llvm-6502/lib/CodeGen/SelectionDAG/StatepointLowering.cpp
Philip Reames 28fa9e1e9f Introduce an example statepoint GC strategy
This change includes the most basic possible GCStrategy for a GC which is using the statepoint lowering code. At the moment, this GCStrategy doesn't really do much - aside from actually generate correct stackmaps that is - but I went ahead and added a few extra correctness checks as proof of concept. It's mostly here to provide documentation on how to do one, and to provide a point for various optimization legality hooks I'd like to add going forward. (For context, see the TODOs in InstCombine around gc.relocate.)

Most of the validation logic added here as proof of concept will soon move in to the Verifier.  That move is dependent on http://reviews.llvm.org/D6811

There was discussion in the review thread about addrspace(1) being reserved for something.  I'm going to follow up on a seperate llvmdev thread.  If needed, I'll update all the code at once.

Note that I am deliberately not making a GCStrategy required to use gc.statepoints with this change. I want to give folks out of tree - including myself - a chance to migrate. In a week or two, I'll make having a GCStrategy be required for gc.statepoints. To this end, I added the gc tag to one of the test cases but not others.

Differential Revision: http://reviews.llvm.org/D6808



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225365 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-07 19:07:50 +00:00

685 lines
28 KiB
C++

//===-- StatepointLowering.cpp - SDAGBuilder's statepoint code -----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file includes support code use by SelectionDAGBuilder when lowering a
// statepoint sequence in SelectionDAG IR.
//
//===----------------------------------------------------------------------===//
#include "StatepointLowering.h"
#include "SelectionDAGBuilder.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/FunctionLoweringInfo.h"
#include "llvm/CodeGen/GCStrategy.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/StackMaps.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Statepoint.h"
#include "llvm/Target/TargetLowering.h"
#include <algorithm>
using namespace llvm;
#define DEBUG_TYPE "statepoint-lowering"
STATISTIC(NumSlotsAllocatedForStatepoints,
"Number of stack slots allocated for statepoints");
STATISTIC(NumOfStatepoints, "Number of statepoint nodes encountered");
STATISTIC(StatepointMaxSlotsRequired,
"Maximum number of stack slots required for a singe statepoint");
void
StatepointLoweringState::startNewStatepoint(SelectionDAGBuilder &Builder) {
// Consistency check
assert(PendingGCRelocateCalls.empty() &&
"Trying to visit statepoint before finished processing previous one");
Locations.clear();
RelocLocations.clear();
NextSlotToAllocate = 0;
// Need to resize this on each safepoint - we need the two to stay in
// sync and the clear patterns of a SelectionDAGBuilder have no relation
// to FunctionLoweringInfo.
AllocatedStackSlots.resize(Builder.FuncInfo.StatepointStackSlots.size());
for (size_t i = 0; i < AllocatedStackSlots.size(); i++) {
AllocatedStackSlots[i] = false;
}
}
void StatepointLoweringState::clear() {
Locations.clear();
RelocLocations.clear();
AllocatedStackSlots.clear();
assert(PendingGCRelocateCalls.empty() &&
"cleared before statepoint sequence completed");
}
SDValue
StatepointLoweringState::allocateStackSlot(EVT ValueType,
SelectionDAGBuilder &Builder) {
NumSlotsAllocatedForStatepoints++;
// The basic scheme here is to first look for a previously created stack slot
// which is not in use (accounting for the fact arbitrary slots may already
// be reserved), or to create a new stack slot and use it.
// If this doesn't succeed in 40000 iterations, something is seriously wrong
for (int i = 0; i < 40000; i++) {
assert(Builder.FuncInfo.StatepointStackSlots.size() ==
AllocatedStackSlots.size() &&
"broken invariant");
const size_t NumSlots = AllocatedStackSlots.size();
assert(NextSlotToAllocate <= NumSlots && "broken invariant");
if (NextSlotToAllocate >= NumSlots) {
assert(NextSlotToAllocate == NumSlots);
// record stats
if (NumSlots + 1 > StatepointMaxSlotsRequired) {
StatepointMaxSlotsRequired = NumSlots + 1;
}
SDValue SpillSlot = Builder.DAG.CreateStackTemporary(ValueType);
const unsigned FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
Builder.FuncInfo.StatepointStackSlots.push_back(FI);
AllocatedStackSlots.push_back(true);
return SpillSlot;
}
if (!AllocatedStackSlots[NextSlotToAllocate]) {
const int FI = Builder.FuncInfo.StatepointStackSlots[NextSlotToAllocate];
AllocatedStackSlots[NextSlotToAllocate] = true;
return Builder.DAG.getFrameIndex(FI, ValueType);
}
// Note: We deliberately choose to advance this only on the failing path.
// Doing so on the suceeding path involes a bit of complexity that caused a
// minor bug previously. Unless performance shows this matters, please
// keep this code as simple as possible.
NextSlotToAllocate++;
}
llvm_unreachable("infinite loop?");
}
/// Try to find existing copies of the incoming values in stack slots used for
/// statepoint spilling. If we can find a spill slot for the incoming value,
/// mark that slot as allocated, and reuse the same slot for this safepoint.
/// This helps to avoid series of loads and stores that only serve to resuffle
/// values on the stack between calls.
static void reservePreviousStackSlotForValue(SDValue Incoming,
SelectionDAGBuilder &Builder) {
if (isa<ConstantSDNode>(Incoming) || isa<FrameIndexSDNode>(Incoming)) {
// We won't need to spill this, so no need to check for previously
// allocated stack slots
return;
}
SDValue Loc = Builder.StatepointLowering.getLocation(Incoming);
if (Loc.getNode()) {
// duplicates in input
return;
}
// Search back for the load from a stack slot pattern to find the original
// slot we allocated for this value. We could extend this to deal with
// simple modification patterns, but simple dealing with trivial load/store
// sequences helps a lot already.
if (LoadSDNode *Load = dyn_cast<LoadSDNode>(Incoming)) {
if (auto *FI = dyn_cast<FrameIndexSDNode>(Load->getBasePtr())) {
const int Index = FI->getIndex();
auto Itr = std::find(Builder.FuncInfo.StatepointStackSlots.begin(),
Builder.FuncInfo.StatepointStackSlots.end(), Index);
if (Itr == Builder.FuncInfo.StatepointStackSlots.end()) {
// not one of the lowering stack slots, can't reuse!
// TODO: Actually, we probably could reuse the stack slot if the value
// hasn't changed at all, but we'd need to look for intervening writes
return;
} else {
// This is one of our dedicated lowering slots
const int Offset =
std::distance(Builder.FuncInfo.StatepointStackSlots.begin(), Itr);
if (Builder.StatepointLowering.isStackSlotAllocated(Offset)) {
// stack slot already assigned to someone else, can't use it!
// TODO: currently we reserve space for gc arguments after doing
// normal allocation for deopt arguments. We should reserve for
// _all_ deopt and gc arguments, then start allocating. This
// will prevent some moves being inserted when vm state changes,
// but gc state doesn't between two calls.
return;
}
// Reserve this stack slot
Builder.StatepointLowering.reserveStackSlot(Offset);
}
// Cache this slot so we find it when going through the normal
// assignment loop.
SDValue Loc =
Builder.DAG.getTargetFrameIndex(Index, Incoming.getValueType());
Builder.StatepointLowering.setLocation(Incoming, Loc);
}
}
// TODO: handle case where a reloaded value flows through a phi to
// another safepoint. e.g.
// bb1:
// a' = relocated...
// bb2: % pred: bb1, bb3, bb4, etc.
// a_phi = phi(a', ...)
// statepoint ... a_phi
// NOTE: This will require reasoning about cross basic block values. This is
// decidedly non trivial and this might not be the right place to do it. We
// don't really have the information we need here...
// TODO: handle simple updates. If a value is modified and the original
// value is no longer live, it would be nice to put the modified value in the
// same slot. This allows folding of the memory accesses for some
// instructions types (like an increment).
// statepoint (i)
// i1 = i+1
// statepoint (i1)
}
/// Remove any duplicate (as SDValues) from the derived pointer pairs. This
/// is not required for correctness. It's purpose is to reduce the size of
/// StackMap section. It has no effect on the number of spill slots required
/// or the actual lowering.
static void removeDuplicatesGCPtrs(SmallVectorImpl<const Value *> &Bases,
SmallVectorImpl<const Value *> &Ptrs,
SmallVectorImpl<const Value *> &Relocs,
SelectionDAGBuilder &Builder) {
// This is horribly ineffecient, but I don't care right now
SmallSet<SDValue, 64> Seen;
SmallVector<const Value *, 64> NewBases, NewPtrs, NewRelocs;
for (size_t i = 0; i < Ptrs.size(); i++) {
SDValue SD = Builder.getValue(Ptrs[i]);
// Only add non-duplicates
if (Seen.count(SD) == 0) {
NewBases.push_back(Bases[i]);
NewPtrs.push_back(Ptrs[i]);
NewRelocs.push_back(Relocs[i]);
}
Seen.insert(SD);
}
assert(Bases.size() >= NewBases.size());
assert(Ptrs.size() >= NewPtrs.size());
assert(Relocs.size() >= NewRelocs.size());
Bases = NewBases;
Ptrs = NewPtrs;
Relocs = NewRelocs;
assert(Ptrs.size() == Bases.size());
assert(Ptrs.size() == Relocs.size());
}
/// Extract call from statepoint, lower it and return pointer to the
/// call node. Also update NodeMap so that getValue(statepoint) will
/// reference lowered call result
static SDNode *lowerCallFromStatepoint(const CallInst &CI,
SelectionDAGBuilder &Builder) {
assert(Intrinsic::experimental_gc_statepoint ==
dyn_cast<IntrinsicInst>(&CI)->getIntrinsicID() &&
"function called must be the statepoint function");
ImmutableStatepoint StatepointOperands(&CI);
// Lower the actual call itself - This is a bit of a hack, but we want to
// avoid modifying the actual lowering code. This is similiar in intent to
// the LowerCallOperands mechanism used by PATCHPOINT, but is structured
// differently. Hopefully, this is slightly more robust w.r.t. calling
// convention, return values, and other function attributes.
Value *ActualCallee = const_cast<Value *>(StatepointOperands.actualCallee());
std::vector<Value *> Args;
CallInst::const_op_iterator arg_begin = StatepointOperands.call_args_begin();
CallInst::const_op_iterator arg_end = StatepointOperands.call_args_end();
Args.insert(Args.end(), arg_begin, arg_end);
// TODO: remove the creation of a new instruction! We should not be
// modifying the IR (even temporarily) at this point.
CallInst *Tmp = CallInst::Create(ActualCallee, Args);
Tmp->setTailCall(CI.isTailCall());
Tmp->setCallingConv(CI.getCallingConv());
Tmp->setAttributes(CI.getAttributes());
Builder.LowerCallTo(Tmp, Builder.getValue(ActualCallee), false);
// Handle the return value of the call iff any.
const bool HasDef = !Tmp->getType()->isVoidTy();
if (HasDef) {
// The value of the statepoint itself will be the value of call itself.
// We'll replace the actually call node shortly. gc_result will grab
// this value.
Builder.setValue(&CI, Builder.getValue(Tmp));
} else {
// The token value is never used from here on, just generate a poison value
Builder.setValue(&CI, Builder.DAG.getIntPtrConstant(-1));
}
// Remove the fake entry we created so we don't have a hanging reference
// after we delete this node.
Builder.removeValue(Tmp);
delete Tmp;
Tmp = nullptr;
// Search for the call node
// The following code is essentially reverse engineering X86's
// LowerCallTo.
SDNode *CallNode = nullptr;
// We just emitted a call, so it should be last thing generated
SDValue Chain = Builder.DAG.getRoot();
// Find closest CALLSEQ_END walking back through lowered nodes if needed
SDNode *CallEnd = Chain.getNode();
int Sanity = 0;
while (CallEnd->getOpcode() != ISD::CALLSEQ_END) {
CallEnd = CallEnd->getGluedNode();
assert(CallEnd && "Can not find call node");
assert(Sanity < 20 && "should have found call end already");
Sanity++;
}
assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
"Expected a callseq node.");
assert(CallEnd->getGluedNode());
// Step back inside the CALLSEQ
CallNode = CallEnd->getGluedNode();
return CallNode;
}
/// Callect all gc pointers coming into statepoint intrinsic, clean them up,
/// and return two arrays:
/// Bases - base pointers incoming to this statepoint
/// Ptrs - derived pointers incoming to this statepoint
/// Relocs - the gc_relocate corresponding to each base/ptr pair
/// Elements of this arrays should be in one-to-one correspondence with each
/// other i.e Bases[i], Ptrs[i] are from the same gcrelocate call
static void
getIncomingStatepointGCValues(SmallVectorImpl<const Value *> &Bases,
SmallVectorImpl<const Value *> &Ptrs,
SmallVectorImpl<const Value *> &Relocs,
ImmutableCallSite Statepoint,
SelectionDAGBuilder &Builder) {
// Search for relocated pointers. Note that working backwards from the
// gc_relocates ensures that we only get pairs which are actually relocated
// and used after the statepoint.
// TODO: This logic should probably become a utility function in Statepoint.h
for (const User *U : cast<CallInst>(Statepoint.getInstruction())->users()) {
if (!isGCRelocate(U)) {
continue;
}
GCRelocateOperands relocateOpers(U);
Relocs.push_back(cast<Value>(U));
Bases.push_back(relocateOpers.basePtr());
Ptrs.push_back(relocateOpers.derivedPtr());
}
// Remove any redundant llvm::Values which map to the same SDValue as another
// input. Also has the effect of removing duplicates in the original
// llvm::Value input list as well. This is a useful optimization for
// reducing the size of the StackMap section. It has no other impact.
removeDuplicatesGCPtrs(Bases, Ptrs, Relocs, Builder);
assert(Bases.size() == Ptrs.size() && Ptrs.size() == Relocs.size());
}
/// Spill a value incoming to the statepoint. It might be either part of
/// vmstate
/// or gcstate. In both cases unconditionally spill it on the stack unless it
/// is a null constant. Return pair with first element being frame index
/// containing saved value and second element with outgoing chain from the
/// emitted store
static std::pair<SDValue, SDValue>
spillIncomingStatepointValue(SDValue Incoming, SDValue Chain,
SelectionDAGBuilder &Builder) {
SDValue Loc = Builder.StatepointLowering.getLocation(Incoming);
// Emit new store if we didn't do it for this ptr before
if (!Loc.getNode()) {
Loc = Builder.StatepointLowering.allocateStackSlot(Incoming.getValueType(),
Builder);
assert(isa<FrameIndexSDNode>(Loc));
int Index = cast<FrameIndexSDNode>(Loc)->getIndex();
// We use TargetFrameIndex so that isel will not select it into LEA
Loc = Builder.DAG.getTargetFrameIndex(Index, Incoming.getValueType());
// TODO: We can create TokenFactor node instead of
// chaining stores one after another, this may allow
// a bit more optimal scheduling for them
Chain = Builder.DAG.getStore(Chain, Builder.getCurSDLoc(), Incoming, Loc,
MachinePointerInfo::getFixedStack(Index),
false, false, 0);
Builder.StatepointLowering.setLocation(Incoming, Loc);
}
assert(Loc.getNode());
return std::make_pair(Loc, Chain);
}
/// Lower a single value incoming to a statepoint node. This value can be
/// either a deopt value or a gc value, the handling is the same. We special
/// case constants and allocas, then fall back to spilling if required.
static void lowerIncomingStatepointValue(SDValue Incoming,
SmallVectorImpl<SDValue> &Ops,
SelectionDAGBuilder &Builder) {
SDValue Chain = Builder.getRoot();
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Incoming)) {
// If the original value was a constant, make sure it gets recorded as
// such in the stackmap. This is required so that the consumer can
// parse any internal format to the deopt state. It also handles null
// pointers and other constant pointers in GC states
Ops.push_back(
Builder.DAG.getTargetConstant(StackMaps::ConstantOp, MVT::i64));
Ops.push_back(Builder.DAG.getTargetConstant(C->getSExtValue(), MVT::i64));
} else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) {
// This handles allocas as arguments to the statepoint
const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
Ops.push_back(
Builder.DAG.getTargetFrameIndex(FI->getIndex(), TLI.getPointerTy()));
} else {
// Otherwise, locate a spill slot and explicitly spill it so it
// can be found by the runtime later. We currently do not support
// tracking values through callee saved registers to their eventual
// spill location. This would be a useful optimization, but would
// need to be optional since it requires a lot of complexity on the
// runtime side which not all would support.
std::pair<SDValue, SDValue> Res =
spillIncomingStatepointValue(Incoming, Chain, Builder);
Ops.push_back(Res.first);
Chain = Res.second;
}
Builder.DAG.setRoot(Chain);
}
/// Lower deopt state and gc pointer arguments of the statepoint. The actual
/// lowering is described in lowerIncomingStatepointValue. This function is
/// responsible for lowering everything in the right position and playing some
/// tricks to avoid redundant stack manipulation where possible. On
/// completion, 'Ops' will contain ready to use operands for machine code
/// statepoint. The chain nodes will have already been created and the DAG root
/// will be set to the last value spilled (if any were).
static void lowerStatepointMetaArgs(SmallVectorImpl<SDValue> &Ops,
ImmutableStatepoint Statepoint,
SelectionDAGBuilder &Builder) {
// Lower the deopt and gc arguments for this statepoint. Layout will
// be: deopt argument length, deopt arguments.., gc arguments...
SmallVector<const Value *, 64> Bases, Ptrs, Relocations;
getIncomingStatepointGCValues(Bases, Ptrs, Relocations,
Statepoint.getCallSite(), Builder);
#ifndef NDEBUG
// Check that each of the gc pointer and bases we've gotten out of the
// safepoint is something the strategy thinks might be a pointer into the GC
// heap. This is basically just here to help catch errors during statepoint
// insertion. TODO: This should actually be in the Verifier, but we can't get
// to the GCStrategy from there (yet).
if (Builder.GFI) {
GCStrategy &S = Builder.GFI->getStrategy();
for (const Value *V : Bases) {
auto Opt = S.isGCManagedPointer(V);
if (Opt.hasValue()) {
assert(Opt.getValue() &&
"non gc managed base pointer found in statepoint");
}
}
for (const Value *V : Ptrs) {
auto Opt = S.isGCManagedPointer(V);
if (Opt.hasValue()) {
assert(Opt.getValue() &&
"non gc managed derived pointer found in statepoint");
}
}
for (const Value *V : Relocations) {
auto Opt = S.isGCManagedPointer(V);
if (Opt.hasValue()) {
assert(Opt.getValue() && "non gc managed pointer relocated");
}
}
}
#endif
// Before we actually start lowering (and allocating spill slots for values),
// reserve any stack slots which we judge to be profitable to reuse for a
// particular value. This is purely an optimization over the code below and
// doesn't change semantics at all. It is important for performance that we
// reserve slots for both deopt and gc values before lowering either.
for (auto I = Statepoint.vm_state_begin() + 1, E = Statepoint.vm_state_end();
I != E; ++I) {
Value *V = *I;
SDValue Incoming = Builder.getValue(V);
reservePreviousStackSlotForValue(Incoming, Builder);
}
for (unsigned i = 0; i < Bases.size() * 2; ++i) {
// Even elements will contain base, odd elements - derived ptr
const Value *V = i % 2 ? Bases[i / 2] : Ptrs[i / 2];
SDValue Incoming = Builder.getValue(V);
reservePreviousStackSlotForValue(Incoming, Builder);
}
// First, prefix the list with the number of unique values to be
// lowered. Note that this is the number of *Values* not the
// number of SDValues required to lower them.
const int NumVMSArgs = Statepoint.numTotalVMSArgs();
Ops.push_back(
Builder.DAG.getTargetConstant(StackMaps::ConstantOp, MVT::i64));
Ops.push_back(Builder.DAG.getTargetConstant(NumVMSArgs, MVT::i64));
assert(NumVMSArgs + 1 == std::distance(Statepoint.vm_state_begin(),
Statepoint.vm_state_end()));
// The vm state arguments are lowered in an opaque manner. We do
// not know what type of values are contained within. We skip the
// first one since that happens to be the total number we lowered
// explicitly just above. We could have left it in the loop and
// not done it explicitly, but it's far easier to understand this
// way.
for (auto I = Statepoint.vm_state_begin() + 1, E = Statepoint.vm_state_end();
I != E; ++I) {
const Value *V = *I;
SDValue Incoming = Builder.getValue(V);
lowerIncomingStatepointValue(Incoming, Ops, Builder);
}
// Finally, go ahead and lower all the gc arguments. There's no prefixed
// length for this one. After lowering, we'll have the base and pointer
// arrays interwoven with each (lowered) base pointer immediately followed by
// it's (lowered) derived pointer. i.e
// (base[0], ptr[0], base[1], ptr[1], ...)
for (unsigned i = 0; i < Bases.size() * 2; ++i) {
// Even elements will contain base, odd elements - derived ptr
const Value *V = i % 2 ? Bases[i / 2] : Ptrs[i / 2];
SDValue Incoming = Builder.getValue(V);
lowerIncomingStatepointValue(Incoming, Ops, Builder);
}
}
void SelectionDAGBuilder::visitStatepoint(const CallInst &CI) {
// The basic scheme here is that information about both the original call and
// the safepoint is encoded in the CallInst. We create a temporary call and
// lower it, then reverse engineer the calling sequence.
// Check some preconditions for sanity
assert(isStatepoint(&CI) &&
"function called must be the statepoint function");
NumOfStatepoints++;
// Clear state
StatepointLowering.startNewStatepoint(*this);
#ifndef NDEBUG
// Consistency check
for (const User *U : CI.users()) {
const CallInst *Call = cast<CallInst>(U);
if (isGCRelocate(Call))
StatepointLowering.scheduleRelocCall(*Call);
}
#endif
ImmutableStatepoint ISP(&CI);
#ifndef NDEBUG
// If this is a malformed statepoint, report it early to simplify debugging.
// This should catch any IR level mistake that's made when constructing or
// transforming statepoints.
ISP.verify();
// Check that the associated GCStrategy expects to encounter statepoints.
// TODO: This if should become an assert. For now, we allow the GCStrategy
// to be optional for backwards compatibility. This will only last a short
// period (i.e. a couple of weeks).
if (GFI) {
assert(GFI->getStrategy().useStatepoints() &&
"GCStrategy does not expect to encounter statepoints");
}
#endif
// Lower statepoint vmstate and gcstate arguments
SmallVector<SDValue, 10> LoweredArgs;
lowerStatepointMetaArgs(LoweredArgs, ISP, *this);
// Get call node, we will replace it later with statepoint
SDNode *CallNode = lowerCallFromStatepoint(CI, *this);
// Construct the actual STATEPOINT node with all the appropriate arguments
// and return values.
// TODO: Currently, all of these operands are being marked as read/write in
// PrologEpilougeInserter.cpp, we should special case the VMState arguments
// and flags to be read-only.
SmallVector<SDValue, 40> Ops;
// Calculate and push starting position of vmstate arguments
// Call Node: Chain, Target, {Args}, RegMask, [Glue]
SDValue Glue;
if (CallNode->getGluedNode()) {
// Glue is always last operand
Glue = CallNode->getOperand(CallNode->getNumOperands() - 1);
}
// Get number of arguments incoming directly into call node
unsigned NumCallRegArgs =
CallNode->getNumOperands() - (Glue.getNode() ? 4 : 3);
Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, MVT::i32));
// Add call target
SDValue CallTarget = SDValue(CallNode->getOperand(1).getNode(), 0);
Ops.push_back(CallTarget);
// Add call arguments
// Get position of register mask in the call
SDNode::op_iterator RegMaskIt;
if (Glue.getNode())
RegMaskIt = CallNode->op_end() - 2;
else
RegMaskIt = CallNode->op_end() - 1;
Ops.insert(Ops.end(), CallNode->op_begin() + 2, RegMaskIt);
// Add a leading constant argument with the Flags and the calling convention
// masked together
CallingConv::ID CallConv = CI.getCallingConv();
int Flags = dyn_cast<ConstantInt>(CI.getArgOperand(2))->getZExtValue();
assert(Flags == 0 && "not expected to be used");
Ops.push_back(DAG.getTargetConstant(StackMaps::ConstantOp, MVT::i64));
Ops.push_back(
DAG.getTargetConstant(Flags | ((unsigned)CallConv << 1), MVT::i64));
// Insert all vmstate and gcstate arguments
Ops.insert(Ops.end(), LoweredArgs.begin(), LoweredArgs.end());
// Add register mask from call node
Ops.push_back(*RegMaskIt);
// Add chain
Ops.push_back(CallNode->getOperand(0));
// Same for the glue, but we add it only if original call had it
if (Glue.getNode())
Ops.push_back(Glue);
// Compute return values
SmallVector<EVT, 21> ValueVTs;
ValueVTs.push_back(MVT::Other);
ValueVTs.push_back(MVT::Glue); // provide a glue output since we consume one
// as input. This allows someone else to chain
// off us as needed.
SDVTList NodeTys = DAG.getVTList(ValueVTs);
SDNode *StatepointMCNode = DAG.getMachineNode(TargetOpcode::STATEPOINT,
getCurSDLoc(), NodeTys, Ops);
// Replace original call
DAG.ReplaceAllUsesWith(CallNode, StatepointMCNode); // This may update Root
// Remove originall call node
DAG.DeleteNode(CallNode);
// DON'T set the root - under the assumption that it's already set past the
// inserted node we created.
// TODO: A better future implementation would be to emit a single variable
// argument, variable return value STATEPOINT node here and then hookup the
// return value of each gc.relocate to the respective output of the
// previously emitted STATEPOINT value. Unfortunately, this doesn't appear
// to actually be possible today.
}
void SelectionDAGBuilder::visitGCResult(const CallInst &CI) {
// The result value of the gc_result is simply the result of the actual
// call. We've already emitted this, so just grab the value.
Instruction *I = cast<Instruction>(CI.getArgOperand(0));
assert(isStatepoint(I) &&
"first argument must be a statepoint token");
setValue(&CI, getValue(I));
}
void SelectionDAGBuilder::visitGCRelocate(const CallInst &CI) {
#ifndef NDEBUG
// Consistency check
StatepointLowering.relocCallVisited(CI);
#endif
GCRelocateOperands relocateOpers(&CI);
SDValue SD = getValue(relocateOpers.derivedPtr());
if (isa<ConstantSDNode>(SD) || isa<FrameIndexSDNode>(SD)) {
// We didn't need to spill these special cases (constants and allocas).
// See the handling in spillIncomingValueForStatepoint for detail.
setValue(&CI, SD);
return;
}
SDValue Loc = StatepointLowering.getRelocLocation(SD);
// Emit new load if we did not emit it before
if (!Loc.getNode()) {
SDValue SpillSlot = StatepointLowering.getLocation(SD);
int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
// Be conservative: flush all pending loads
// TODO: Probably we can be less restrictive on this,
// it may allow more scheduling opprtunities
SDValue Chain = getRoot();
Loc = DAG.getLoad(SpillSlot.getValueType(), getCurSDLoc(), Chain,
SpillSlot, MachinePointerInfo::getFixedStack(FI), false,
false, false, 0);
StatepointLowering.setRelocLocation(SD, Loc);
// Again, be conservative, don't emit pending loads
DAG.setRoot(Loc.getValue(1));
}
assert(Loc.getNode());
setValue(&CI, Loc);
}