llvm-6502/lib/Target/SparcV9/SparcV9CodeEmitter.cpp
2003-06-02 05:24:46 +00:00

429 lines
15 KiB
C++

//===-- SparcV9CodeEmitter.cpp - --------===//
//
//
//===----------------------------------------------------------------------===//
#include "llvm/Constants.h"
#include "llvm/Function.h"
#include "llvm/GlobalVariable.h"
#include "llvm/PassManager.h"
#include "llvm/CodeGen/MachineCodeEmitter.h"
#include "llvm/CodeGen/MachineFunctionInfo.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetData.h"
#include "Support/hash_set"
#include "SparcInternals.h"
#include "SparcV9CodeEmitter.h"
bool UltraSparc::addPassesToEmitMachineCode(PassManager &PM,
MachineCodeEmitter &MCE) {
//PM.add(new SparcV9CodeEmitter(MCE));
//MachineCodeEmitter *M = MachineCodeEmitter::createDebugMachineCodeEmitter();
MachineCodeEmitter *M = MachineCodeEmitter::createFilePrinterEmitter(MCE);
PM.add(new SparcV9CodeEmitter(this, *M));
PM.add(createMachineCodeDestructionPass()); // Free stuff no longer needed
return false;
}
namespace {
class JITResolver {
MachineCodeEmitter &MCE;
// LazyCodeGenMap - Keep track of call sites for functions that are to be
// lazily resolved.
std::map<unsigned, Function*> LazyCodeGenMap;
// LazyResolverMap - Keep track of the lazy resolver created for a
// particular function so that we can reuse them if necessary.
std::map<Function*, unsigned> LazyResolverMap;
public:
JITResolver(MachineCodeEmitter &mce) : MCE(mce) {}
unsigned getLazyResolver(Function *F);
unsigned addFunctionReference(unsigned Address, Function *F);
private:
unsigned emitStubForFunction(Function *F);
static void CompilationCallback();
unsigned resolveFunctionReference(unsigned RetAddr);
};
JITResolver *TheJITResolver;
}
/// addFunctionReference - This method is called when we need to emit the
/// address of a function that has not yet been emitted, so we don't know the
/// address. Instead, we emit a call to the CompilationCallback method, and
/// keep track of where we are.
///
unsigned JITResolver::addFunctionReference(unsigned Address, Function *F) {
LazyCodeGenMap[Address] = F;
return (intptr_t)&JITResolver::CompilationCallback;
}
unsigned JITResolver::resolveFunctionReference(unsigned RetAddr) {
std::map<unsigned, Function*>::iterator I = LazyCodeGenMap.find(RetAddr);
assert(I != LazyCodeGenMap.end() && "Not in map!");
Function *F = I->second;
LazyCodeGenMap.erase(I);
return MCE.forceCompilationOf(F);
}
unsigned JITResolver::getLazyResolver(Function *F) {
std::map<Function*, unsigned>::iterator I = LazyResolverMap.lower_bound(F);
if (I != LazyResolverMap.end() && I->first == F) return I->second;
//std::cerr << "Getting lazy resolver for : " << ((Value*)F)->getName() << "\n";
unsigned Stub = emitStubForFunction(F);
LazyResolverMap.insert(I, std::make_pair(F, Stub));
return Stub;
}
void JITResolver::CompilationCallback() {
uint64_t *StackPtr = (uint64_t*)__builtin_frame_address(0);
uint64_t RetAddr = (uint64_t)(intptr_t)__builtin_return_address(0);
#if 0
std::cerr << "In callback! Addr=0x" << std::hex << RetAddr
<< " SP=0x" << (unsigned)StackPtr << std::dec
<< ": Resolving call to function: "
<< TheVM->getFunctionReferencedName((void*)RetAddr) << "\n";
#endif
std::cerr << "Sparc's JIT Resolver not implemented!\n";
abort();
#if 0
unsigned NewVal = TheJITResolver->resolveFunctionReference((void*)RetAddr);
// Rewrite the call target... so that we don't fault every time we execute
// the call.
*(unsigned*)RetAddr = NewVal;
// Change the return address to reexecute the call instruction...
StackPtr[1] -= 4;
#endif
}
/// emitStubForFunction - This method is used by the JIT when it needs to emit
/// the address of a function for a function whose code has not yet been
/// generated. In order to do this, it generates a stub which jumps to the lazy
/// function compiler, which will eventually get fixed to call the function
/// directly.
///
unsigned JITResolver::emitStubForFunction(Function *F) {
#if 0
MCE.startFunctionStub(*F, 6);
MCE.emitByte(0xE8); // Call with 32 bit pc-rel destination...
unsigned Address = addFunctionReference(MCE.getCurrentPCValue(), F);
MCE.emitWord(Address-MCE.getCurrentPCValue()-4);
MCE.emitByte(0xCD); // Interrupt - Just a marker identifying the stub!
return (intptr_t)MCE.finishFunctionStub(*F);
#endif
std::cerr << "Sparc's JITResolver::emitStubForFunction() not implemented!\n";
abort();
}
void SparcV9CodeEmitter::emitConstant(unsigned Val, unsigned Size) {
// Output the constant in big endian byte order...
unsigned byteVal;
for (int i = Size-1; i >= 0; --i) {
byteVal = Val >> 8*i;
MCE->emitByte(byteVal & 255);
}
}
unsigned getRealRegNum(unsigned fakeReg, unsigned regClass) {
switch (regClass) {
case UltraSparcRegInfo::IntRegType: {
// Sparc manual, p31
static const unsigned IntRegMap[] = {
// "o0", "o1", "o2", "o3", "o4", "o5", "o7",
8, 9, 10, 11, 12, 13, 15,
// "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
16, 17, 18, 19, 20, 21, 22, 23,
// "i0", "i1", "i2", "i3", "i4", "i5",
24, 25, 26, 27, 28, 29,
// "i6", "i7",
30, 31,
// "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
0, 1, 2, 3, 4, 5, 6, 7,
// "o6"
14
};
return IntRegMap[fakeReg];
break;
}
case UltraSparcRegInfo::FPSingleRegType: {
return fakeReg;
}
case UltraSparcRegInfo::FPDoubleRegType: {
return fakeReg;
}
case UltraSparcRegInfo::FloatCCRegType: {
return fakeReg;
}
case UltraSparcRegInfo::IntCCRegType: {
return fakeReg;
}
default:
assert(0 && "Invalid unified register number in getRegType");
return fakeReg;
}
}
int64_t SparcV9CodeEmitter::getMachineOpValue(MachineInstr &MI,
MachineOperand &MO) {
int64_t rv = 0; // Return value; defaults to 0 for unhandled cases
// or things that get fixed up later by the JIT.
if (MO.isVirtualRegister()) {
std::cerr << "ERROR: virtual register found in machine code.\n";
abort();
} else if (MO.isPCRelativeDisp()) {
Value *V = MO.getVRegValue();
if (BasicBlock *BB = dyn_cast<BasicBlock>(V)) {
std::cerr << "Saving reference to BB (VReg)\n";
unsigned* CurrPC = (unsigned*)(intptr_t)MCE->getCurrentPCValue();
BBRefs.push_back(std::make_pair(BB, std::make_pair(CurrPC, &MI)));
} else if (Constant *C = dyn_cast<Constant>(V)) {
if (ConstantMap.find(C) != ConstantMap.end())
rv = (int64_t)(intptr_t)ConstantMap[C];
else {
std::cerr << "ERROR: constant not in map:" << MO << "\n";
abort();
}
} else {
std::cerr << "ERROR: PC relative disp unhandled:" << MO << "\n";
abort();
}
} else if (MO.isPhysicalRegister()) {
// This is necessary because the Sparc doesn't actually lay out registers
// in the real fashion -- it skips those that it chooses not to allocate,
// i.e. those that are the SP, etc.
unsigned fakeReg = MO.getReg(), realReg, regClass, regType;
regType = TM->getRegInfo().getRegType(fakeReg);
// At least map fakeReg into its class
fakeReg = TM->getRegInfo().getClassRegNum(fakeReg, regClass);
// Find the real register number for use in an instruction
realReg = getRealRegNum(fakeReg, regClass);
std::cerr << "Reg[" << std::dec << fakeReg << "] = " << realReg << "\n";
rv = realReg;
} else if (MO.isImmediate()) {
rv = MO.getImmedValue();
} else if (MO.isGlobalAddress()) {
rv = (int64_t)
(intptr_t)getGlobalAddress(cast<GlobalValue>(MO.getVRegValue()),
MI, MO.isPCRelative());
} else if (MO.isMachineBasicBlock()) {
// Duplicate code of the above case for VirtualRegister, BasicBlock...
// It should really hit this case, but Sparc backend uses VRegs instead
std::cerr << "Saving reference to MBB\n";
BasicBlock *BB = MO.getMachineBasicBlock()->getBasicBlock();
unsigned* CurrPC = (unsigned*)(intptr_t)MCE->getCurrentPCValue();
BBRefs.push_back(std::make_pair(BB, std::make_pair(CurrPC, &MI)));
} else if (MO.isExternalSymbol()) {
// Sparc backend doesn't generate this (yet...)
std::cerr << "ERROR: External symbol unhandled: " << MO << "\n";
abort();
} else if (MO.isFrameIndex()) {
// Sparc backend doesn't generate this (yet...)
int FrameIndex = MO.getFrameIndex();
std::cerr << "ERROR: Frame index unhandled.\n";
abort();
} else if (MO.isConstantPoolIndex()) {
// Sparc backend doesn't generate this (yet...)
std::cerr << "ERROR: Constant Pool index unhandled.\n";
abort();
} else {
std::cerr << "ERROR: Unknown type of MachineOperand: " << MO << "\n";
abort();
}
// Finally, deal with the various bitfield-extracting functions that
// are used in SPARC assembly. (Some of these make no sense in combination
// with some of the above; we'll trust that the instruction selector
// will not produce nonsense, and not check for valid combinations here.)
if (MO.opLoBits32()) { // %lo(val)
return rv & 0x03ff;
} else if (MO.opHiBits32()) { // %lm(val)
return (rv >> 10) & 0x03fffff;
} else if (MO.opLoBits64()) { // %hm(val)
return (rv >> 32) & 0x03ff;
} else if (MO.opHiBits64()) { // %hh(val)
return rv >> 42;
} else { // (unadorned) val
return rv;
}
}
unsigned SparcV9CodeEmitter::getValueBit(int64_t Val, unsigned bit) {
Val >>= bit;
return (Val & 1);
}
void* SparcV9CodeEmitter::convertAddress(intptr_t Addr, bool isPCRelative) {
if (isPCRelative) {
return (void*)(Addr - (intptr_t)MCE->getCurrentPCValue());
} else {
return (void*)Addr;
}
}
bool SparcV9CodeEmitter::runOnMachineFunction(MachineFunction &MF) {
std::cerr << "Starting function " << MF.getFunction()->getName()
<< ", address: " << "0x" << std::hex
<< (long)MCE->getCurrentPCValue() << "\n";
MCE->startFunction(MF);
// FIXME: the Sparc backend does not use the ConstantPool!!
//MCE->emitConstantPool(MF.getConstantPool());
// Instead, the Sparc backend has its own constant pool implementation:
const hash_set<const Constant*> &pool = MF.getInfo()->getConstantPoolValues();
for (hash_set<const Constant*>::const_iterator I = pool.begin(),
E = pool.end(); I != E; ++I)
{
const Constant *C = *I;
// For now we just allocate some memory on the heap, this can be
// dramatically improved.
const Type *Ty = ((Value*)C)->getType();
void *Addr = malloc(TM->getTargetData().getTypeSize(Ty));
//FIXME
//TheVM.InitializeMemory(C, Addr);
std::cerr << "Adding ConstantMap[" << C << "]=" << std::dec << Addr << "\n";
ConstantMap[C] = Addr;
}
for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
emitBasicBlock(*I);
MCE->finishFunction(MF);
std::cerr << "Finishing function " << MF.getFunction()->getName() << "\n";
ConstantMap.clear();
for (unsigned i = 0, e = BBRefs.size(); i != e; ++i) {
long Location = BBLocations[BBRefs[i].first];
unsigned *Ref = BBRefs[i].second.first;
MachineInstr *MI = BBRefs[i].second.second;
std::cerr << "Fixup @" << std::hex << Ref << " to " << Location
<< " in instr: " << std::dec << *MI << "\n";
}
// Resolve branches to BasicBlocks for the entire function
for (unsigned i = 0, e = BBRefs.size(); i != e; ++i) {
long Location = BBLocations[BBRefs[i].first];
unsigned *Ref = BBRefs[i].second.first;
MachineInstr *MI = BBRefs[i].second.second;
std::cerr << "attempting to resolve BB: " << i << "\n";
for (unsigned ii = 0, ee = MI->getNumOperands(); ii != ee; ++ii) {
MachineOperand &op = MI->getOperand(ii);
if (op.isPCRelativeDisp()) {
// the instruction's branch target is made such that it branches to
// PC + (br target * 4), so undo that arithmetic here:
// Location is the target of the branch
// Ref is the location of the instruction, and hence the PC
unsigned branchTarget = (Location - (long)Ref) >> 2;
// Save the flags.
bool loBits32=false, hiBits32=false, loBits64=false, hiBits64=false;
if (op.opLoBits32()) { loBits32=true; }
if (op.opHiBits32()) { hiBits32=true; }
if (op.opLoBits64()) { loBits64=true; }
if (op.opHiBits64()) { hiBits64=true; }
MI->SetMachineOperandConst(ii, MachineOperand::MO_SignExtendedImmed,
branchTarget);
if (loBits32) { MI->setOperandLo32(ii); }
else if (hiBits32) { MI->setOperandHi32(ii); }
else if (loBits64) { MI->setOperandLo64(ii); }
else if (hiBits64) { MI->setOperandHi64(ii); }
std::cerr << "Rewrote BB ref: ";
unsigned fixedInstr = SparcV9CodeEmitter::getBinaryCodeForInstr(*MI);
*Ref = fixedInstr;
break;
}
}
}
BBRefs.clear();
BBLocations.clear();
return false;
}
void SparcV9CodeEmitter::emitBasicBlock(MachineBasicBlock &MBB) {
currBB = MBB.getBasicBlock();
BBLocations[currBB] = MCE->getCurrentPCValue();
for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E; ++I)
emitInstruction(**I);
}
void SparcV9CodeEmitter::emitInstruction(MachineInstr &MI) {
emitConstant(getBinaryCodeForInstr(MI), 4);
}
void* SparcV9CodeEmitter::getGlobalAddress(GlobalValue *V, MachineInstr &MI,
bool isPCRelative)
{
if (isPCRelative) { // must be a call, this is a major hack!
// Try looking up the function to see if it is already compiled!
if (void *Addr = (void*)(intptr_t)MCE->getGlobalValueAddress(V)) {
intptr_t CurByte = MCE->getCurrentPCValue();
// The real target of the call is Addr = PC + (target * 4)
// CurByte is the PC, Addr we just received
return (void*) (((long)Addr - (long)CurByte) >> 2);
} else {
if (Function *F = dyn_cast<Function>(V)) {
// Function has not yet been code generated!
TheJITResolver->addFunctionReference(MCE->getCurrentPCValue(),
cast<Function>(V));
// Delayed resolution...
return
(void*)(intptr_t)TheJITResolver->getLazyResolver(cast<Function>(V));
} else if (Constant *C = ConstantPointerRef::get(V)) {
if (ConstantMap.find(C) != ConstantMap.end()) {
return ConstantMap[C];
} else {
std::cerr << "Constant: 0x" << std::hex << &*C << std::dec
<< ", " << *V << " not found in ConstantMap!\n";
abort();
}
#if 0
} else if (const GlobalVariable *G = dyn_cast<GlobalVariable>(V)) {
if (G->isConstant()) {
const Constant* C = G->getInitializer();
if (ConstantMap.find(C) != ConstantMap.end()) {
return ConstantMap[C];
} else {
std::cerr << "Constant: " << *G << " not found in ConstantMap!\n";
abort();
}
} else {
std::cerr << "Variable: " << *G << " address not found!\n";
abort();
}
#endif
} else {
std::cerr << "Unhandled global: " << *V << "\n";
abort();
}
}
} else {
return convertAddress((intptr_t)MCE->getGlobalValueAddress(V),
isPCRelative);
}
}
#include "SparcV9CodeEmitter.inc"