mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-11-01 00:11:00 +00:00
a6275ccdf5
* Add new RegisterOpt/RegisterAnalysis templates for registering passes that are to show up in opt or analyze * Register Analyses now * Change optimizations to use RegisterOpt instead of RegisterPass * Add support for different "PassType's" * Add new RegisterOpt/RegisterAnalysis templates for registering passes that are to show up in opt or analyze * Register Analyses now * Change optimizations to use RegisterOpt instead of RegisterPass * Remove getPassName implementations from various subclasses git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@3113 91177308-0d34-0410-b5e6-96231b3b80d8
284 lines
10 KiB
C++
284 lines
10 KiB
C++
//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
|
|
//
|
|
// This pass reassociates commutative expressions in an order that is designed
|
|
// to promote better constant propogation, GCSE, LICM, PRE...
|
|
//
|
|
// For example: 4 + (x + 5) -> x + (4 + 5)
|
|
//
|
|
// Note that this pass works best if left shifts have been promoted to explicit
|
|
// multiplies before this pass executes.
|
|
//
|
|
// In the implementation of this algorithm, constants are assigned rank = 0,
|
|
// function arguments are rank = 1, and other values are assigned ranks
|
|
// corresponding to the reverse post order traversal of current function
|
|
// (starting at 2), which effectively gives values in deep loops higher rank
|
|
// than values not in loops.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include "llvm/Function.h"
|
|
#include "llvm/BasicBlock.h"
|
|
#include "llvm/iOperators.h"
|
|
#include "llvm/Type.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Constant.h"
|
|
#include "llvm/Support/CFG.h"
|
|
#include "Support/PostOrderIterator.h"
|
|
#include "Support/StatisticReporter.h"
|
|
|
|
static Statistic<> NumLinear ("reassociate\t- Number of insts linearized");
|
|
static Statistic<> NumChanged("reassociate\t- Number of insts reassociated");
|
|
static Statistic<> NumSwapped("reassociate\t- Number of insts with operands swapped");
|
|
|
|
namespace {
|
|
class Reassociate : public FunctionPass {
|
|
std::map<BasicBlock*, unsigned> RankMap;
|
|
public:
|
|
bool runOnFunction(Function &F);
|
|
|
|
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.preservesCFG();
|
|
}
|
|
private:
|
|
void BuildRankMap(Function &F);
|
|
unsigned getRank(Value *V);
|
|
bool ReassociateExpr(BinaryOperator *I);
|
|
bool ReassociateBB(BasicBlock *BB);
|
|
};
|
|
|
|
RegisterOpt<Reassociate> X("reassociate", "Reassociate expressions");
|
|
}
|
|
|
|
Pass *createReassociatePass() { return new Reassociate(); }
|
|
|
|
void Reassociate::BuildRankMap(Function &F) {
|
|
unsigned i = 1;
|
|
ReversePostOrderTraversal<Function*> RPOT(&F);
|
|
for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
|
|
E = RPOT.end(); I != E; ++I)
|
|
RankMap[*I] = ++i;
|
|
}
|
|
|
|
unsigned Reassociate::getRank(Value *V) {
|
|
if (isa<Argument>(V)) return 1; // Function argument...
|
|
if (Instruction *I = dyn_cast<Instruction>(V)) {
|
|
// If this is an expression, return the MAX(rank(LHS), rank(RHS)) so that we
|
|
// can reassociate expressions for code motion! Since we do not recurse for
|
|
// PHI nodes, we cannot have infinite recursion here, because there cannot
|
|
// be loops in the value graph (except for PHI nodes).
|
|
//
|
|
if (I->getOpcode() == Instruction::PHINode ||
|
|
I->getOpcode() == Instruction::Alloca ||
|
|
I->getOpcode() == Instruction::Malloc || isa<TerminatorInst>(I) ||
|
|
I->hasSideEffects())
|
|
return RankMap[I->getParent()];
|
|
|
|
unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
|
|
for (unsigned i = 0, e = I->getNumOperands();
|
|
i != e && Rank != MaxRank; ++i)
|
|
Rank = std::max(Rank, getRank(I->getOperand(i)));
|
|
|
|
return Rank;
|
|
}
|
|
|
|
// Otherwise it's a global or constant, rank 0.
|
|
return 0;
|
|
}
|
|
|
|
|
|
// isCommutativeOperator - Return true if the specified instruction is
|
|
// commutative and associative. If the instruction is not commutative and
|
|
// associative, we can not reorder its operands!
|
|
//
|
|
static inline BinaryOperator *isCommutativeOperator(Instruction *I) {
|
|
// Floating point operations do not commute!
|
|
if (I->getType()->isFloatingPoint()) return 0;
|
|
|
|
if (I->getOpcode() == Instruction::Add ||
|
|
I->getOpcode() == Instruction::Mul ||
|
|
I->getOpcode() == Instruction::And ||
|
|
I->getOpcode() == Instruction::Or ||
|
|
I->getOpcode() == Instruction::Xor)
|
|
return cast<BinaryOperator>(I);
|
|
return 0;
|
|
}
|
|
|
|
|
|
bool Reassociate::ReassociateExpr(BinaryOperator *I) {
|
|
Value *LHS = I->getOperand(0);
|
|
Value *RHS = I->getOperand(1);
|
|
unsigned LHSRank = getRank(LHS);
|
|
unsigned RHSRank = getRank(RHS);
|
|
|
|
bool Changed = false;
|
|
|
|
// Make sure the LHS of the operand always has the greater rank...
|
|
if (LHSRank < RHSRank) {
|
|
I->swapOperands();
|
|
std::swap(LHS, RHS);
|
|
std::swap(LHSRank, RHSRank);
|
|
Changed = true;
|
|
++NumSwapped;
|
|
DEBUG(std::cerr << "Transposed: " << I << " Result BB: " << I->getParent());
|
|
}
|
|
|
|
// If the LHS is the same operator as the current one is, and if we are the
|
|
// only expression using it...
|
|
//
|
|
if (BinaryOperator *LHSI = dyn_cast<BinaryOperator>(LHS))
|
|
if (LHSI->getOpcode() == I->getOpcode() && LHSI->use_size() == 1) {
|
|
// If the rank of our current RHS is less than the rank of the LHS's LHS,
|
|
// then we reassociate the two instructions...
|
|
if (RHSRank < getRank(LHSI->getOperand(0))) {
|
|
unsigned TakeOp = 0;
|
|
if (BinaryOperator *IOp = dyn_cast<BinaryOperator>(LHSI->getOperand(0)))
|
|
if (IOp->getOpcode() == LHSI->getOpcode())
|
|
TakeOp = 1; // Hoist out non-tree portion
|
|
|
|
// Convert ((a + 12) + 10) into (a + (12 + 10))
|
|
I->setOperand(0, LHSI->getOperand(TakeOp));
|
|
LHSI->setOperand(TakeOp, RHS);
|
|
I->setOperand(1, LHSI);
|
|
|
|
++NumChanged;
|
|
DEBUG(std::cerr << "Reassociated: " << I << " Result BB: "
|
|
<< I->getParent());
|
|
|
|
// Since we modified the RHS instruction, make sure that we recheck it.
|
|
ReassociateExpr(LHSI);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
|
|
// NegateValue - Insert instructions before the instruction pointed to by BI,
|
|
// that computes the negative version of the value specified. The negative
|
|
// version of the value is returned, and BI is left pointing at the instruction
|
|
// that should be processed next by the reassociation pass.
|
|
//
|
|
static Value *NegateValue(Value *V, BasicBlock *BB, BasicBlock::iterator &BI) {
|
|
// We are trying to expose opportunity for reassociation. One of the things
|
|
// that we want to do to achieve this is to push a negation as deep into an
|
|
// expression chain as possible, to expose the add instructions. In practice,
|
|
// this means that we turn this:
|
|
// X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D
|
|
// so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
|
|
// the constants. We assume that instcombine will clean up the mess later if
|
|
// we introduce tons of unneccesary negation instructions...
|
|
//
|
|
if (Instruction *I = dyn_cast<Instruction>(V))
|
|
if (I->getOpcode() == Instruction::Add && I->use_size() == 1) {
|
|
Value *RHS = NegateValue(I->getOperand(1), BB, BI);
|
|
Value *LHS = NegateValue(I->getOperand(0), BB, BI);
|
|
|
|
// We must actually insert a new add instruction here, because the neg
|
|
// instructions do not dominate the old add instruction in general. By
|
|
// adding it now, we are assured that the neg instructions we just
|
|
// inserted dominate the instruction we are about to insert after them.
|
|
//
|
|
BasicBlock::iterator NBI = cast<Instruction>(RHS);
|
|
|
|
Instruction *Add =
|
|
BinaryOperator::create(Instruction::Add, LHS, RHS, I->getName()+".neg");
|
|
BB->getInstList().insert(++NBI, Add); // Add to the basic block...
|
|
return Add;
|
|
}
|
|
|
|
// Insert a 'neg' instruction that subtracts the value from zero to get the
|
|
// negation.
|
|
//
|
|
Instruction *Neg =
|
|
BinaryOperator::create(Instruction::Sub,
|
|
Constant::getNullValue(V->getType()), V,
|
|
V->getName()+".neg");
|
|
BI = BB->getInstList().insert(BI, Neg); // Add to the basic block...
|
|
return Neg;
|
|
}
|
|
|
|
|
|
bool Reassociate::ReassociateBB(BasicBlock *BB) {
|
|
bool Changed = false;
|
|
for (BasicBlock::iterator BI = BB->begin(); BI != BB->end(); ++BI) {
|
|
|
|
// If this instruction is a commutative binary operator, and the ranks of
|
|
// the two operands are sorted incorrectly, fix it now.
|
|
//
|
|
if (BinaryOperator *I = isCommutativeOperator(BI)) {
|
|
if (!I->use_empty()) {
|
|
// Make sure that we don't have a tree-shaped computation. If we do,
|
|
// linearize it. Convert (A+B)+(C+D) into ((A+B)+C)+D
|
|
//
|
|
Instruction *LHSI = dyn_cast<Instruction>(I->getOperand(0));
|
|
Instruction *RHSI = dyn_cast<Instruction>(I->getOperand(1));
|
|
if (LHSI && (int)LHSI->getOpcode() == I->getOpcode() &&
|
|
RHSI && (int)RHSI->getOpcode() == I->getOpcode() &&
|
|
RHSI->use_size() == 1) {
|
|
// Insert a new temporary instruction... (A+B)+C
|
|
BinaryOperator *Tmp = BinaryOperator::create(I->getOpcode(), LHSI,
|
|
RHSI->getOperand(0),
|
|
RHSI->getName()+".ra");
|
|
BI = BB->getInstList().insert(BI, Tmp); // Add to the basic block...
|
|
I->setOperand(0, Tmp);
|
|
I->setOperand(1, RHSI->getOperand(1));
|
|
|
|
// Process the temporary instruction for reassociation now.
|
|
I = Tmp;
|
|
++NumLinear;
|
|
Changed = true;
|
|
DEBUG(std::cerr << "Linearized: " << I << " Result BB: " << BB);
|
|
}
|
|
|
|
// Make sure that this expression is correctly reassociated with respect
|
|
// to it's used values...
|
|
//
|
|
Changed |= ReassociateExpr(I);
|
|
}
|
|
|
|
} else if (BI->getOpcode() == Instruction::Sub &&
|
|
BI->getOperand(0) != Constant::getNullValue(BI->getType())) {
|
|
// Convert a subtract into an add and a neg instruction... so that sub
|
|
// instructions can be commuted with other add instructions...
|
|
//
|
|
Instruction *New = BinaryOperator::create(Instruction::Add,
|
|
BI->getOperand(0),
|
|
BI->getOperand(1),
|
|
BI->getName());
|
|
Value *NegatedValue = BI->getOperand(1);
|
|
|
|
// Everyone now refers to the add instruction...
|
|
BI->replaceAllUsesWith(New);
|
|
|
|
// Put the new add in the place of the subtract... deleting the subtract
|
|
BI = BB->getInstList().erase(BI);
|
|
BI = ++BB->getInstList().insert(BI, New);
|
|
|
|
// Calculate the negative value of Operand 1 of the sub instruction...
|
|
// and set it as the RHS of the add instruction we just made...
|
|
New->setOperand(1, NegateValue(NegatedValue, BB, BI));
|
|
--BI;
|
|
Changed = true;
|
|
DEBUG(std::cerr << "Negated: " << New << " Result BB: " << BB);
|
|
}
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
|
|
bool Reassociate::runOnFunction(Function &F) {
|
|
// Recalculate the rank map for F
|
|
BuildRankMap(F);
|
|
|
|
bool Changed = false;
|
|
for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
|
|
Changed |= ReassociateBB(FI);
|
|
|
|
// We are done with the rank map...
|
|
RankMap.clear();
|
|
return Changed;
|
|
}
|