64,
|
|
FnDescriptor, CurDAG->getConstant(8, MVT::i64));
|
|
Chain = targetGPAddr.getValue(1);
|
|
SDOperand targetGP=CurDAG->getTargetNode(IA64::LD8, MVT::i64,
|
|
targetGPAddr);
|
|
Chain = targetGP.getValue(1);
|
|
|
|
/* FIXME? (methcall still fails)
|
|
SDOperand targetEntryPoint=CurDAG->getLoad(MVT::i64, Chain, FnDescriptor,
|
|
CurDAG->getSrcValue(0));
|
|
SDOperand targetGPAddr=CurDAG->getNode(ISD::ADD, MVT::i64, FnDescriptor,
|
|
CurDAG->getConstant(8, MVT::i64));
|
|
SDOperand targetGP=CurDAG->getLoad(MVT::i64, Chain, targetGPAddr,
|
|
CurDAG->getSrcValue(0));
|
|
*/
|
|
|
|
/* this is just the long way of writing the two lines below?
|
|
// Copy the callee GP into r1
|
|
SDOperand r1 = CurDAG->getRegister(IA64::r1, MVT::i64);
|
|
Chain = CurDAG->getNode(ISD::CopyToReg, MVT::i64, Chain, r1,
|
|
targetGP);
|
|
|
|
|
|
// Copy the callee address into the b6 branch register
|
|
SDOperand B6 = CurDAG->getRegister(IA64::B6, MVT::i64);
|
|
Chain = CurDAG->getNode(ISD::CopyToReg, MVT::i64, Chain, B6,
|
|
targetEntryPoint);
|
|
*/
|
|
|
|
Chain = CurDAG->getCopyToReg(Chain, IA64::r1, targetGP);
|
|
Chain = CurDAG->getCopyToReg(Chain, IA64::B6, targetEntryPoint);
|
|
|
|
CallOperands.push_back(CurDAG->getRegister(IA64::B6, MVT::i64));
|
|
CallOpcode = IA64::BRCALL_INDIRECT;
|
|
}
|
|
|
|
// see section 8.5.8 of "Itanium Software Conventions and
|
|
// Runtime Architecture Guide to see some examples of what's going
|
|
// on here. (in short: int args get mapped 1:1 'slot-wise' to out0->out7,
|
|
// while FP args get mapped to F8->F15 as needed)
|
|
|
|
// TODO: support in-memory arguments
|
|
|
|
unsigned used_FPArgs=0; // how many FP args have been used so far?
|
|
|
|
unsigned intArgs[] = {IA64::out0, IA64::out1, IA64::out2, IA64::out3,
|
|
IA64::out4, IA64::out5, IA64::out6, IA64::out7 };
|
|
unsigned FPArgs[] = {IA64::F8, IA64::F9, IA64::F10, IA64::F11,
|
|
IA64::F12, IA64::F13, IA64::F14, IA64::F15 };
|
|
|
|
SDOperand InFlag; // Null incoming flag value.
|
|
|
|
for (unsigned i = 2, e = N->getNumOperands(); i != e; ++i) {
|
|
unsigned DestReg = 0;
|
|
MVT::ValueType RegTy = N->getOperand(i).getValueType();
|
|
if (RegTy == MVT::i64) {
|
|
assert((i-2) < 8 && "Too many int args");
|
|
DestReg = intArgs[i-2];
|
|
} else {
|
|
assert(MVT::isFloatingPoint(N->getOperand(i).getValueType()) &&
|
|
"Unpromoted integer arg?");
|
|
assert(used_FPArgs < 8 && "Too many fp args");
|
|
DestReg = FPArgs[used_FPArgs++];
|
|
}
|
|
|
|
if (N->getOperand(i).getOpcode() != ISD::UNDEF) {
|
|
SDOperand Val = Select(N->getOperand(i));
|
|
if(MVT::isInteger(N->getOperand(i).getValueType())) {
|
|
Chain = CurDAG->getCopyToReg(Chain, DestReg, Val, InFlag);
|
|
InFlag = Chain.getValue(1);
|
|
CallOperands.push_back(CurDAG->getRegister(DestReg, RegTy));
|
|
}
|
|
// some functions (e.g. printf) want floating point arguments
|
|
// *also* passed as in-memory representations in integer registers
|
|
// this is FORTRAN legacy junk which we don't _always_ need
|
|
// to do, but to be on the safe side, we do.
|
|
else if(MVT::isFloatingPoint(N->getOperand(i).getValueType())) {
|
|
assert((i-2) < 8 && "FP args alone would fit, but no int regs left");
|
|
// first copy into the appropriate FP reg
|
|
Chain = CurDAG->getCopyToReg(Chain, DestReg, Val);
|
|
// then copy into the appropriate integer reg
|
|
DestReg = intArgs[i-2];
|
|
// GETFD takes an FP reg and writes a GP reg
|
|
Chain = CurDAG->getTargetNode(IA64::GETFD, MVT::i64, Val);
|
|
// FIXME: this next line is a bit unfortunate
|
|
Chain = CurDAG->getCopyToReg(Chain, DestReg, Chain, InFlag);
|
|
InFlag = Chain.getValue(1);
|
|
CallOperands.push_back(CurDAG->getRegister(DestReg, MVT::i64));
|
|
}
|
|
}
|
|
}
|
|
|
|
// Finally, once everything is in registers to pass to the call, emit the
|
|
// call itself.
|
|
if (InFlag.Val)
|
|
CallOperands.push_back(InFlag); // Strong dep on register copies.
|
|
else
|
|
CallOperands.push_back(Chain); // Weak dep on whatever occurs before
|
|
Chain = CurDAG->getTargetNode(CallOpcode, MVT::Other, MVT::Flag,
|
|
CallOperands);
|
|
|
|
std::vector<SDOperand> CallResults;
|
|
|
|
// If the call has results, copy the values out of the ret val registers.
|
|
switch (N->getValueType(0)) {
|
|
default: assert(0 && "Unexpected ret value!");
|
|
case MVT::Other: break;
|
|
case MVT::i1: {
|
|
// bools are returned as bytes 0/1 in r8
|
|
SDOperand byteval = CurDAG->getCopyFromReg(Chain, IA64::r8, MVT::i64,
|
|
Chain.getValue(1));
|
|
Chain = byteval.getValue(1);
|
|
Chain = CurDAG->getTargetNode(IA64::CMPNE, MVT::i1, MVT::Other,
|
|
byteval, CurDAG->getRegister(IA64::r0, MVT::i64)).getValue(1);
|
|
CallResults.push_back(Chain.getValue(0));
|
|
break;
|
|
}
|
|
case MVT::i64:
|
|
Chain = CurDAG->getCopyFromReg(Chain, IA64::r8, MVT::i64,
|
|
Chain.getValue(1)).getValue(1);
|
|
CallResults.push_back(Chain.getValue(0));
|
|
break;
|
|
case MVT::f64:
|
|
Chain = CurDAG->getCopyFromReg(Chain, IA64::F8, N->getValueType(0),
|
|
Chain.getValue(1)).getValue(1);
|
|
CallResults.push_back(Chain.getValue(0));
|
|
break;
|
|
}
|
|
|
|
// restore GP, SP and RP - FIXME: this doesn't quite work (e.g.
|
|
// methcall / objinst both segfault on exit) and it *really*
|
|
// doesn't work unless you have -sched=none
|
|
Chain = CurDAG->getCopyToReg(Chain, IA64::r1, GPBeforeCall);
|
|
Chain = CurDAG->getCopyToReg(Chain, IA64::r12, SPBeforeCall);
|
|
Chain = CurDAG->getCopyToReg(Chain, IA64::rp, RPBeforeCall);
|
|
CallResults.push_back(Chain); // llc segfaults w/o this,
|
|
// ary3(e.g.) SIGILLs with 3
|
|
|
|
for (unsigned i = 0, e = CallResults.size(); i != e; ++i)
|
|
CodeGenMap[Op.getValue(i)] = CallResults[i];
|
|
|
|
return CallResults[Op.ResNo];
|
|
}
|
|
|
|
// Select - Convert the specified operand from a target-independent to a
|
|
// target-specific node if it hasn't already been changed.
|
|
SDOperand IA64DAGToDAGISel::Select(SDOperand Op) {
|
|
SDNode *N = Op.Val;
|
|
if (N->getOpcode() >= ISD::BUILTIN_OP_END &&
|
|
N->getOpcode() < IA64ISD::FIRST_NUMBER)
|
|
return Op; // Already selected.
|
|
|
|
// If this has already been converted, use it.
|
|
std::map<SDOperand, SDOperand>::iterator CGMI = CodeGenMap.find(Op);
|
|
if (CGMI != CodeGenMap.end()) return CGMI->second;
|
|
|
|
switch (N->getOpcode()) {
|
|
default: break;
|
|
|
|
case ISD::CALL:
|
|
case ISD::TAILCALL: return SelectCALL(Op);
|
|
|
|
case ISD::FDIV:
|
|
case ISD::SDIV:
|
|
case ISD::UDIV:
|
|
case ISD::SREM:
|
|
case ISD::UREM: return SelectDIV(Op);
|
|
|
|
case ISD::DYNAMIC_STACKALLOC: {
|
|
if (!isa<ConstantSDNode>(N->getOperand(2)) ||
|
|
cast<ConstantSDNode>(N->getOperand(2))->getValue() != 0) {
|
|
std::cerr << "Cannot allocate stack object with greater alignment than"
|
|
<< " the stack alignment yet!";
|
|
abort();
|
|
}
|
|
|
|
SDOperand Chain = Select(N->getOperand(0));
|
|
SDOperand Amt = Select(N->getOperand(1));
|
|
SDOperand Reg = CurDAG->getRegister(IA64::r12, MVT::i64);
|
|
SDOperand Val = CurDAG->getCopyFromReg(Chain, IA64::r12, MVT::i64);
|
|
Chain = Val.getValue(1);
|
|
|
|
// Subtract the amount (guaranteed to be a multiple of the stack alignment)
|
|
// from the stack pointer, giving us the result pointer.
|
|
SDOperand Result = Select(CurDAG->getNode(ISD::SUB, MVT::i64, Val, Amt));
|
|
|
|
// Copy this result back into r12.
|
|
Chain = CurDAG->getNode(ISD::CopyToReg, MVT::Other, Chain, Reg, Result);
|
|
|
|
// Copy this result back out of r12 to make sure we're not using the stack
|
|
// space without decrementing the stack pointer.
|
|
Result = CurDAG->getCopyFromReg(Chain, IA64::r12, MVT::i64);
|
|
|
|
// Finally, replace the DYNAMIC_STACKALLOC with the copyfromreg.
|
|
CodeGenMap[Op.getValue(0)] = Result;
|
|
CodeGenMap[Op.getValue(1)] = Result.getValue(1);
|
|
return SDOperand(Result.Val, Op.ResNo);
|
|
}
|
|
|
|
case ISD::ConstantFP: {
|
|
SDOperand Chain = CurDAG->getEntryNode(); // this is a constant, so..
|
|
|
|
if (cast<ConstantFPSDNode>(N)->isExactlyValue(+0.0))
|
|
return CurDAG->getCopyFromReg(Chain, IA64::F0, MVT::f64);
|
|
else if (cast<ConstantFPSDNode>(N)->isExactlyValue(+1.0))
|
|
return CurDAG->getCopyFromReg(Chain, IA64::F1, MVT::f64);
|
|
else
|
|
assert(0 && "Unexpected FP constant!");
|
|
}
|
|
|
|
case ISD::FrameIndex: { // TODO: reduce creepyness
|
|
int FI = cast<FrameIndexSDNode>(N)->getIndex();
|
|
if (N->hasOneUse())
|
|
return CurDAG->SelectNodeTo(N, IA64::MOV, MVT::i64,
|
|
CurDAG->getTargetFrameIndex(FI, MVT::i64));
|
|
return CurDAG->getTargetNode(IA64::MOV, MVT::i64,
|
|
CurDAG->getTargetFrameIndex(FI, MVT::i64));
|
|
}
|
|
|
|
case ISD::ConstantPool: {
|
|
Constant *C = cast<ConstantPoolSDNode>(N)->get();
|
|
SDOperand CPI = CurDAG->getTargetConstantPool(C, MVT::i64);
|
|
return CurDAG->getTargetNode(IA64::ADDL_GA, MVT::i64, // ?
|
|
CurDAG->getRegister(IA64::r1, MVT::i64), CPI);
|
|
}
|
|
|
|
case ISD::GlobalAddress: {
|
|
GlobalValue *GV = cast<GlobalAddressSDNode>(N)->getGlobal();
|
|
SDOperand GA = CurDAG->getTargetGlobalAddress(GV, MVT::i64);
|
|
SDOperand Tmp = CurDAG->getTargetNode(IA64::ADDL_GA, MVT::i64,
|
|
CurDAG->getRegister(IA64::r1, MVT::i64), GA);
|
|
return CurDAG->getTargetNode(IA64::LD8, MVT::i64, Tmp);
|
|
}
|
|
|
|
case ISD::LOAD:
|
|
case ISD::EXTLOAD:
|
|
case ISD::ZEXTLOAD: {
|
|
SDOperand Chain = Select(N->getOperand(0));
|
|
SDOperand Address = Select(N->getOperand(1));
|
|
|
|
MVT::ValueType TypeBeingLoaded = (N->getOpcode() == ISD::LOAD) ?
|
|
N->getValueType(0) : cast<VTSDNode>(N->getOperand(3))->getVT();
|
|
unsigned Opc;
|
|
switch (TypeBeingLoaded) {
|
|
default: N->dump(); assert(0 && "Cannot load this type!");
|
|
case MVT::i1: { // this is a bool
|
|
Opc = IA64::LD1; // first we load a byte, then compare for != 0
|
|
return CurDAG->SelectNodeTo(N, IA64::CMPNE, MVT::i1, MVT::Other,
|
|
CurDAG->getTargetNode(Opc, MVT::i64, Address),
|
|
CurDAG->getRegister(IA64::r0, MVT::i64),
|
|
Chain).getValue(Op.ResNo);
|
|
}
|
|
case MVT::i8: Opc = IA64::LD1; break;
|
|
case MVT::i16: Opc = IA64::LD2; break;
|
|
case MVT::i32: Opc = IA64::LD4; break;
|
|
case MVT::i64: Opc = IA64::LD8; break;
|
|
|
|
case MVT::f32: Opc = IA64::LDF4; break;
|
|
case MVT::f64: Opc = IA64::LDF8; break;
|
|
}
|
|
|
|
// TODO: comment this
|
|
return CurDAG->SelectNodeTo(N, Opc, N->getValueType(0), MVT::Other,
|
|
Address, Chain).getValue(Op.ResNo);
|
|
}
|
|
|
|
case ISD::TRUNCSTORE:
|
|
case ISD::STORE: {
|
|
SDOperand Address = Select(N->getOperand(2));
|
|
SDOperand Chain = Select(N->getOperand(0));
|
|
|
|
unsigned Opc;
|
|
if (N->getOpcode() == ISD::STORE) {
|
|
switch (N->getOperand(1).getValueType()) {
|
|
default: assert(0 && "unknown type in store");
|
|
case MVT::i1: { // this is a bool
|
|
Opc = IA64::ST1; // we store either 0 or 1 as a byte
|
|
SDOperand Tmp =
|
|
CurDAG->getTargetNode(IA64::PADDS, MVT::i64,
|
|
CurDAG->getRegister(IA64::r0, MVT::i64),
|
|
CurDAG->getConstant(1, MVT::i64),
|
|
Select(N->getOperand(1)));
|
|
return CurDAG->SelectNodeTo(N, Opc, MVT::Other, Address, Tmp, Chain);
|
|
}
|
|
case MVT::i64: Opc = IA64::ST8; break;
|
|
case MVT::f64: Opc = IA64::STF8; break;
|
|
}
|
|
} else { //ISD::TRUNCSTORE
|
|
switch(cast<VTSDNode>(N->getOperand(4))->getVT()) {
|
|
default: assert(0 && "unknown type in truncstore");
|
|
case MVT::i8: Opc = IA64::ST1; break;
|
|
case MVT::i16: Opc = IA64::ST2; break;
|
|
case MVT::i32: Opc = IA64::ST4; break;
|
|
case MVT::f32: Opc = IA64::STF4; break;
|
|
}
|
|
}
|
|
|
|
return CurDAG->SelectNodeTo(N, Opc, MVT::Other, Select(N->getOperand(2)),
|
|
Select(N->getOperand(1)), Chain);
|
|
}
|
|
|
|
case ISD::BRCOND: {
|
|
SDOperand Chain = Select(N->getOperand(0));
|
|
SDOperand CC = Select(N->getOperand(1));
|
|
MachineBasicBlock *Dest =
|
|
cast<BasicBlockSDNode>(N->getOperand(2))->getBasicBlock();
|
|
//FIXME - we do NOT need long branches all the time
|
|
return CurDAG->SelectNodeTo(N, IA64::BRLCOND_NOTCALL, MVT::Other, CC,
|
|
CurDAG->getBasicBlock(Dest), Chain);
|
|
}
|
|
|
|
case ISD::CALLSEQ_START:
|
|
case ISD::CALLSEQ_END: {
|
|
int64_t Amt = cast<ConstantSDNode>(N->getOperand(1))->getValue();
|
|
unsigned Opc = N->getOpcode() == ISD::CALLSEQ_START ?
|
|
IA64::ADJUSTCALLSTACKDOWN : IA64::ADJUSTCALLSTACKUP;
|
|
return CurDAG->SelectNodeTo(N, Opc, MVT::Other,
|
|
getI64Imm(Amt), Select(N->getOperand(0)));
|
|
}
|
|
|
|
case ISD::RET: {
|
|
SDOperand Chain = Select(N->getOperand(0)); // Token chain.
|
|
|
|
switch (N->getNumOperands()) {
|
|
default:
|
|
assert(0 && "Unknown return instruction!");
|
|
case 2: {
|
|
SDOperand RetVal = Select(N->getOperand(1));
|
|
switch (RetVal.getValueType()) {
|
|
default: assert(0 && "I don't know how to return this type! (promote?)");
|
|
// FIXME: do I need to add support for bools here?
|
|
// (return '0' or '1' in r8, basically...)
|
|
//
|
|
// FIXME: need to round floats - 80 bits is bad, the tester
|
|
// told me so
|
|
case MVT::i64:
|
|
// we mark r8 as live on exit up above in LowerArguments()
|
|
// BuildMI(BB, IA64::MOV, 1, IA64::r8).addReg(Tmp1);
|
|
Chain = CurDAG->getCopyToReg(Chain, IA64::r8, RetVal);
|
|
break;
|
|
case MVT::f64:
|
|
// we mark F8 as live on exit up above in LowerArguments()
|
|
// BuildMI(BB, IA64::FMOV, 1, IA64::F8).addReg(Tmp1);
|
|
Chain = CurDAG->getCopyToReg(Chain, IA64::F8, RetVal);
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
case 1:
|
|
break;
|
|
}
|
|
|
|
// we need to copy VirtGPR (the vreg (to become a real reg)) that holds
|
|
// the output of this function's alloc instruction back into ar.pfs
|
|
// before we return. this copy must not float up above the last
|
|
// outgoing call in this function!!!
|
|
SDOperand AR_PFSVal = CurDAG->getCopyFromReg(Chain, IA64Lowering.VirtGPR,
|
|
MVT::i64);
|
|
Chain = AR_PFSVal.getValue(1);
|
|
Chain = CurDAG->getCopyToReg(Chain, IA64::AR_PFS, AR_PFSVal);
|
|
|
|
// and then just emit a 'ret' instruction
|
|
// before returning, restore the ar.pfs register (set by the 'alloc' up top)
|
|
// BuildMI(BB, IA64::MOV, 1).addReg(IA64::AR_PFS).addReg(IA64Lowering.VirtGPR);
|
|
//
|
|
return CurDAG->SelectNodeTo(N, IA64::RET, MVT::Other, Chain);
|
|
}
|
|
|
|
case ISD::BR:
|
|
// FIXME: we don't need long branches all the time!
|
|
return CurDAG->SelectNodeTo(N, IA64::BRL_NOTCALL, MVT::Other,
|
|
N->getOperand(1), Select(N->getOperand(0)));
|
|
}
|
|
|
|
return SelectCode(Op);
|
|
}
|
|
|
|
|
|
/// createIA64DAGToDAGInstructionSelector - This pass converts a legalized DAG
|
|
/// into an IA64-specific DAG, ready for instruction scheduling.
|
|
///
|
|
FunctionPass *llvm::createIA64DAGToDAGInstructionSelector(TargetMachine &TM) {
|
|
return new IA64DAGToDAGISel(TM);
|
|
}
|
|
|