mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-05-13 01:15:32 +00:00
fsub X, +0 ==> X fsub X, -0 ==> X, when we know X is not -0 fsub +/-0.0, (fsub -0.0, X) ==> X fsub nsz +/-0.0, (fsub +/-0.0, X) ==> X fsub nnan ninf X, X ==> 0.0 fadd nsz X, 0 ==> X fadd [nnan ninf] X, (fsub [nnan ninf] 0, X) ==> 0 where nnan and ninf have to occur at least once somewhere in this expression fmul X, 1.0 ==> X git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169940 91177308-0d34-0410-b5e6-96231b3b80d8
Analysis Opportunities: //===---------------------------------------------------------------------===// In test/Transforms/LoopStrengthReduce/quadradic-exit-value.ll, the ScalarEvolution expression for %r is this: {1,+,3,+,2}<loop> Outside the loop, this could be evaluated simply as (%n * %n), however ScalarEvolution currently evaluates it as (-2 + (2 * (trunc i65 (((zext i64 (-2 + %n) to i65) * (zext i64 (-1 + %n) to i65)) /u 2) to i64)) + (3 * %n)) In addition to being much more complicated, it involves i65 arithmetic, which is very inefficient when expanded into code. //===---------------------------------------------------------------------===// In formatValue in test/CodeGen/X86/lsr-delayed-fold.ll, ScalarEvolution is forming this expression: ((trunc i64 (-1 * %arg5) to i32) + (trunc i64 %arg5 to i32) + (-1 * (trunc i64 undef to i32))) This could be folded to (-1 * (trunc i64 undef to i32)) //===---------------------------------------------------------------------===//