mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-11-10 01:10:48 +00:00
523823b897
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197304 91177308-0d34-0410-b5e6-96231b3b80d8
1178 lines
42 KiB
C++
1178 lines
42 KiB
C++
//===-- LiveIntervalAnalysis.cpp - Live Interval Analysis -----------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the LiveInterval analysis pass which is used
|
|
// by the Linear Scan Register allocator. This pass linearizes the
|
|
// basic blocks of the function in DFS order and uses the
|
|
// LiveVariables pass to conservatively compute live intervals for
|
|
// each virtual and physical register.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "regalloc"
|
|
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
|
|
#include "LiveRangeCalc.h"
|
|
#include "llvm/ADT/DenseSet.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/CodeGen/LiveVariables.h"
|
|
#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
|
|
#include "llvm/CodeGen/MachineDominators.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/Passes.h"
|
|
#include "llvm/CodeGen/VirtRegMap.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/Support/BlockFrequency.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Target/TargetRegisterInfo.h"
|
|
#include <algorithm>
|
|
#include <cmath>
|
|
#include <limits>
|
|
using namespace llvm;
|
|
|
|
char LiveIntervals::ID = 0;
|
|
char &llvm::LiveIntervalsID = LiveIntervals::ID;
|
|
INITIALIZE_PASS_BEGIN(LiveIntervals, "liveintervals",
|
|
"Live Interval Analysis", false, false)
|
|
INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
|
|
INITIALIZE_PASS_DEPENDENCY(LiveVariables)
|
|
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
|
|
INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
|
|
INITIALIZE_PASS_END(LiveIntervals, "liveintervals",
|
|
"Live Interval Analysis", false, false)
|
|
|
|
#ifndef NDEBUG
|
|
static cl::opt<bool> EnablePrecomputePhysRegs(
|
|
"precompute-phys-liveness", cl::Hidden,
|
|
cl::desc("Eagerly compute live intervals for all physreg units."));
|
|
#else
|
|
static bool EnablePrecomputePhysRegs = false;
|
|
#endif // NDEBUG
|
|
|
|
void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.setPreservesCFG();
|
|
AU.addRequired<AliasAnalysis>();
|
|
AU.addPreserved<AliasAnalysis>();
|
|
// LiveVariables isn't really required by this analysis, it is only required
|
|
// here to make sure it is live during TwoAddressInstructionPass and
|
|
// PHIElimination. This is temporary.
|
|
AU.addRequired<LiveVariables>();
|
|
AU.addPreserved<LiveVariables>();
|
|
AU.addPreservedID(MachineLoopInfoID);
|
|
AU.addRequiredTransitiveID(MachineDominatorsID);
|
|
AU.addPreservedID(MachineDominatorsID);
|
|
AU.addPreserved<SlotIndexes>();
|
|
AU.addRequiredTransitive<SlotIndexes>();
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
|
}
|
|
|
|
LiveIntervals::LiveIntervals() : MachineFunctionPass(ID),
|
|
DomTree(0), LRCalc(0) {
|
|
initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
LiveIntervals::~LiveIntervals() {
|
|
delete LRCalc;
|
|
}
|
|
|
|
void LiveIntervals::releaseMemory() {
|
|
// Free the live intervals themselves.
|
|
for (unsigned i = 0, e = VirtRegIntervals.size(); i != e; ++i)
|
|
delete VirtRegIntervals[TargetRegisterInfo::index2VirtReg(i)];
|
|
VirtRegIntervals.clear();
|
|
RegMaskSlots.clear();
|
|
RegMaskBits.clear();
|
|
RegMaskBlocks.clear();
|
|
|
|
for (unsigned i = 0, e = RegUnitRanges.size(); i != e; ++i)
|
|
delete RegUnitRanges[i];
|
|
RegUnitRanges.clear();
|
|
|
|
// Release VNInfo memory regions, VNInfo objects don't need to be dtor'd.
|
|
VNInfoAllocator.Reset();
|
|
}
|
|
|
|
/// runOnMachineFunction - calculates LiveIntervals
|
|
///
|
|
bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
|
|
MF = &fn;
|
|
MRI = &MF->getRegInfo();
|
|
TM = &fn.getTarget();
|
|
TRI = TM->getRegisterInfo();
|
|
TII = TM->getInstrInfo();
|
|
AA = &getAnalysis<AliasAnalysis>();
|
|
Indexes = &getAnalysis<SlotIndexes>();
|
|
DomTree = &getAnalysis<MachineDominatorTree>();
|
|
if (!LRCalc)
|
|
LRCalc = new LiveRangeCalc();
|
|
|
|
// Allocate space for all virtual registers.
|
|
VirtRegIntervals.resize(MRI->getNumVirtRegs());
|
|
|
|
computeVirtRegs();
|
|
computeRegMasks();
|
|
computeLiveInRegUnits();
|
|
|
|
if (EnablePrecomputePhysRegs) {
|
|
// For stress testing, precompute live ranges of all physical register
|
|
// units, including reserved registers.
|
|
for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
|
|
getRegUnit(i);
|
|
}
|
|
DEBUG(dump());
|
|
return true;
|
|
}
|
|
|
|
/// print - Implement the dump method.
|
|
void LiveIntervals::print(raw_ostream &OS, const Module* ) const {
|
|
OS << "********** INTERVALS **********\n";
|
|
|
|
// Dump the regunits.
|
|
for (unsigned i = 0, e = RegUnitRanges.size(); i != e; ++i)
|
|
if (LiveRange *LR = RegUnitRanges[i])
|
|
OS << PrintRegUnit(i, TRI) << ' ' << *LR << '\n';
|
|
|
|
// Dump the virtregs.
|
|
for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
|
|
unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
|
|
if (hasInterval(Reg))
|
|
OS << getInterval(Reg) << '\n';
|
|
}
|
|
|
|
OS << "RegMasks:";
|
|
for (unsigned i = 0, e = RegMaskSlots.size(); i != e; ++i)
|
|
OS << ' ' << RegMaskSlots[i];
|
|
OS << '\n';
|
|
|
|
printInstrs(OS);
|
|
}
|
|
|
|
void LiveIntervals::printInstrs(raw_ostream &OS) const {
|
|
OS << "********** MACHINEINSTRS **********\n";
|
|
MF->print(OS, Indexes);
|
|
}
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
void LiveIntervals::dumpInstrs() const {
|
|
printInstrs(dbgs());
|
|
}
|
|
#endif
|
|
|
|
LiveInterval* LiveIntervals::createInterval(unsigned reg) {
|
|
float Weight = TargetRegisterInfo::isPhysicalRegister(reg) ?
|
|
llvm::huge_valf : 0.0F;
|
|
return new LiveInterval(reg, Weight);
|
|
}
|
|
|
|
|
|
/// computeVirtRegInterval - Compute the live interval of a virtual register,
|
|
/// based on defs and uses.
|
|
void LiveIntervals::computeVirtRegInterval(LiveInterval &LI) {
|
|
assert(LRCalc && "LRCalc not initialized.");
|
|
assert(LI.empty() && "Should only compute empty intervals.");
|
|
LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
|
|
LRCalc->createDeadDefs(LI);
|
|
LRCalc->extendToUses(LI);
|
|
}
|
|
|
|
void LiveIntervals::computeVirtRegs() {
|
|
for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
|
|
unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
|
|
if (MRI->reg_nodbg_empty(Reg))
|
|
continue;
|
|
createAndComputeVirtRegInterval(Reg);
|
|
}
|
|
}
|
|
|
|
void LiveIntervals::computeRegMasks() {
|
|
RegMaskBlocks.resize(MF->getNumBlockIDs());
|
|
|
|
// Find all instructions with regmask operands.
|
|
for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end();
|
|
MBBI != E; ++MBBI) {
|
|
MachineBasicBlock *MBB = MBBI;
|
|
std::pair<unsigned, unsigned> &RMB = RegMaskBlocks[MBB->getNumber()];
|
|
RMB.first = RegMaskSlots.size();
|
|
for (MachineBasicBlock::iterator MI = MBB->begin(), ME = MBB->end();
|
|
MI != ME; ++MI)
|
|
for (MIOperands MO(MI); MO.isValid(); ++MO) {
|
|
if (!MO->isRegMask())
|
|
continue;
|
|
RegMaskSlots.push_back(Indexes->getInstructionIndex(MI).getRegSlot());
|
|
RegMaskBits.push_back(MO->getRegMask());
|
|
}
|
|
// Compute the number of register mask instructions in this block.
|
|
RMB.second = RegMaskSlots.size() - RMB.first;
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Register Unit Liveness
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Fixed interference typically comes from ABI boundaries: Function arguments
|
|
// and return values are passed in fixed registers, and so are exception
|
|
// pointers entering landing pads. Certain instructions require values to be
|
|
// present in specific registers. That is also represented through fixed
|
|
// interference.
|
|
//
|
|
|
|
/// computeRegUnitInterval - Compute the live range of a register unit, based
|
|
/// on the uses and defs of aliasing registers. The range should be empty,
|
|
/// or contain only dead phi-defs from ABI blocks.
|
|
void LiveIntervals::computeRegUnitRange(LiveRange &LR, unsigned Unit) {
|
|
assert(LRCalc && "LRCalc not initialized.");
|
|
LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
|
|
|
|
// The physregs aliasing Unit are the roots and their super-registers.
|
|
// Create all values as dead defs before extending to uses. Note that roots
|
|
// may share super-registers. That's OK because createDeadDefs() is
|
|
// idempotent. It is very rare for a register unit to have multiple roots, so
|
|
// uniquing super-registers is probably not worthwhile.
|
|
for (MCRegUnitRootIterator Roots(Unit, TRI); Roots.isValid(); ++Roots) {
|
|
for (MCSuperRegIterator Supers(*Roots, TRI, /*IncludeSelf=*/true);
|
|
Supers.isValid(); ++Supers) {
|
|
if (!MRI->reg_empty(*Supers))
|
|
LRCalc->createDeadDefs(LR, *Supers);
|
|
}
|
|
}
|
|
|
|
// Now extend LR to reach all uses.
|
|
// Ignore uses of reserved registers. We only track defs of those.
|
|
for (MCRegUnitRootIterator Roots(Unit, TRI); Roots.isValid(); ++Roots) {
|
|
for (MCSuperRegIterator Supers(*Roots, TRI, /*IncludeSelf=*/true);
|
|
Supers.isValid(); ++Supers) {
|
|
unsigned Reg = *Supers;
|
|
if (!MRI->isReserved(Reg) && !MRI->reg_empty(Reg))
|
|
LRCalc->extendToUses(LR, Reg);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/// computeLiveInRegUnits - Precompute the live ranges of any register units
|
|
/// that are live-in to an ABI block somewhere. Register values can appear
|
|
/// without a corresponding def when entering the entry block or a landing pad.
|
|
///
|
|
void LiveIntervals::computeLiveInRegUnits() {
|
|
RegUnitRanges.resize(TRI->getNumRegUnits());
|
|
DEBUG(dbgs() << "Computing live-in reg-units in ABI blocks.\n");
|
|
|
|
// Keep track of the live range sets allocated.
|
|
SmallVector<unsigned, 8> NewRanges;
|
|
|
|
// Check all basic blocks for live-ins.
|
|
for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
|
|
MFI != MFE; ++MFI) {
|
|
const MachineBasicBlock *MBB = MFI;
|
|
|
|
// We only care about ABI blocks: Entry + landing pads.
|
|
if ((MFI != MF->begin() && !MBB->isLandingPad()) || MBB->livein_empty())
|
|
continue;
|
|
|
|
// Create phi-defs at Begin for all live-in registers.
|
|
SlotIndex Begin = Indexes->getMBBStartIdx(MBB);
|
|
DEBUG(dbgs() << Begin << "\tBB#" << MBB->getNumber());
|
|
for (MachineBasicBlock::livein_iterator LII = MBB->livein_begin(),
|
|
LIE = MBB->livein_end(); LII != LIE; ++LII) {
|
|
for (MCRegUnitIterator Units(*LII, TRI); Units.isValid(); ++Units) {
|
|
unsigned Unit = *Units;
|
|
LiveRange *LR = RegUnitRanges[Unit];
|
|
if (!LR) {
|
|
LR = RegUnitRanges[Unit] = new LiveRange();
|
|
NewRanges.push_back(Unit);
|
|
}
|
|
VNInfo *VNI = LR->createDeadDef(Begin, getVNInfoAllocator());
|
|
(void)VNI;
|
|
DEBUG(dbgs() << ' ' << PrintRegUnit(Unit, TRI) << '#' << VNI->id);
|
|
}
|
|
}
|
|
DEBUG(dbgs() << '\n');
|
|
}
|
|
DEBUG(dbgs() << "Created " << NewRanges.size() << " new intervals.\n");
|
|
|
|
// Compute the 'normal' part of the ranges.
|
|
for (unsigned i = 0, e = NewRanges.size(); i != e; ++i) {
|
|
unsigned Unit = NewRanges[i];
|
|
computeRegUnitRange(*RegUnitRanges[Unit], Unit);
|
|
}
|
|
}
|
|
|
|
|
|
/// shrinkToUses - After removing some uses of a register, shrink its live
|
|
/// range to just the remaining uses. This method does not compute reaching
|
|
/// defs for new uses, and it doesn't remove dead defs.
|
|
bool LiveIntervals::shrinkToUses(LiveInterval *li,
|
|
SmallVectorImpl<MachineInstr*> *dead) {
|
|
DEBUG(dbgs() << "Shrink: " << *li << '\n');
|
|
assert(TargetRegisterInfo::isVirtualRegister(li->reg)
|
|
&& "Can only shrink virtual registers");
|
|
// Find all the values used, including PHI kills.
|
|
SmallVector<std::pair<SlotIndex, VNInfo*>, 16> WorkList;
|
|
|
|
// Blocks that have already been added to WorkList as live-out.
|
|
SmallPtrSet<MachineBasicBlock*, 16> LiveOut;
|
|
|
|
// Visit all instructions reading li->reg.
|
|
for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(li->reg);
|
|
MachineInstr *UseMI = I.skipInstruction();) {
|
|
if (UseMI->isDebugValue() || !UseMI->readsVirtualRegister(li->reg))
|
|
continue;
|
|
SlotIndex Idx = getInstructionIndex(UseMI).getRegSlot();
|
|
LiveQueryResult LRQ = li->Query(Idx);
|
|
VNInfo *VNI = LRQ.valueIn();
|
|
if (!VNI) {
|
|
// This shouldn't happen: readsVirtualRegister returns true, but there is
|
|
// no live value. It is likely caused by a target getting <undef> flags
|
|
// wrong.
|
|
DEBUG(dbgs() << Idx << '\t' << *UseMI
|
|
<< "Warning: Instr claims to read non-existent value in "
|
|
<< *li << '\n');
|
|
continue;
|
|
}
|
|
// Special case: An early-clobber tied operand reads and writes the
|
|
// register one slot early.
|
|
if (VNInfo *DefVNI = LRQ.valueDefined())
|
|
Idx = DefVNI->def;
|
|
|
|
WorkList.push_back(std::make_pair(Idx, VNI));
|
|
}
|
|
|
|
// Create new live ranges with only minimal live segments per def.
|
|
LiveRange NewLR;
|
|
for (LiveInterval::vni_iterator I = li->vni_begin(), E = li->vni_end();
|
|
I != E; ++I) {
|
|
VNInfo *VNI = *I;
|
|
if (VNI->isUnused())
|
|
continue;
|
|
NewLR.addSegment(LiveRange::Segment(VNI->def, VNI->def.getDeadSlot(), VNI));
|
|
}
|
|
|
|
// Keep track of the PHIs that are in use.
|
|
SmallPtrSet<VNInfo*, 8> UsedPHIs;
|
|
|
|
// Extend intervals to reach all uses in WorkList.
|
|
while (!WorkList.empty()) {
|
|
SlotIndex Idx = WorkList.back().first;
|
|
VNInfo *VNI = WorkList.back().second;
|
|
WorkList.pop_back();
|
|
const MachineBasicBlock *MBB = getMBBFromIndex(Idx.getPrevSlot());
|
|
SlotIndex BlockStart = getMBBStartIdx(MBB);
|
|
|
|
// Extend the live range for VNI to be live at Idx.
|
|
if (VNInfo *ExtVNI = NewLR.extendInBlock(BlockStart, Idx)) {
|
|
(void)ExtVNI;
|
|
assert(ExtVNI == VNI && "Unexpected existing value number");
|
|
// Is this a PHIDef we haven't seen before?
|
|
if (!VNI->isPHIDef() || VNI->def != BlockStart || !UsedPHIs.insert(VNI))
|
|
continue;
|
|
// The PHI is live, make sure the predecessors are live-out.
|
|
for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
|
|
PE = MBB->pred_end(); PI != PE; ++PI) {
|
|
if (!LiveOut.insert(*PI))
|
|
continue;
|
|
SlotIndex Stop = getMBBEndIdx(*PI);
|
|
// A predecessor is not required to have a live-out value for a PHI.
|
|
if (VNInfo *PVNI = li->getVNInfoBefore(Stop))
|
|
WorkList.push_back(std::make_pair(Stop, PVNI));
|
|
}
|
|
continue;
|
|
}
|
|
|
|
// VNI is live-in to MBB.
|
|
DEBUG(dbgs() << " live-in at " << BlockStart << '\n');
|
|
NewLR.addSegment(LiveRange::Segment(BlockStart, Idx, VNI));
|
|
|
|
// Make sure VNI is live-out from the predecessors.
|
|
for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
|
|
PE = MBB->pred_end(); PI != PE; ++PI) {
|
|
if (!LiveOut.insert(*PI))
|
|
continue;
|
|
SlotIndex Stop = getMBBEndIdx(*PI);
|
|
assert(li->getVNInfoBefore(Stop) == VNI &&
|
|
"Wrong value out of predecessor");
|
|
WorkList.push_back(std::make_pair(Stop, VNI));
|
|
}
|
|
}
|
|
|
|
// Handle dead values.
|
|
bool CanSeparate = false;
|
|
for (LiveInterval::vni_iterator I = li->vni_begin(), E = li->vni_end();
|
|
I != E; ++I) {
|
|
VNInfo *VNI = *I;
|
|
if (VNI->isUnused())
|
|
continue;
|
|
LiveRange::iterator LRI = NewLR.FindSegmentContaining(VNI->def);
|
|
assert(LRI != NewLR.end() && "Missing segment for PHI");
|
|
if (LRI->end != VNI->def.getDeadSlot())
|
|
continue;
|
|
if (VNI->isPHIDef()) {
|
|
// This is a dead PHI. Remove it.
|
|
VNI->markUnused();
|
|
NewLR.removeSegment(LRI->start, LRI->end);
|
|
DEBUG(dbgs() << "Dead PHI at " << VNI->def << " may separate interval\n");
|
|
CanSeparate = true;
|
|
} else {
|
|
// This is a dead def. Make sure the instruction knows.
|
|
MachineInstr *MI = getInstructionFromIndex(VNI->def);
|
|
assert(MI && "No instruction defining live value");
|
|
MI->addRegisterDead(li->reg, TRI);
|
|
if (dead && MI->allDefsAreDead()) {
|
|
DEBUG(dbgs() << "All defs dead: " << VNI->def << '\t' << *MI);
|
|
dead->push_back(MI);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Move the trimmed segments back.
|
|
li->segments.swap(NewLR.segments);
|
|
DEBUG(dbgs() << "Shrunk: " << *li << '\n');
|
|
return CanSeparate;
|
|
}
|
|
|
|
void LiveIntervals::extendToIndices(LiveRange &LR,
|
|
ArrayRef<SlotIndex> Indices) {
|
|
assert(LRCalc && "LRCalc not initialized.");
|
|
LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
|
|
for (unsigned i = 0, e = Indices.size(); i != e; ++i)
|
|
LRCalc->extend(LR, Indices[i]);
|
|
}
|
|
|
|
void LiveIntervals::pruneValue(LiveInterval *LI, SlotIndex Kill,
|
|
SmallVectorImpl<SlotIndex> *EndPoints) {
|
|
LiveQueryResult LRQ = LI->Query(Kill);
|
|
VNInfo *VNI = LRQ.valueOut();
|
|
if (!VNI)
|
|
return;
|
|
|
|
MachineBasicBlock *KillMBB = Indexes->getMBBFromIndex(Kill);
|
|
SlotIndex MBBStart, MBBEnd;
|
|
tie(MBBStart, MBBEnd) = Indexes->getMBBRange(KillMBB);
|
|
|
|
// If VNI isn't live out from KillMBB, the value is trivially pruned.
|
|
if (LRQ.endPoint() < MBBEnd) {
|
|
LI->removeSegment(Kill, LRQ.endPoint());
|
|
if (EndPoints) EndPoints->push_back(LRQ.endPoint());
|
|
return;
|
|
}
|
|
|
|
// VNI is live out of KillMBB.
|
|
LI->removeSegment(Kill, MBBEnd);
|
|
if (EndPoints) EndPoints->push_back(MBBEnd);
|
|
|
|
// Find all blocks that are reachable from KillMBB without leaving VNI's live
|
|
// range. It is possible that KillMBB itself is reachable, so start a DFS
|
|
// from each successor.
|
|
typedef SmallPtrSet<MachineBasicBlock*, 9> VisitedTy;
|
|
VisitedTy Visited;
|
|
for (MachineBasicBlock::succ_iterator
|
|
SuccI = KillMBB->succ_begin(), SuccE = KillMBB->succ_end();
|
|
SuccI != SuccE; ++SuccI) {
|
|
for (df_ext_iterator<MachineBasicBlock*, VisitedTy>
|
|
I = df_ext_begin(*SuccI, Visited), E = df_ext_end(*SuccI, Visited);
|
|
I != E;) {
|
|
MachineBasicBlock *MBB = *I;
|
|
|
|
// Check if VNI is live in to MBB.
|
|
tie(MBBStart, MBBEnd) = Indexes->getMBBRange(MBB);
|
|
LiveQueryResult LRQ = LI->Query(MBBStart);
|
|
if (LRQ.valueIn() != VNI) {
|
|
// This block isn't part of the VNI segment. Prune the search.
|
|
I.skipChildren();
|
|
continue;
|
|
}
|
|
|
|
// Prune the search if VNI is killed in MBB.
|
|
if (LRQ.endPoint() < MBBEnd) {
|
|
LI->removeSegment(MBBStart, LRQ.endPoint());
|
|
if (EndPoints) EndPoints->push_back(LRQ.endPoint());
|
|
I.skipChildren();
|
|
continue;
|
|
}
|
|
|
|
// VNI is live through MBB.
|
|
LI->removeSegment(MBBStart, MBBEnd);
|
|
if (EndPoints) EndPoints->push_back(MBBEnd);
|
|
++I;
|
|
}
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Register allocator hooks.
|
|
//
|
|
|
|
void LiveIntervals::addKillFlags(const VirtRegMap *VRM) {
|
|
// Keep track of regunit ranges.
|
|
SmallVector<std::pair<LiveRange*, LiveRange::iterator>, 8> RU;
|
|
|
|
for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
|
|
unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
|
|
if (MRI->reg_nodbg_empty(Reg))
|
|
continue;
|
|
LiveInterval *LI = &getInterval(Reg);
|
|
if (LI->empty())
|
|
continue;
|
|
|
|
// Find the regunit intervals for the assigned register. They may overlap
|
|
// the virtual register live range, cancelling any kills.
|
|
RU.clear();
|
|
for (MCRegUnitIterator Units(VRM->getPhys(Reg), TRI); Units.isValid();
|
|
++Units) {
|
|
LiveRange &RURanges = getRegUnit(*Units);
|
|
if (RURanges.empty())
|
|
continue;
|
|
RU.push_back(std::make_pair(&RURanges, RURanges.find(LI->begin()->end)));
|
|
}
|
|
|
|
// Every instruction that kills Reg corresponds to a segment range end
|
|
// point.
|
|
for (LiveInterval::iterator RI = LI->begin(), RE = LI->end(); RI != RE;
|
|
++RI) {
|
|
// A block index indicates an MBB edge.
|
|
if (RI->end.isBlock())
|
|
continue;
|
|
MachineInstr *MI = getInstructionFromIndex(RI->end);
|
|
if (!MI)
|
|
continue;
|
|
|
|
// Check if any of the regunits are live beyond the end of RI. That could
|
|
// happen when a physreg is defined as a copy of a virtreg:
|
|
//
|
|
// %EAX = COPY %vreg5
|
|
// FOO %vreg5 <--- MI, cancel kill because %EAX is live.
|
|
// BAR %EAX<kill>
|
|
//
|
|
// There should be no kill flag on FOO when %vreg5 is rewritten as %EAX.
|
|
bool CancelKill = false;
|
|
for (unsigned u = 0, e = RU.size(); u != e; ++u) {
|
|
LiveRange &RRanges = *RU[u].first;
|
|
LiveRange::iterator &I = RU[u].second;
|
|
if (I == RRanges.end())
|
|
continue;
|
|
I = RRanges.advanceTo(I, RI->end);
|
|
if (I == RRanges.end() || I->start >= RI->end)
|
|
continue;
|
|
// I is overlapping RI.
|
|
CancelKill = true;
|
|
break;
|
|
}
|
|
if (CancelKill)
|
|
MI->clearRegisterKills(Reg, NULL);
|
|
else
|
|
MI->addRegisterKilled(Reg, NULL);
|
|
}
|
|
}
|
|
}
|
|
|
|
MachineBasicBlock*
|
|
LiveIntervals::intervalIsInOneMBB(const LiveInterval &LI) const {
|
|
// A local live range must be fully contained inside the block, meaning it is
|
|
// defined and killed at instructions, not at block boundaries. It is not
|
|
// live in or or out of any block.
|
|
//
|
|
// It is technically possible to have a PHI-defined live range identical to a
|
|
// single block, but we are going to return false in that case.
|
|
|
|
SlotIndex Start = LI.beginIndex();
|
|
if (Start.isBlock())
|
|
return NULL;
|
|
|
|
SlotIndex Stop = LI.endIndex();
|
|
if (Stop.isBlock())
|
|
return NULL;
|
|
|
|
// getMBBFromIndex doesn't need to search the MBB table when both indexes
|
|
// belong to proper instructions.
|
|
MachineBasicBlock *MBB1 = Indexes->getMBBFromIndex(Start);
|
|
MachineBasicBlock *MBB2 = Indexes->getMBBFromIndex(Stop);
|
|
return MBB1 == MBB2 ? MBB1 : NULL;
|
|
}
|
|
|
|
bool
|
|
LiveIntervals::hasPHIKill(const LiveInterval &LI, const VNInfo *VNI) const {
|
|
for (LiveInterval::const_vni_iterator I = LI.vni_begin(), E = LI.vni_end();
|
|
I != E; ++I) {
|
|
const VNInfo *PHI = *I;
|
|
if (PHI->isUnused() || !PHI->isPHIDef())
|
|
continue;
|
|
const MachineBasicBlock *PHIMBB = getMBBFromIndex(PHI->def);
|
|
// Conservatively return true instead of scanning huge predecessor lists.
|
|
if (PHIMBB->pred_size() > 100)
|
|
return true;
|
|
for (MachineBasicBlock::const_pred_iterator
|
|
PI = PHIMBB->pred_begin(), PE = PHIMBB->pred_end(); PI != PE; ++PI)
|
|
if (VNI == LI.getVNInfoBefore(Indexes->getMBBEndIdx(*PI)))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
float
|
|
LiveIntervals::getSpillWeight(bool isDef, bool isUse,
|
|
const MachineBlockFrequencyInfo *MBFI,
|
|
const MachineInstr *MI) {
|
|
BlockFrequency Freq = MBFI->getBlockFreq(MI->getParent());
|
|
const float Scale = 1.0f / MBFI->getEntryFreq();
|
|
return (isDef + isUse) * (Freq.getFrequency() * Scale);
|
|
}
|
|
|
|
LiveRange::Segment
|
|
LiveIntervals::addSegmentToEndOfBlock(unsigned reg, MachineInstr* startInst) {
|
|
LiveInterval& Interval = createEmptyInterval(reg);
|
|
VNInfo* VN = Interval.getNextValue(
|
|
SlotIndex(getInstructionIndex(startInst).getRegSlot()),
|
|
getVNInfoAllocator());
|
|
LiveRange::Segment S(
|
|
SlotIndex(getInstructionIndex(startInst).getRegSlot()),
|
|
getMBBEndIdx(startInst->getParent()), VN);
|
|
Interval.addSegment(S);
|
|
|
|
return S;
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Register mask functions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
bool LiveIntervals::checkRegMaskInterference(LiveInterval &LI,
|
|
BitVector &UsableRegs) {
|
|
if (LI.empty())
|
|
return false;
|
|
LiveInterval::iterator LiveI = LI.begin(), LiveE = LI.end();
|
|
|
|
// Use a smaller arrays for local live ranges.
|
|
ArrayRef<SlotIndex> Slots;
|
|
ArrayRef<const uint32_t*> Bits;
|
|
if (MachineBasicBlock *MBB = intervalIsInOneMBB(LI)) {
|
|
Slots = getRegMaskSlotsInBlock(MBB->getNumber());
|
|
Bits = getRegMaskBitsInBlock(MBB->getNumber());
|
|
} else {
|
|
Slots = getRegMaskSlots();
|
|
Bits = getRegMaskBits();
|
|
}
|
|
|
|
// We are going to enumerate all the register mask slots contained in LI.
|
|
// Start with a binary search of RegMaskSlots to find a starting point.
|
|
ArrayRef<SlotIndex>::iterator SlotI =
|
|
std::lower_bound(Slots.begin(), Slots.end(), LiveI->start);
|
|
ArrayRef<SlotIndex>::iterator SlotE = Slots.end();
|
|
|
|
// No slots in range, LI begins after the last call.
|
|
if (SlotI == SlotE)
|
|
return false;
|
|
|
|
bool Found = false;
|
|
for (;;) {
|
|
assert(*SlotI >= LiveI->start);
|
|
// Loop over all slots overlapping this segment.
|
|
while (*SlotI < LiveI->end) {
|
|
// *SlotI overlaps LI. Collect mask bits.
|
|
if (!Found) {
|
|
// This is the first overlap. Initialize UsableRegs to all ones.
|
|
UsableRegs.clear();
|
|
UsableRegs.resize(TRI->getNumRegs(), true);
|
|
Found = true;
|
|
}
|
|
// Remove usable registers clobbered by this mask.
|
|
UsableRegs.clearBitsNotInMask(Bits[SlotI-Slots.begin()]);
|
|
if (++SlotI == SlotE)
|
|
return Found;
|
|
}
|
|
// *SlotI is beyond the current LI segment.
|
|
LiveI = LI.advanceTo(LiveI, *SlotI);
|
|
if (LiveI == LiveE)
|
|
return Found;
|
|
// Advance SlotI until it overlaps.
|
|
while (*SlotI < LiveI->start)
|
|
if (++SlotI == SlotE)
|
|
return Found;
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// IntervalUpdate class.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// HMEditor is a toolkit used by handleMove to trim or extend live intervals.
|
|
class LiveIntervals::HMEditor {
|
|
private:
|
|
LiveIntervals& LIS;
|
|
const MachineRegisterInfo& MRI;
|
|
const TargetRegisterInfo& TRI;
|
|
SlotIndex OldIdx;
|
|
SlotIndex NewIdx;
|
|
SmallPtrSet<LiveRange*, 8> Updated;
|
|
bool UpdateFlags;
|
|
|
|
public:
|
|
HMEditor(LiveIntervals& LIS, const MachineRegisterInfo& MRI,
|
|
const TargetRegisterInfo& TRI,
|
|
SlotIndex OldIdx, SlotIndex NewIdx, bool UpdateFlags)
|
|
: LIS(LIS), MRI(MRI), TRI(TRI), OldIdx(OldIdx), NewIdx(NewIdx),
|
|
UpdateFlags(UpdateFlags) {}
|
|
|
|
// FIXME: UpdateFlags is a workaround that creates live intervals for all
|
|
// physregs, even those that aren't needed for regalloc, in order to update
|
|
// kill flags. This is wasteful. Eventually, LiveVariables will strip all kill
|
|
// flags, and postRA passes will use a live register utility instead.
|
|
LiveRange *getRegUnitLI(unsigned Unit) {
|
|
if (UpdateFlags)
|
|
return &LIS.getRegUnit(Unit);
|
|
return LIS.getCachedRegUnit(Unit);
|
|
}
|
|
|
|
/// Update all live ranges touched by MI, assuming a move from OldIdx to
|
|
/// NewIdx.
|
|
void updateAllRanges(MachineInstr *MI) {
|
|
DEBUG(dbgs() << "handleMove " << OldIdx << " -> " << NewIdx << ": " << *MI);
|
|
bool hasRegMask = false;
|
|
for (MIOperands MO(MI); MO.isValid(); ++MO) {
|
|
if (MO->isRegMask())
|
|
hasRegMask = true;
|
|
if (!MO->isReg())
|
|
continue;
|
|
// Aggressively clear all kill flags.
|
|
// They are reinserted by VirtRegRewriter.
|
|
if (MO->isUse())
|
|
MO->setIsKill(false);
|
|
|
|
unsigned Reg = MO->getReg();
|
|
if (!Reg)
|
|
continue;
|
|
if (TargetRegisterInfo::isVirtualRegister(Reg)) {
|
|
LiveInterval &LI = LIS.getInterval(Reg);
|
|
updateRange(LI, Reg);
|
|
continue;
|
|
}
|
|
|
|
// For physregs, only update the regunits that actually have a
|
|
// precomputed live range.
|
|
for (MCRegUnitIterator Units(Reg, &TRI); Units.isValid(); ++Units)
|
|
if (LiveRange *LR = getRegUnitLI(*Units))
|
|
updateRange(*LR, *Units);
|
|
}
|
|
if (hasRegMask)
|
|
updateRegMaskSlots();
|
|
}
|
|
|
|
private:
|
|
/// Update a single live range, assuming an instruction has been moved from
|
|
/// OldIdx to NewIdx.
|
|
void updateRange(LiveRange &LR, unsigned Reg) {
|
|
if (!Updated.insert(&LR))
|
|
return;
|
|
DEBUG({
|
|
dbgs() << " ";
|
|
if (TargetRegisterInfo::isVirtualRegister(Reg))
|
|
dbgs() << PrintReg(Reg);
|
|
else
|
|
dbgs() << PrintRegUnit(Reg, &TRI);
|
|
dbgs() << ":\t" << LR << '\n';
|
|
});
|
|
if (SlotIndex::isEarlierInstr(OldIdx, NewIdx))
|
|
handleMoveDown(LR);
|
|
else
|
|
handleMoveUp(LR, Reg);
|
|
DEBUG(dbgs() << " -->\t" << LR << '\n');
|
|
LR.verify();
|
|
}
|
|
|
|
/// Update LR to reflect an instruction has been moved downwards from OldIdx
|
|
/// to NewIdx.
|
|
///
|
|
/// 1. Live def at OldIdx:
|
|
/// Move def to NewIdx, assert endpoint after NewIdx.
|
|
///
|
|
/// 2. Live def at OldIdx, killed at NewIdx:
|
|
/// Change to dead def at NewIdx.
|
|
/// (Happens when bundling def+kill together).
|
|
///
|
|
/// 3. Dead def at OldIdx:
|
|
/// Move def to NewIdx, possibly across another live value.
|
|
///
|
|
/// 4. Def at OldIdx AND at NewIdx:
|
|
/// Remove segment [OldIdx;NewIdx) and value defined at OldIdx.
|
|
/// (Happens when bundling multiple defs together).
|
|
///
|
|
/// 5. Value read at OldIdx, killed before NewIdx:
|
|
/// Extend kill to NewIdx.
|
|
///
|
|
void handleMoveDown(LiveRange &LR) {
|
|
// First look for a kill at OldIdx.
|
|
LiveRange::iterator I = LR.find(OldIdx.getBaseIndex());
|
|
LiveRange::iterator E = LR.end();
|
|
// Is LR even live at OldIdx?
|
|
if (I == E || SlotIndex::isEarlierInstr(OldIdx, I->start))
|
|
return;
|
|
|
|
// Handle a live-in value.
|
|
if (!SlotIndex::isSameInstr(I->start, OldIdx)) {
|
|
bool isKill = SlotIndex::isSameInstr(OldIdx, I->end);
|
|
// If the live-in value already extends to NewIdx, there is nothing to do.
|
|
if (!SlotIndex::isEarlierInstr(I->end, NewIdx))
|
|
return;
|
|
// Aggressively remove all kill flags from the old kill point.
|
|
// Kill flags shouldn't be used while live intervals exist, they will be
|
|
// reinserted by VirtRegRewriter.
|
|
if (MachineInstr *KillMI = LIS.getInstructionFromIndex(I->end))
|
|
for (MIBundleOperands MO(KillMI); MO.isValid(); ++MO)
|
|
if (MO->isReg() && MO->isUse())
|
|
MO->setIsKill(false);
|
|
// Adjust I->end to reach NewIdx. This may temporarily make LR invalid by
|
|
// overlapping ranges. Case 5 above.
|
|
I->end = NewIdx.getRegSlot(I->end.isEarlyClobber());
|
|
// If this was a kill, there may also be a def. Otherwise we're done.
|
|
if (!isKill)
|
|
return;
|
|
++I;
|
|
}
|
|
|
|
// Check for a def at OldIdx.
|
|
if (I == E || !SlotIndex::isSameInstr(OldIdx, I->start))
|
|
return;
|
|
// We have a def at OldIdx.
|
|
VNInfo *DefVNI = I->valno;
|
|
assert(DefVNI->def == I->start && "Inconsistent def");
|
|
DefVNI->def = NewIdx.getRegSlot(I->start.isEarlyClobber());
|
|
// If the defined value extends beyond NewIdx, just move the def down.
|
|
// This is case 1 above.
|
|
if (SlotIndex::isEarlierInstr(NewIdx, I->end)) {
|
|
I->start = DefVNI->def;
|
|
return;
|
|
}
|
|
// The remaining possibilities are now:
|
|
// 2. Live def at OldIdx, killed at NewIdx: isSameInstr(I->end, NewIdx).
|
|
// 3. Dead def at OldIdx: I->end = OldIdx.getDeadSlot().
|
|
// In either case, it is possible that there is an existing def at NewIdx.
|
|
assert((I->end == OldIdx.getDeadSlot() ||
|
|
SlotIndex::isSameInstr(I->end, NewIdx)) &&
|
|
"Cannot move def below kill");
|
|
LiveRange::iterator NewI = LR.advanceTo(I, NewIdx.getRegSlot());
|
|
if (NewI != E && SlotIndex::isSameInstr(NewI->start, NewIdx)) {
|
|
// There is an existing def at NewIdx, case 4 above. The def at OldIdx is
|
|
// coalesced into that value.
|
|
assert(NewI->valno != DefVNI && "Multiple defs of value?");
|
|
LR.removeValNo(DefVNI);
|
|
return;
|
|
}
|
|
// There was no existing def at NewIdx. Turn *I into a dead def at NewIdx.
|
|
// If the def at OldIdx was dead, we allow it to be moved across other LR
|
|
// values. The new range should be placed immediately before NewI, move any
|
|
// intermediate ranges up.
|
|
assert(NewI != I && "Inconsistent iterators");
|
|
std::copy(llvm::next(I), NewI, I);
|
|
*llvm::prior(NewI)
|
|
= LiveRange::Segment(DefVNI->def, NewIdx.getDeadSlot(), DefVNI);
|
|
}
|
|
|
|
/// Update LR to reflect an instruction has been moved upwards from OldIdx
|
|
/// to NewIdx.
|
|
///
|
|
/// 1. Live def at OldIdx:
|
|
/// Hoist def to NewIdx.
|
|
///
|
|
/// 2. Dead def at OldIdx:
|
|
/// Hoist def+end to NewIdx, possibly move across other values.
|
|
///
|
|
/// 3. Dead def at OldIdx AND existing def at NewIdx:
|
|
/// Remove value defined at OldIdx, coalescing it with existing value.
|
|
///
|
|
/// 4. Live def at OldIdx AND existing def at NewIdx:
|
|
/// Remove value defined at NewIdx, hoist OldIdx def to NewIdx.
|
|
/// (Happens when bundling multiple defs together).
|
|
///
|
|
/// 5. Value killed at OldIdx:
|
|
/// Hoist kill to NewIdx, then scan for last kill between NewIdx and
|
|
/// OldIdx.
|
|
///
|
|
void handleMoveUp(LiveRange &LR, unsigned Reg) {
|
|
// First look for a kill at OldIdx.
|
|
LiveRange::iterator I = LR.find(OldIdx.getBaseIndex());
|
|
LiveRange::iterator E = LR.end();
|
|
// Is LR even live at OldIdx?
|
|
if (I == E || SlotIndex::isEarlierInstr(OldIdx, I->start))
|
|
return;
|
|
|
|
// Handle a live-in value.
|
|
if (!SlotIndex::isSameInstr(I->start, OldIdx)) {
|
|
// If the live-in value isn't killed here, there is nothing to do.
|
|
if (!SlotIndex::isSameInstr(OldIdx, I->end))
|
|
return;
|
|
// Adjust I->end to end at NewIdx. If we are hoisting a kill above
|
|
// another use, we need to search for that use. Case 5 above.
|
|
I->end = NewIdx.getRegSlot(I->end.isEarlyClobber());
|
|
++I;
|
|
// If OldIdx also defines a value, there couldn't have been another use.
|
|
if (I == E || !SlotIndex::isSameInstr(I->start, OldIdx)) {
|
|
// No def, search for the new kill.
|
|
// This can never be an early clobber kill since there is no def.
|
|
llvm::prior(I)->end = findLastUseBefore(Reg).getRegSlot();
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Now deal with the def at OldIdx.
|
|
assert(I != E && SlotIndex::isSameInstr(I->start, OldIdx) && "No def?");
|
|
VNInfo *DefVNI = I->valno;
|
|
assert(DefVNI->def == I->start && "Inconsistent def");
|
|
DefVNI->def = NewIdx.getRegSlot(I->start.isEarlyClobber());
|
|
|
|
// Check for an existing def at NewIdx.
|
|
LiveRange::iterator NewI = LR.find(NewIdx.getRegSlot());
|
|
if (SlotIndex::isSameInstr(NewI->start, NewIdx)) {
|
|
assert(NewI->valno != DefVNI && "Same value defined more than once?");
|
|
// There is an existing def at NewIdx.
|
|
if (I->end.isDead()) {
|
|
// Case 3: Remove the dead def at OldIdx.
|
|
LR.removeValNo(DefVNI);
|
|
return;
|
|
}
|
|
// Case 4: Replace def at NewIdx with live def at OldIdx.
|
|
I->start = DefVNI->def;
|
|
LR.removeValNo(NewI->valno);
|
|
return;
|
|
}
|
|
|
|
// There is no existing def at NewIdx. Hoist DefVNI.
|
|
if (!I->end.isDead()) {
|
|
// Leave the end point of a live def.
|
|
I->start = DefVNI->def;
|
|
return;
|
|
}
|
|
|
|
// DefVNI is a dead def. It may have been moved across other values in LR,
|
|
// so move I up to NewI. Slide [NewI;I) down one position.
|
|
std::copy_backward(NewI, I, llvm::next(I));
|
|
*NewI = LiveRange::Segment(DefVNI->def, NewIdx.getDeadSlot(), DefVNI);
|
|
}
|
|
|
|
void updateRegMaskSlots() {
|
|
SmallVectorImpl<SlotIndex>::iterator RI =
|
|
std::lower_bound(LIS.RegMaskSlots.begin(), LIS.RegMaskSlots.end(),
|
|
OldIdx);
|
|
assert(RI != LIS.RegMaskSlots.end() && *RI == OldIdx.getRegSlot() &&
|
|
"No RegMask at OldIdx.");
|
|
*RI = NewIdx.getRegSlot();
|
|
assert((RI == LIS.RegMaskSlots.begin() ||
|
|
SlotIndex::isEarlierInstr(*llvm::prior(RI), *RI)) &&
|
|
"Cannot move regmask instruction above another call");
|
|
assert((llvm::next(RI) == LIS.RegMaskSlots.end() ||
|
|
SlotIndex::isEarlierInstr(*RI, *llvm::next(RI))) &&
|
|
"Cannot move regmask instruction below another call");
|
|
}
|
|
|
|
// Return the last use of reg between NewIdx and OldIdx.
|
|
SlotIndex findLastUseBefore(unsigned Reg) {
|
|
|
|
if (TargetRegisterInfo::isVirtualRegister(Reg)) {
|
|
SlotIndex LastUse = NewIdx;
|
|
for (MachineRegisterInfo::use_nodbg_iterator
|
|
UI = MRI.use_nodbg_begin(Reg),
|
|
UE = MRI.use_nodbg_end();
|
|
UI != UE; UI.skipInstruction()) {
|
|
const MachineInstr* MI = &*UI;
|
|
SlotIndex InstSlot = LIS.getSlotIndexes()->getInstructionIndex(MI);
|
|
if (InstSlot > LastUse && InstSlot < OldIdx)
|
|
LastUse = InstSlot;
|
|
}
|
|
return LastUse;
|
|
}
|
|
|
|
// This is a regunit interval, so scanning the use list could be very
|
|
// expensive. Scan upwards from OldIdx instead.
|
|
assert(NewIdx < OldIdx && "Expected upwards move");
|
|
SlotIndexes *Indexes = LIS.getSlotIndexes();
|
|
MachineBasicBlock *MBB = Indexes->getMBBFromIndex(NewIdx);
|
|
|
|
// OldIdx may not correspond to an instruction any longer, so set MII to
|
|
// point to the next instruction after OldIdx, or MBB->end().
|
|
MachineBasicBlock::iterator MII = MBB->end();
|
|
if (MachineInstr *MI = Indexes->getInstructionFromIndex(
|
|
Indexes->getNextNonNullIndex(OldIdx)))
|
|
if (MI->getParent() == MBB)
|
|
MII = MI;
|
|
|
|
MachineBasicBlock::iterator Begin = MBB->begin();
|
|
while (MII != Begin) {
|
|
if ((--MII)->isDebugValue())
|
|
continue;
|
|
SlotIndex Idx = Indexes->getInstructionIndex(MII);
|
|
|
|
// Stop searching when NewIdx is reached.
|
|
if (!SlotIndex::isEarlierInstr(NewIdx, Idx))
|
|
return NewIdx;
|
|
|
|
// Check if MII uses Reg.
|
|
for (MIBundleOperands MO(MII); MO.isValid(); ++MO)
|
|
if (MO->isReg() &&
|
|
TargetRegisterInfo::isPhysicalRegister(MO->getReg()) &&
|
|
TRI.hasRegUnit(MO->getReg(), Reg))
|
|
return Idx;
|
|
}
|
|
// Didn't reach NewIdx. It must be the first instruction in the block.
|
|
return NewIdx;
|
|
}
|
|
};
|
|
|
|
void LiveIntervals::handleMove(MachineInstr* MI, bool UpdateFlags) {
|
|
assert(!MI->isBundled() && "Can't handle bundled instructions yet.");
|
|
SlotIndex OldIndex = Indexes->getInstructionIndex(MI);
|
|
Indexes->removeMachineInstrFromMaps(MI);
|
|
SlotIndex NewIndex = Indexes->insertMachineInstrInMaps(MI);
|
|
assert(getMBBStartIdx(MI->getParent()) <= OldIndex &&
|
|
OldIndex < getMBBEndIdx(MI->getParent()) &&
|
|
"Cannot handle moves across basic block boundaries.");
|
|
|
|
HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags);
|
|
HME.updateAllRanges(MI);
|
|
}
|
|
|
|
void LiveIntervals::handleMoveIntoBundle(MachineInstr* MI,
|
|
MachineInstr* BundleStart,
|
|
bool UpdateFlags) {
|
|
SlotIndex OldIndex = Indexes->getInstructionIndex(MI);
|
|
SlotIndex NewIndex = Indexes->getInstructionIndex(BundleStart);
|
|
HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags);
|
|
HME.updateAllRanges(MI);
|
|
}
|
|
|
|
void
|
|
LiveIntervals::repairIntervalsInRange(MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator Begin,
|
|
MachineBasicBlock::iterator End,
|
|
ArrayRef<unsigned> OrigRegs) {
|
|
// Find anchor points, which are at the beginning/end of blocks or at
|
|
// instructions that already have indexes.
|
|
while (Begin != MBB->begin() && !Indexes->hasIndex(Begin))
|
|
--Begin;
|
|
while (End != MBB->end() && !Indexes->hasIndex(End))
|
|
++End;
|
|
|
|
SlotIndex endIdx;
|
|
if (End == MBB->end())
|
|
endIdx = getMBBEndIdx(MBB).getPrevSlot();
|
|
else
|
|
endIdx = getInstructionIndex(End);
|
|
|
|
Indexes->repairIndexesInRange(MBB, Begin, End);
|
|
|
|
for (MachineBasicBlock::iterator I = End; I != Begin;) {
|
|
--I;
|
|
MachineInstr *MI = I;
|
|
if (MI->isDebugValue())
|
|
continue;
|
|
for (MachineInstr::const_mop_iterator MOI = MI->operands_begin(),
|
|
MOE = MI->operands_end(); MOI != MOE; ++MOI) {
|
|
if (MOI->isReg() &&
|
|
TargetRegisterInfo::isVirtualRegister(MOI->getReg()) &&
|
|
!hasInterval(MOI->getReg())) {
|
|
createAndComputeVirtRegInterval(MOI->getReg());
|
|
}
|
|
}
|
|
}
|
|
|
|
for (unsigned i = 0, e = OrigRegs.size(); i != e; ++i) {
|
|
unsigned Reg = OrigRegs[i];
|
|
if (!TargetRegisterInfo::isVirtualRegister(Reg))
|
|
continue;
|
|
|
|
LiveInterval &LI = getInterval(Reg);
|
|
// FIXME: Should we support undefs that gain defs?
|
|
if (!LI.hasAtLeastOneValue())
|
|
continue;
|
|
|
|
LiveInterval::iterator LII = LI.find(endIdx);
|
|
SlotIndex lastUseIdx;
|
|
if (LII != LI.end() && LII->start < endIdx)
|
|
lastUseIdx = LII->end;
|
|
else
|
|
--LII;
|
|
|
|
for (MachineBasicBlock::iterator I = End; I != Begin;) {
|
|
--I;
|
|
MachineInstr *MI = I;
|
|
if (MI->isDebugValue())
|
|
continue;
|
|
|
|
SlotIndex instrIdx = getInstructionIndex(MI);
|
|
bool isStartValid = getInstructionFromIndex(LII->start);
|
|
bool isEndValid = getInstructionFromIndex(LII->end);
|
|
|
|
// FIXME: This doesn't currently handle early-clobber or multiple removed
|
|
// defs inside of the region to repair.
|
|
for (MachineInstr::mop_iterator OI = MI->operands_begin(),
|
|
OE = MI->operands_end(); OI != OE; ++OI) {
|
|
const MachineOperand &MO = *OI;
|
|
if (!MO.isReg() || MO.getReg() != Reg)
|
|
continue;
|
|
|
|
if (MO.isDef()) {
|
|
if (!isStartValid) {
|
|
if (LII->end.isDead()) {
|
|
SlotIndex prevStart;
|
|
if (LII != LI.begin())
|
|
prevStart = llvm::prior(LII)->start;
|
|
|
|
// FIXME: This could be more efficient if there was a
|
|
// removeSegment method that returned an iterator.
|
|
LI.removeSegment(*LII, true);
|
|
if (prevStart.isValid())
|
|
LII = LI.find(prevStart);
|
|
else
|
|
LII = LI.begin();
|
|
} else {
|
|
LII->start = instrIdx.getRegSlot();
|
|
LII->valno->def = instrIdx.getRegSlot();
|
|
if (MO.getSubReg() && !MO.isUndef())
|
|
lastUseIdx = instrIdx.getRegSlot();
|
|
else
|
|
lastUseIdx = SlotIndex();
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if (!lastUseIdx.isValid()) {
|
|
VNInfo *VNI = LI.getNextValue(instrIdx.getRegSlot(),
|
|
VNInfoAllocator);
|
|
LiveRange::Segment S(instrIdx.getRegSlot(),
|
|
instrIdx.getDeadSlot(), VNI);
|
|
LII = LI.addSegment(S);
|
|
} else if (LII->start != instrIdx.getRegSlot()) {
|
|
VNInfo *VNI = LI.getNextValue(instrIdx.getRegSlot(),
|
|
VNInfoAllocator);
|
|
LiveRange::Segment S(instrIdx.getRegSlot(), lastUseIdx, VNI);
|
|
LII = LI.addSegment(S);
|
|
}
|
|
|
|
if (MO.getSubReg() && !MO.isUndef())
|
|
lastUseIdx = instrIdx.getRegSlot();
|
|
else
|
|
lastUseIdx = SlotIndex();
|
|
} else if (MO.isUse()) {
|
|
// FIXME: This should probably be handled outside of this branch,
|
|
// either as part of the def case (for defs inside of the region) or
|
|
// after the loop over the region.
|
|
if (!isEndValid && !LII->end.isBlock())
|
|
LII->end = instrIdx.getRegSlot();
|
|
if (!lastUseIdx.isValid())
|
|
lastUseIdx = instrIdx.getRegSlot();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|