llvm-6502/lib/Target/ARM/ARMBaseRegisterInfo.cpp
Chandler Carruth 0b8c9a80f2 Move all of the header files which are involved in modelling the LLVM IR
into their new header subdirectory: include/llvm/IR. This matches the
directory structure of lib, and begins to correct a long standing point
of file layout clutter in LLVM.

There are still more header files to move here, but I wanted to handle
them in separate commits to make tracking what files make sense at each
layer easier.

The only really questionable files here are the target intrinsic
tablegen files. But that's a battle I'd rather not fight today.

I've updated both CMake and Makefile build systems (I think, and my
tests think, but I may have missed something).

I've also re-sorted the includes throughout the project. I'll be
committing updates to Clang, DragonEgg, and Polly momentarily.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171366 91177308-0d34-0410-b5e6-96231b3b80d8
2013-01-02 11:36:10 +00:00

804 lines
28 KiB
C++

//===-- ARMBaseRegisterInfo.cpp - ARM Register Information ----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the base ARM implementation of TargetRegisterInfo class.
//
//===----------------------------------------------------------------------===//
#include "ARMBaseRegisterInfo.h"
#include "ARM.h"
#include "ARMBaseInstrInfo.h"
#include "ARMFrameLowering.h"
#include "ARMMachineFunctionInfo.h"
#include "ARMSubtarget.h"
#include "MCTargetDesc/ARMAddressingModes.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/RegisterScavenging.h"
#include "llvm/CodeGen/VirtRegMap.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetFrameLowering.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#define GET_REGINFO_TARGET_DESC
#include "ARMGenRegisterInfo.inc"
using namespace llvm;
ARMBaseRegisterInfo::ARMBaseRegisterInfo(const ARMBaseInstrInfo &tii,
const ARMSubtarget &sti)
: ARMGenRegisterInfo(ARM::LR, 0, 0, ARM::PC), TII(tii), STI(sti),
FramePtr((STI.isTargetDarwin() || STI.isThumb()) ? ARM::R7 : ARM::R11),
BasePtr(ARM::R6) {
}
const uint16_t*
ARMBaseRegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const {
bool ghcCall = false;
if (MF) {
const Function *F = MF->getFunction();
ghcCall = (F ? F->getCallingConv() == CallingConv::GHC : false);
}
if (ghcCall) {
return CSR_GHC_SaveList;
}
else {
return (STI.isTargetIOS() && !STI.isAAPCS_ABI())
? CSR_iOS_SaveList : CSR_AAPCS_SaveList;
}
}
const uint32_t*
ARMBaseRegisterInfo::getCallPreservedMask(CallingConv::ID) const {
return (STI.isTargetIOS() && !STI.isAAPCS_ABI())
? CSR_iOS_RegMask : CSR_AAPCS_RegMask;
}
const uint32_t*
ARMBaseRegisterInfo::getNoPreservedMask() const {
return CSR_NoRegs_RegMask;
}
BitVector ARMBaseRegisterInfo::
getReservedRegs(const MachineFunction &MF) const {
const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
// FIXME: avoid re-calculating this every time.
BitVector Reserved(getNumRegs());
Reserved.set(ARM::SP);
Reserved.set(ARM::PC);
Reserved.set(ARM::FPSCR);
if (TFI->hasFP(MF))
Reserved.set(FramePtr);
if (hasBasePointer(MF))
Reserved.set(BasePtr);
// Some targets reserve R9.
if (STI.isR9Reserved())
Reserved.set(ARM::R9);
// Reserve D16-D31 if the subtarget doesn't support them.
if (!STI.hasVFP3() || STI.hasD16()) {
assert(ARM::D31 == ARM::D16 + 15);
for (unsigned i = 0; i != 16; ++i)
Reserved.set(ARM::D16 + i);
}
const TargetRegisterClass *RC = &ARM::GPRPairRegClass;
for(TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); I!=E; ++I)
for (MCSubRegIterator SI(*I, this); SI.isValid(); ++SI)
if (Reserved.test(*SI)) Reserved.set(*I);
return Reserved;
}
const TargetRegisterClass*
ARMBaseRegisterInfo::getLargestLegalSuperClass(const TargetRegisterClass *RC)
const {
const TargetRegisterClass *Super = RC;
TargetRegisterClass::sc_iterator I = RC->getSuperClasses();
do {
switch (Super->getID()) {
case ARM::GPRRegClassID:
case ARM::SPRRegClassID:
case ARM::DPRRegClassID:
case ARM::QPRRegClassID:
case ARM::QQPRRegClassID:
case ARM::QQQQPRRegClassID:
case ARM::GPRPairRegClassID:
return Super;
}
Super = *I++;
} while (Super);
return RC;
}
const TargetRegisterClass *
ARMBaseRegisterInfo::getPointerRegClass(const MachineFunction &MF, unsigned Kind)
const {
return &ARM::GPRRegClass;
}
const TargetRegisterClass *
ARMBaseRegisterInfo::getCrossCopyRegClass(const TargetRegisterClass *RC) const {
if (RC == &ARM::CCRRegClass)
return 0; // Can't copy CCR registers.
return RC;
}
unsigned
ARMBaseRegisterInfo::getRegPressureLimit(const TargetRegisterClass *RC,
MachineFunction &MF) const {
const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
switch (RC->getID()) {
default:
return 0;
case ARM::tGPRRegClassID:
return TFI->hasFP(MF) ? 4 : 5;
case ARM::GPRRegClassID: {
unsigned FP = TFI->hasFP(MF) ? 1 : 0;
return 10 - FP - (STI.isR9Reserved() ? 1 : 0);
}
case ARM::SPRRegClassID: // Currently not used as 'rep' register class.
case ARM::DPRRegClassID:
return 32 - 10;
}
}
// Get the other register in a GPRPair.
static unsigned getPairedGPR(unsigned Reg, bool Odd, const MCRegisterInfo *RI) {
for (MCSuperRegIterator Supers(Reg, RI); Supers.isValid(); ++Supers)
if (ARM::GPRPairRegClass.contains(*Supers))
return RI->getSubReg(*Supers, Odd ? ARM::gsub_1 : ARM::gsub_0);
return 0;
}
// Resolve the RegPairEven / RegPairOdd register allocator hints.
void
ARMBaseRegisterInfo::getRegAllocationHints(unsigned VirtReg,
ArrayRef<MCPhysReg> Order,
SmallVectorImpl<MCPhysReg> &Hints,
const MachineFunction &MF,
const VirtRegMap *VRM) const {
const MachineRegisterInfo &MRI = MF.getRegInfo();
std::pair<unsigned, unsigned> Hint = MRI.getRegAllocationHint(VirtReg);
unsigned Odd;
switch (Hint.first) {
case ARMRI::RegPairEven:
Odd = 0;
break;
case ARMRI::RegPairOdd:
Odd = 1;
break;
default:
TargetRegisterInfo::getRegAllocationHints(VirtReg, Order, Hints, MF, VRM);
return;
}
// This register should preferably be even (Odd == 0) or odd (Odd == 1).
// Check if the other part of the pair has already been assigned, and provide
// the paired register as the first hint.
unsigned PairedPhys = 0;
if (VRM && VRM->hasPhys(Hint.second)) {
PairedPhys = getPairedGPR(VRM->getPhys(Hint.second), Odd, this);
if (PairedPhys && MRI.isReserved(PairedPhys))
PairedPhys = 0;
}
// First prefer the paired physreg.
if (PairedPhys)
Hints.push_back(PairedPhys);
// Then prefer even or odd registers.
for (unsigned I = 0, E = Order.size(); I != E; ++I) {
unsigned Reg = Order[I];
if (Reg == PairedPhys || (getEncodingValue(Reg) & 1) != Odd)
continue;
// Don't provide hints that are paired to a reserved register.
unsigned Paired = getPairedGPR(Reg, !Odd, this);
if (!Paired || MRI.isReserved(Paired))
continue;
Hints.push_back(Reg);
}
}
void
ARMBaseRegisterInfo::UpdateRegAllocHint(unsigned Reg, unsigned NewReg,
MachineFunction &MF) const {
MachineRegisterInfo *MRI = &MF.getRegInfo();
std::pair<unsigned, unsigned> Hint = MRI->getRegAllocationHint(Reg);
if ((Hint.first == (unsigned)ARMRI::RegPairOdd ||
Hint.first == (unsigned)ARMRI::RegPairEven) &&
TargetRegisterInfo::isVirtualRegister(Hint.second)) {
// If 'Reg' is one of the even / odd register pair and it's now changed
// (e.g. coalesced) into a different register. The other register of the
// pair allocation hint must be updated to reflect the relationship
// change.
unsigned OtherReg = Hint.second;
Hint = MRI->getRegAllocationHint(OtherReg);
if (Hint.second == Reg)
// Make sure the pair has not already divorced.
MRI->setRegAllocationHint(OtherReg, Hint.first, NewReg);
}
}
bool
ARMBaseRegisterInfo::avoidWriteAfterWrite(const TargetRegisterClass *RC) const {
// CortexA9 has a Write-after-write hazard for NEON registers.
if (!STI.isLikeA9())
return false;
switch (RC->getID()) {
case ARM::DPRRegClassID:
case ARM::DPR_8RegClassID:
case ARM::DPR_VFP2RegClassID:
case ARM::QPRRegClassID:
case ARM::QPR_8RegClassID:
case ARM::QPR_VFP2RegClassID:
case ARM::SPRRegClassID:
case ARM::SPR_8RegClassID:
// Avoid reusing S, D, and Q registers.
// Don't increase register pressure for QQ and QQQQ.
return true;
default:
return false;
}
}
bool ARMBaseRegisterInfo::hasBasePointer(const MachineFunction &MF) const {
const MachineFrameInfo *MFI = MF.getFrameInfo();
const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
// When outgoing call frames are so large that we adjust the stack pointer
// around the call, we can no longer use the stack pointer to reach the
// emergency spill slot.
if (needsStackRealignment(MF) && !TFI->hasReservedCallFrame(MF))
return true;
// Thumb has trouble with negative offsets from the FP. Thumb2 has a limited
// negative range for ldr/str (255), and thumb1 is positive offsets only.
// It's going to be better to use the SP or Base Pointer instead. When there
// are variable sized objects, we can't reference off of the SP, so we
// reserve a Base Pointer.
if (AFI->isThumbFunction() && MFI->hasVarSizedObjects()) {
// Conservatively estimate whether the negative offset from the frame
// pointer will be sufficient to reach. If a function has a smallish
// frame, it's less likely to have lots of spills and callee saved
// space, so it's all more likely to be within range of the frame pointer.
// If it's wrong, the scavenger will still enable access to work, it just
// won't be optimal.
if (AFI->isThumb2Function() && MFI->getLocalFrameSize() < 128)
return false;
return true;
}
return false;
}
bool ARMBaseRegisterInfo::canRealignStack(const MachineFunction &MF) const {
const MachineRegisterInfo *MRI = &MF.getRegInfo();
const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
// We can't realign the stack if:
// 1. Dynamic stack realignment is explicitly disabled,
// 2. This is a Thumb1 function (it's not useful, so we don't bother), or
// 3. There are VLAs in the function and the base pointer is disabled.
if (!MF.getTarget().Options.RealignStack)
return false;
if (AFI->isThumb1OnlyFunction())
return false;
// Stack realignment requires a frame pointer. If we already started
// register allocation with frame pointer elimination, it is too late now.
if (!MRI->canReserveReg(FramePtr))
return false;
// We may also need a base pointer if there are dynamic allocas or stack
// pointer adjustments around calls.
if (MF.getTarget().getFrameLowering()->hasReservedCallFrame(MF))
return true;
// A base pointer is required and allowed. Check that it isn't too late to
// reserve it.
return MRI->canReserveReg(BasePtr);
}
bool ARMBaseRegisterInfo::
needsStackRealignment(const MachineFunction &MF) const {
const MachineFrameInfo *MFI = MF.getFrameInfo();
const Function *F = MF.getFunction();
unsigned StackAlign = MF.getTarget().getFrameLowering()->getStackAlignment();
bool requiresRealignment =
((MFI->getMaxAlignment() > StackAlign) ||
F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
Attribute::StackAlignment));
return requiresRealignment && canRealignStack(MF);
}
bool ARMBaseRegisterInfo::
cannotEliminateFrame(const MachineFunction &MF) const {
const MachineFrameInfo *MFI = MF.getFrameInfo();
if (MF.getTarget().Options.DisableFramePointerElim(MF) && MFI->adjustsStack())
return true;
return MFI->hasVarSizedObjects() || MFI->isFrameAddressTaken()
|| needsStackRealignment(MF);
}
unsigned
ARMBaseRegisterInfo::getFrameRegister(const MachineFunction &MF) const {
const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
if (TFI->hasFP(MF))
return FramePtr;
return ARM::SP;
}
unsigned ARMBaseRegisterInfo::getEHExceptionRegister() const {
llvm_unreachable("What is the exception register");
}
unsigned ARMBaseRegisterInfo::getEHHandlerRegister() const {
llvm_unreachable("What is the exception handler register");
}
/// emitLoadConstPool - Emits a load from constpool to materialize the
/// specified immediate.
void ARMBaseRegisterInfo::
emitLoadConstPool(MachineBasicBlock &MBB,
MachineBasicBlock::iterator &MBBI,
DebugLoc dl,
unsigned DestReg, unsigned SubIdx, int Val,
ARMCC::CondCodes Pred,
unsigned PredReg, unsigned MIFlags) const {
MachineFunction &MF = *MBB.getParent();
MachineConstantPool *ConstantPool = MF.getConstantPool();
const Constant *C =
ConstantInt::get(Type::getInt32Ty(MF.getFunction()->getContext()), Val);
unsigned Idx = ConstantPool->getConstantPoolIndex(C, 4);
BuildMI(MBB, MBBI, dl, TII.get(ARM::LDRcp))
.addReg(DestReg, getDefRegState(true), SubIdx)
.addConstantPoolIndex(Idx)
.addImm(0).addImm(Pred).addReg(PredReg)
.setMIFlags(MIFlags);
}
bool ARMBaseRegisterInfo::
requiresRegisterScavenging(const MachineFunction &MF) const {
return true;
}
bool ARMBaseRegisterInfo::
trackLivenessAfterRegAlloc(const MachineFunction &MF) const {
return true;
}
bool ARMBaseRegisterInfo::
requiresFrameIndexScavenging(const MachineFunction &MF) const {
return true;
}
bool ARMBaseRegisterInfo::
requiresVirtualBaseRegisters(const MachineFunction &MF) const {
return true;
}
static void
emitSPUpdate(bool isARM,
MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI,
DebugLoc dl, const ARMBaseInstrInfo &TII,
int NumBytes,
ARMCC::CondCodes Pred = ARMCC::AL, unsigned PredReg = 0) {
if (isARM)
emitARMRegPlusImmediate(MBB, MBBI, dl, ARM::SP, ARM::SP, NumBytes,
Pred, PredReg, TII);
else
emitT2RegPlusImmediate(MBB, MBBI, dl, ARM::SP, ARM::SP, NumBytes,
Pred, PredReg, TII);
}
void ARMBaseRegisterInfo::
eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
MachineBasicBlock::iterator I) const {
const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
if (!TFI->hasReservedCallFrame(MF)) {
// If we have alloca, convert as follows:
// ADJCALLSTACKDOWN -> sub, sp, sp, amount
// ADJCALLSTACKUP -> add, sp, sp, amount
MachineInstr *Old = I;
DebugLoc dl = Old->getDebugLoc();
unsigned Amount = Old->getOperand(0).getImm();
if (Amount != 0) {
// We need to keep the stack aligned properly. To do this, we round the
// amount of space needed for the outgoing arguments up to the next
// alignment boundary.
unsigned Align = TFI->getStackAlignment();
Amount = (Amount+Align-1)/Align*Align;
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
assert(!AFI->isThumb1OnlyFunction() &&
"This eliminateCallFramePseudoInstr does not support Thumb1!");
bool isARM = !AFI->isThumbFunction();
// Replace the pseudo instruction with a new instruction...
unsigned Opc = Old->getOpcode();
int PIdx = Old->findFirstPredOperandIdx();
ARMCC::CondCodes Pred = (PIdx == -1)
? ARMCC::AL : (ARMCC::CondCodes)Old->getOperand(PIdx).getImm();
if (Opc == ARM::ADJCALLSTACKDOWN || Opc == ARM::tADJCALLSTACKDOWN) {
// Note: PredReg is operand 2 for ADJCALLSTACKDOWN.
unsigned PredReg = Old->getOperand(2).getReg();
emitSPUpdate(isARM, MBB, I, dl, TII, -Amount, Pred, PredReg);
} else {
// Note: PredReg is operand 3 for ADJCALLSTACKUP.
unsigned PredReg = Old->getOperand(3).getReg();
assert(Opc == ARM::ADJCALLSTACKUP || Opc == ARM::tADJCALLSTACKUP);
emitSPUpdate(isARM, MBB, I, dl, TII, Amount, Pred, PredReg);
}
}
}
MBB.erase(I);
}
int64_t ARMBaseRegisterInfo::
getFrameIndexInstrOffset(const MachineInstr *MI, int Idx) const {
const MCInstrDesc &Desc = MI->getDesc();
unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask);
int64_t InstrOffs = 0;
int Scale = 1;
unsigned ImmIdx = 0;
switch (AddrMode) {
case ARMII::AddrModeT2_i8:
case ARMII::AddrModeT2_i12:
case ARMII::AddrMode_i12:
InstrOffs = MI->getOperand(Idx+1).getImm();
Scale = 1;
break;
case ARMII::AddrMode5: {
// VFP address mode.
const MachineOperand &OffOp = MI->getOperand(Idx+1);
InstrOffs = ARM_AM::getAM5Offset(OffOp.getImm());
if (ARM_AM::getAM5Op(OffOp.getImm()) == ARM_AM::sub)
InstrOffs = -InstrOffs;
Scale = 4;
break;
}
case ARMII::AddrMode2: {
ImmIdx = Idx+2;
InstrOffs = ARM_AM::getAM2Offset(MI->getOperand(ImmIdx).getImm());
if (ARM_AM::getAM2Op(MI->getOperand(ImmIdx).getImm()) == ARM_AM::sub)
InstrOffs = -InstrOffs;
break;
}
case ARMII::AddrMode3: {
ImmIdx = Idx+2;
InstrOffs = ARM_AM::getAM3Offset(MI->getOperand(ImmIdx).getImm());
if (ARM_AM::getAM3Op(MI->getOperand(ImmIdx).getImm()) == ARM_AM::sub)
InstrOffs = -InstrOffs;
break;
}
case ARMII::AddrModeT1_s: {
ImmIdx = Idx+1;
InstrOffs = MI->getOperand(ImmIdx).getImm();
Scale = 4;
break;
}
default:
llvm_unreachable("Unsupported addressing mode!");
}
return InstrOffs * Scale;
}
/// needsFrameBaseReg - Returns true if the instruction's frame index
/// reference would be better served by a base register other than FP
/// or SP. Used by LocalStackFrameAllocation to determine which frame index
/// references it should create new base registers for.
bool ARMBaseRegisterInfo::
needsFrameBaseReg(MachineInstr *MI, int64_t Offset) const {
for (unsigned i = 0; !MI->getOperand(i).isFI(); ++i) {
assert(i < MI->getNumOperands() &&"Instr doesn't have FrameIndex operand!");
}
// It's the load/store FI references that cause issues, as it can be difficult
// to materialize the offset if it won't fit in the literal field. Estimate
// based on the size of the local frame and some conservative assumptions
// about the rest of the stack frame (note, this is pre-regalloc, so
// we don't know everything for certain yet) whether this offset is likely
// to be out of range of the immediate. Return true if so.
// We only generate virtual base registers for loads and stores, so
// return false for everything else.
unsigned Opc = MI->getOpcode();
switch (Opc) {
case ARM::LDRi12: case ARM::LDRH: case ARM::LDRBi12:
case ARM::STRi12: case ARM::STRH: case ARM::STRBi12:
case ARM::t2LDRi12: case ARM::t2LDRi8:
case ARM::t2STRi12: case ARM::t2STRi8:
case ARM::VLDRS: case ARM::VLDRD:
case ARM::VSTRS: case ARM::VSTRD:
case ARM::tSTRspi: case ARM::tLDRspi:
break;
default:
return false;
}
// Without a virtual base register, if the function has variable sized
// objects, all fixed-size local references will be via the frame pointer,
// Approximate the offset and see if it's legal for the instruction.
// Note that the incoming offset is based on the SP value at function entry,
// so it'll be negative.
MachineFunction &MF = *MI->getParent()->getParent();
const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
MachineFrameInfo *MFI = MF.getFrameInfo();
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
// Estimate an offset from the frame pointer.
// Conservatively assume all callee-saved registers get pushed. R4-R6
// will be earlier than the FP, so we ignore those.
// R7, LR
int64_t FPOffset = Offset - 8;
// ARM and Thumb2 functions also need to consider R8-R11 and D8-D15
if (!AFI->isThumbFunction() || !AFI->isThumb1OnlyFunction())
FPOffset -= 80;
// Estimate an offset from the stack pointer.
// The incoming offset is relating to the SP at the start of the function,
// but when we access the local it'll be relative to the SP after local
// allocation, so adjust our SP-relative offset by that allocation size.
Offset = -Offset;
Offset += MFI->getLocalFrameSize();
// Assume that we'll have at least some spill slots allocated.
// FIXME: This is a total SWAG number. We should run some statistics
// and pick a real one.
Offset += 128; // 128 bytes of spill slots
// If there is a frame pointer, try using it.
// The FP is only available if there is no dynamic realignment. We
// don't know for sure yet whether we'll need that, so we guess based
// on whether there are any local variables that would trigger it.
unsigned StackAlign = TFI->getStackAlignment();
if (TFI->hasFP(MF) &&
!((MFI->getLocalFrameMaxAlign() > StackAlign) && canRealignStack(MF))) {
if (isFrameOffsetLegal(MI, FPOffset))
return false;
}
// If we can reference via the stack pointer, try that.
// FIXME: This (and the code that resolves the references) can be improved
// to only disallow SP relative references in the live range of
// the VLA(s). In practice, it's unclear how much difference that
// would make, but it may be worth doing.
if (!MFI->hasVarSizedObjects() && isFrameOffsetLegal(MI, Offset))
return false;
// The offset likely isn't legal, we want to allocate a virtual base register.
return true;
}
/// materializeFrameBaseRegister - Insert defining instruction(s) for BaseReg to
/// be a pointer to FrameIdx at the beginning of the basic block.
void ARMBaseRegisterInfo::
materializeFrameBaseRegister(MachineBasicBlock *MBB,
unsigned BaseReg, int FrameIdx,
int64_t Offset) const {
ARMFunctionInfo *AFI = MBB->getParent()->getInfo<ARMFunctionInfo>();
unsigned ADDriOpc = !AFI->isThumbFunction() ? ARM::ADDri :
(AFI->isThumb1OnlyFunction() ? ARM::tADDrSPi : ARM::t2ADDri);
MachineBasicBlock::iterator Ins = MBB->begin();
DebugLoc DL; // Defaults to "unknown"
if (Ins != MBB->end())
DL = Ins->getDebugLoc();
const MCInstrDesc &MCID = TII.get(ADDriOpc);
MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
const MachineFunction &MF = *MBB->getParent();
MRI.constrainRegClass(BaseReg, TII.getRegClass(MCID, 0, this, MF));
MachineInstrBuilder MIB = AddDefaultPred(BuildMI(*MBB, Ins, DL, MCID, BaseReg)
.addFrameIndex(FrameIdx).addImm(Offset));
if (!AFI->isThumb1OnlyFunction())
AddDefaultCC(MIB);
}
void
ARMBaseRegisterInfo::resolveFrameIndex(MachineBasicBlock::iterator I,
unsigned BaseReg, int64_t Offset) const {
MachineInstr &MI = *I;
MachineBasicBlock &MBB = *MI.getParent();
MachineFunction &MF = *MBB.getParent();
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
int Off = Offset; // ARM doesn't need the general 64-bit offsets
unsigned i = 0;
assert(!AFI->isThumb1OnlyFunction() &&
"This resolveFrameIndex does not support Thumb1!");
while (!MI.getOperand(i).isFI()) {
++i;
assert(i < MI.getNumOperands() && "Instr doesn't have FrameIndex operand!");
}
bool Done = false;
if (!AFI->isThumbFunction())
Done = rewriteARMFrameIndex(MI, i, BaseReg, Off, TII);
else {
assert(AFI->isThumb2Function());
Done = rewriteT2FrameIndex(MI, i, BaseReg, Off, TII);
}
assert (Done && "Unable to resolve frame index!");
(void)Done;
}
bool ARMBaseRegisterInfo::isFrameOffsetLegal(const MachineInstr *MI,
int64_t Offset) const {
const MCInstrDesc &Desc = MI->getDesc();
unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask);
unsigned i = 0;
while (!MI->getOperand(i).isFI()) {
++i;
assert(i < MI->getNumOperands() &&"Instr doesn't have FrameIndex operand!");
}
// AddrMode4 and AddrMode6 cannot handle any offset.
if (AddrMode == ARMII::AddrMode4 || AddrMode == ARMII::AddrMode6)
return Offset == 0;
unsigned NumBits = 0;
unsigned Scale = 1;
bool isSigned = true;
switch (AddrMode) {
case ARMII::AddrModeT2_i8:
case ARMII::AddrModeT2_i12:
// i8 supports only negative, and i12 supports only positive, so
// based on Offset sign, consider the appropriate instruction
Scale = 1;
if (Offset < 0) {
NumBits = 8;
Offset = -Offset;
} else {
NumBits = 12;
}
break;
case ARMII::AddrMode5:
// VFP address mode.
NumBits = 8;
Scale = 4;
break;
case ARMII::AddrMode_i12:
case ARMII::AddrMode2:
NumBits = 12;
break;
case ARMII::AddrMode3:
NumBits = 8;
break;
case ARMII::AddrModeT1_s:
NumBits = 5;
Scale = 4;
isSigned = false;
break;
default:
llvm_unreachable("Unsupported addressing mode!");
}
Offset += getFrameIndexInstrOffset(MI, i);
// Make sure the offset is encodable for instructions that scale the
// immediate.
if ((Offset & (Scale-1)) != 0)
return false;
if (isSigned && Offset < 0)
Offset = -Offset;
unsigned Mask = (1 << NumBits) - 1;
if ((unsigned)Offset <= Mask * Scale)
return true;
return false;
}
void
ARMBaseRegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
int SPAdj, RegScavenger *RS) const {
unsigned i = 0;
MachineInstr &MI = *II;
MachineBasicBlock &MBB = *MI.getParent();
MachineFunction &MF = *MBB.getParent();
const ARMFrameLowering *TFI =
static_cast<const ARMFrameLowering*>(MF.getTarget().getFrameLowering());
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
assert(!AFI->isThumb1OnlyFunction() &&
"This eliminateFrameIndex does not support Thumb1!");
while (!MI.getOperand(i).isFI()) {
++i;
assert(i < MI.getNumOperands() && "Instr doesn't have FrameIndex operand!");
}
int FrameIndex = MI.getOperand(i).getIndex();
unsigned FrameReg;
int Offset = TFI->ResolveFrameIndexReference(MF, FrameIndex, FrameReg, SPAdj);
// PEI::scavengeFrameVirtualRegs() cannot accurately track SPAdj because the
// call frame setup/destroy instructions have already been eliminated. That
// means the stack pointer cannot be used to access the emergency spill slot
// when !hasReservedCallFrame().
#ifndef NDEBUG
if (RS && FrameReg == ARM::SP && FrameIndex == RS->getScavengingFrameIndex()){
assert(TFI->hasReservedCallFrame(MF) &&
"Cannot use SP to access the emergency spill slot in "
"functions without a reserved call frame");
assert(!MF.getFrameInfo()->hasVarSizedObjects() &&
"Cannot use SP to access the emergency spill slot in "
"functions with variable sized frame objects");
}
#endif // NDEBUG
// Special handling of dbg_value instructions.
if (MI.isDebugValue()) {
MI.getOperand(i). ChangeToRegister(FrameReg, false /*isDef*/);
MI.getOperand(i+1).ChangeToImmediate(Offset);
return;
}
// Modify MI as necessary to handle as much of 'Offset' as possible
bool Done = false;
if (!AFI->isThumbFunction())
Done = rewriteARMFrameIndex(MI, i, FrameReg, Offset, TII);
else {
assert(AFI->isThumb2Function());
Done = rewriteT2FrameIndex(MI, i, FrameReg, Offset, TII);
}
if (Done)
return;
// If we get here, the immediate doesn't fit into the instruction. We folded
// as much as possible above, handle the rest, providing a register that is
// SP+LargeImm.
assert((Offset ||
(MI.getDesc().TSFlags & ARMII::AddrModeMask) == ARMII::AddrMode4 ||
(MI.getDesc().TSFlags & ARMII::AddrModeMask) == ARMII::AddrMode6) &&
"This code isn't needed if offset already handled!");
unsigned ScratchReg = 0;
int PIdx = MI.findFirstPredOperandIdx();
ARMCC::CondCodes Pred = (PIdx == -1)
? ARMCC::AL : (ARMCC::CondCodes)MI.getOperand(PIdx).getImm();
unsigned PredReg = (PIdx == -1) ? 0 : MI.getOperand(PIdx+1).getReg();
if (Offset == 0)
// Must be addrmode4/6.
MI.getOperand(i).ChangeToRegister(FrameReg, false, false, false);
else {
ScratchReg = MF.getRegInfo().createVirtualRegister(&ARM::GPRRegClass);
if (!AFI->isThumbFunction())
emitARMRegPlusImmediate(MBB, II, MI.getDebugLoc(), ScratchReg, FrameReg,
Offset, Pred, PredReg, TII);
else {
assert(AFI->isThumb2Function());
emitT2RegPlusImmediate(MBB, II, MI.getDebugLoc(), ScratchReg, FrameReg,
Offset, Pred, PredReg, TII);
}
// Update the original instruction to use the scratch register.
MI.getOperand(i).ChangeToRegister(ScratchReg, false, false, true);
}
}