Michael Ilseman 09ee250e72 Added a slew of SimplifyInstruction floating-point optimizations, many of which take advantage of fast-math flags. Test cases included.
fsub X, +0 ==> X
  fsub X, -0 ==> X, when we know X is not -0
  fsub +/-0.0, (fsub -0.0, X) ==> X
  fsub nsz +/-0.0, (fsub +/-0.0, X) ==> X
  fsub nnan ninf X, X ==> 0.0
  fadd nsz X, 0 ==> X
  fadd [nnan ninf] X, (fsub [nnan ninf] 0, X) ==> 0
    where nnan and ninf have to occur at least once somewhere in this expression
  fmul X, 1.0 ==> X



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169940 91177308-0d34-0410-b5e6-96231b3b80d8
2012-12-12 00:27:46 +00:00
..
2012-12-03 22:47:12 +00:00
2012-10-08 16:38:25 +00:00

Analysis Opportunities:

//===---------------------------------------------------------------------===//

In test/Transforms/LoopStrengthReduce/quadradic-exit-value.ll, the
ScalarEvolution expression for %r is this:

  {1,+,3,+,2}<loop>

Outside the loop, this could be evaluated simply as (%n * %n), however
ScalarEvolution currently evaluates it as

  (-2 + (2 * (trunc i65 (((zext i64 (-2 + %n) to i65) * (zext i64 (-1 + %n) to i65)) /u 2) to i64)) + (3 * %n))

In addition to being much more complicated, it involves i65 arithmetic,
which is very inefficient when expanded into code.

//===---------------------------------------------------------------------===//

In formatValue in test/CodeGen/X86/lsr-delayed-fold.ll,

ScalarEvolution is forming this expression:

((trunc i64 (-1 * %arg5) to i32) + (trunc i64 %arg5 to i32) + (-1 * (trunc i64 undef to i32)))

This could be folded to

(-1 * (trunc i64 undef to i32))

//===---------------------------------------------------------------------===//