llvm-6502/lib/Target/ARM64/ARM64InstrInfo.cpp
Tim Northover 36c7472106 AArch64/ARM64: expunge CPSR from the sources
AArch64 does not have a CPSR register in the same way that AArch32 does. Most
of its compiler-relevant roles have been taken over by the more specific NZCV
register (representing just the flags set by normal instructions).

Its system control functions still remain, but are now under the
pseudo-register referred to as "PSTATE". They're accessed via various MRS & MSR
instructions described in the reference manual.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207645 91177308-0d34-0410-b5e6-96231b3b80d8
2014-04-30 13:14:14 +00:00

1946 lines
64 KiB
C++

//===- ARM64InstrInfo.cpp - ARM64 Instruction Information -----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the ARM64 implementation of the TargetInstrInfo class.
//
//===----------------------------------------------------------------------===//
#include "ARM64InstrInfo.h"
#include "ARM64Subtarget.h"
#include "MCTargetDesc/ARM64AddressingModes.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/PseudoSourceValue.h"
#include "llvm/MC/MCInst.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/TargetRegistry.h"
using namespace llvm;
#define GET_INSTRINFO_CTOR_DTOR
#include "ARM64GenInstrInfo.inc"
ARM64InstrInfo::ARM64InstrInfo(const ARM64Subtarget &STI)
: ARM64GenInstrInfo(ARM64::ADJCALLSTACKDOWN, ARM64::ADJCALLSTACKUP),
RI(this, &STI), Subtarget(STI) {}
/// GetInstSize - Return the number of bytes of code the specified
/// instruction may be. This returns the maximum number of bytes.
unsigned ARM64InstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
const MCInstrDesc &Desc = MI->getDesc();
switch (Desc.getOpcode()) {
default:
// Anything not explicitly designated otherwise is a nomal 4-byte insn.
return 4;
case TargetOpcode::DBG_VALUE:
case TargetOpcode::EH_LABEL:
case TargetOpcode::IMPLICIT_DEF:
case TargetOpcode::KILL:
return 0;
}
llvm_unreachable("GetInstSizeInBytes()- Unable to determin insn size");
}
static void parseCondBranch(MachineInstr *LastInst, MachineBasicBlock *&Target,
SmallVectorImpl<MachineOperand> &Cond) {
// Block ends with fall-through condbranch.
switch (LastInst->getOpcode()) {
default:
llvm_unreachable("Unknown branch instruction?");
case ARM64::Bcc:
Target = LastInst->getOperand(1).getMBB();
Cond.push_back(LastInst->getOperand(0));
break;
case ARM64::CBZW:
case ARM64::CBZX:
case ARM64::CBNZW:
case ARM64::CBNZX:
Target = LastInst->getOperand(1).getMBB();
Cond.push_back(MachineOperand::CreateImm(-1));
Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode()));
Cond.push_back(LastInst->getOperand(0));
break;
case ARM64::TBZ:
case ARM64::TBNZ:
Target = LastInst->getOperand(2).getMBB();
Cond.push_back(MachineOperand::CreateImm(-1));
Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode()));
Cond.push_back(LastInst->getOperand(0));
Cond.push_back(LastInst->getOperand(1));
}
}
// Branch analysis.
bool ARM64InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
MachineBasicBlock *&TBB,
MachineBasicBlock *&FBB,
SmallVectorImpl<MachineOperand> &Cond,
bool AllowModify) const {
// If the block has no terminators, it just falls into the block after it.
MachineBasicBlock::iterator I = MBB.end();
if (I == MBB.begin())
return false;
--I;
while (I->isDebugValue()) {
if (I == MBB.begin())
return false;
--I;
}
if (!isUnpredicatedTerminator(I))
return false;
// Get the last instruction in the block.
MachineInstr *LastInst = I;
// If there is only one terminator instruction, process it.
unsigned LastOpc = LastInst->getOpcode();
if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) {
if (isUncondBranchOpcode(LastOpc)) {
TBB = LastInst->getOperand(0).getMBB();
return false;
}
if (isCondBranchOpcode(LastOpc)) {
// Block ends with fall-through condbranch.
parseCondBranch(LastInst, TBB, Cond);
return false;
}
return true; // Can't handle indirect branch.
}
// Get the instruction before it if it is a terminator.
MachineInstr *SecondLastInst = I;
unsigned SecondLastOpc = SecondLastInst->getOpcode();
// If AllowModify is true and the block ends with two or more unconditional
// branches, delete all but the first unconditional branch.
if (AllowModify && isUncondBranchOpcode(LastOpc)) {
while (isUncondBranchOpcode(SecondLastOpc)) {
LastInst->eraseFromParent();
LastInst = SecondLastInst;
LastOpc = LastInst->getOpcode();
if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) {
// Return now the only terminator is an unconditional branch.
TBB = LastInst->getOperand(0).getMBB();
return false;
} else {
SecondLastInst = I;
SecondLastOpc = SecondLastInst->getOpcode();
}
}
}
// If there are three terminators, we don't know what sort of block this is.
if (SecondLastInst && I != MBB.begin() && isUnpredicatedTerminator(--I))
return true;
// If the block ends with a B and a Bcc, handle it.
if (isCondBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) {
parseCondBranch(SecondLastInst, TBB, Cond);
FBB = LastInst->getOperand(0).getMBB();
return false;
}
// If the block ends with two unconditional branches, handle it. The second
// one is not executed, so remove it.
if (isUncondBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) {
TBB = SecondLastInst->getOperand(0).getMBB();
I = LastInst;
if (AllowModify)
I->eraseFromParent();
return false;
}
// ...likewise if it ends with an indirect branch followed by an unconditional
// branch.
if (isIndirectBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) {
I = LastInst;
if (AllowModify)
I->eraseFromParent();
return true;
}
// Otherwise, can't handle this.
return true;
}
bool ARM64InstrInfo::ReverseBranchCondition(
SmallVectorImpl<MachineOperand> &Cond) const {
if (Cond[0].getImm() != -1) {
// Regular Bcc
ARM64CC::CondCode CC = (ARM64CC::CondCode)(int)Cond[0].getImm();
Cond[0].setImm(ARM64CC::getInvertedCondCode(CC));
} else {
// Folded compare-and-branch
switch (Cond[1].getImm()) {
default:
llvm_unreachable("Unknown conditional branch!");
case ARM64::CBZW:
Cond[1].setImm(ARM64::CBNZW);
break;
case ARM64::CBNZW:
Cond[1].setImm(ARM64::CBZW);
break;
case ARM64::CBZX:
Cond[1].setImm(ARM64::CBNZX);
break;
case ARM64::CBNZX:
Cond[1].setImm(ARM64::CBZX);
break;
case ARM64::TBZ:
Cond[1].setImm(ARM64::TBNZ);
break;
case ARM64::TBNZ:
Cond[1].setImm(ARM64::TBZ);
break;
}
}
return false;
}
unsigned ARM64InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
MachineBasicBlock::iterator I = MBB.end();
if (I == MBB.begin())
return 0;
--I;
while (I->isDebugValue()) {
if (I == MBB.begin())
return 0;
--I;
}
if (!isUncondBranchOpcode(I->getOpcode()) &&
!isCondBranchOpcode(I->getOpcode()))
return 0;
// Remove the branch.
I->eraseFromParent();
I = MBB.end();
if (I == MBB.begin())
return 1;
--I;
if (!isCondBranchOpcode(I->getOpcode()))
return 1;
// Remove the branch.
I->eraseFromParent();
return 2;
}
void ARM64InstrInfo::instantiateCondBranch(
MachineBasicBlock &MBB, DebugLoc DL, MachineBasicBlock *TBB,
const SmallVectorImpl<MachineOperand> &Cond) const {
if (Cond[0].getImm() != -1) {
// Regular Bcc
BuildMI(&MBB, DL, get(ARM64::Bcc)).addImm(Cond[0].getImm()).addMBB(TBB);
} else {
// Folded compare-and-branch
const MachineInstrBuilder MIB =
BuildMI(&MBB, DL, get(Cond[1].getImm())).addReg(Cond[2].getReg());
if (Cond.size() > 3)
MIB.addImm(Cond[3].getImm());
MIB.addMBB(TBB);
}
}
unsigned ARM64InstrInfo::InsertBranch(
MachineBasicBlock &MBB, MachineBasicBlock *TBB, MachineBasicBlock *FBB,
const SmallVectorImpl<MachineOperand> &Cond, DebugLoc DL) const {
// Shouldn't be a fall through.
assert(TBB && "InsertBranch must not be told to insert a fallthrough");
if (!FBB) {
if (Cond.empty()) // Unconditional branch?
BuildMI(&MBB, DL, get(ARM64::B)).addMBB(TBB);
else
instantiateCondBranch(MBB, DL, TBB, Cond);
return 1;
}
// Two-way conditional branch.
instantiateCondBranch(MBB, DL, TBB, Cond);
BuildMI(&MBB, DL, get(ARM64::B)).addMBB(FBB);
return 2;
}
// Find the original register that VReg is copied from.
static unsigned removeCopies(const MachineRegisterInfo &MRI, unsigned VReg) {
while (TargetRegisterInfo::isVirtualRegister(VReg)) {
const MachineInstr *DefMI = MRI.getVRegDef(VReg);
if (!DefMI->isFullCopy())
return VReg;
VReg = DefMI->getOperand(1).getReg();
}
return VReg;
}
// Determine if VReg is defined by an instruction that can be folded into a
// csel instruction. If so, return the folded opcode, and the replacement
// register.
static unsigned canFoldIntoCSel(const MachineRegisterInfo &MRI, unsigned VReg,
unsigned *NewVReg = nullptr) {
VReg = removeCopies(MRI, VReg);
if (!TargetRegisterInfo::isVirtualRegister(VReg))
return 0;
bool Is64Bit = ARM64::GPR64allRegClass.hasSubClassEq(MRI.getRegClass(VReg));
const MachineInstr *DefMI = MRI.getVRegDef(VReg);
unsigned Opc = 0;
unsigned SrcOpNum = 0;
switch (DefMI->getOpcode()) {
case ARM64::ADDSXri:
case ARM64::ADDSWri:
// if NZCV is used, do not fold.
if (DefMI->findRegisterDefOperandIdx(ARM64::NZCV, true) == -1)
return 0;
// fall-through to ADDXri and ADDWri.
case ARM64::ADDXri:
case ARM64::ADDWri:
// add x, 1 -> csinc.
if (!DefMI->getOperand(2).isImm() || DefMI->getOperand(2).getImm() != 1 ||
DefMI->getOperand(3).getImm() != 0)
return 0;
SrcOpNum = 1;
Opc = Is64Bit ? ARM64::CSINCXr : ARM64::CSINCWr;
break;
case ARM64::ORNXrr:
case ARM64::ORNWrr: {
// not x -> csinv, represented as orn dst, xzr, src.
unsigned ZReg = removeCopies(MRI, DefMI->getOperand(1).getReg());
if (ZReg != ARM64::XZR && ZReg != ARM64::WZR)
return 0;
SrcOpNum = 2;
Opc = Is64Bit ? ARM64::CSINVXr : ARM64::CSINVWr;
break;
}
case ARM64::SUBSXrr:
case ARM64::SUBSWrr:
// if NZCV is used, do not fold.
if (DefMI->findRegisterDefOperandIdx(ARM64::NZCV, true) == -1)
return 0;
// fall-through to SUBXrr and SUBWrr.
case ARM64::SUBXrr:
case ARM64::SUBWrr: {
// neg x -> csneg, represented as sub dst, xzr, src.
unsigned ZReg = removeCopies(MRI, DefMI->getOperand(1).getReg());
if (ZReg != ARM64::XZR && ZReg != ARM64::WZR)
return 0;
SrcOpNum = 2;
Opc = Is64Bit ? ARM64::CSNEGXr : ARM64::CSNEGWr;
break;
}
default:
return 0;
}
assert(Opc && SrcOpNum && "Missing parameters");
if (NewVReg)
*NewVReg = DefMI->getOperand(SrcOpNum).getReg();
return Opc;
}
bool ARM64InstrInfo::canInsertSelect(
const MachineBasicBlock &MBB, const SmallVectorImpl<MachineOperand> &Cond,
unsigned TrueReg, unsigned FalseReg, int &CondCycles, int &TrueCycles,
int &FalseCycles) const {
// Check register classes.
const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
const TargetRegisterClass *RC =
RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
if (!RC)
return false;
// Expanding cbz/tbz requires an extra cycle of latency on the condition.
unsigned ExtraCondLat = Cond.size() != 1;
// GPRs are handled by csel.
// FIXME: Fold in x+1, -x, and ~x when applicable.
if (ARM64::GPR64allRegClass.hasSubClassEq(RC) ||
ARM64::GPR32allRegClass.hasSubClassEq(RC)) {
// Single-cycle csel, csinc, csinv, and csneg.
CondCycles = 1 + ExtraCondLat;
TrueCycles = FalseCycles = 1;
if (canFoldIntoCSel(MRI, TrueReg))
TrueCycles = 0;
else if (canFoldIntoCSel(MRI, FalseReg))
FalseCycles = 0;
return true;
}
// Scalar floating point is handled by fcsel.
// FIXME: Form fabs, fmin, and fmax when applicable.
if (ARM64::FPR64RegClass.hasSubClassEq(RC) ||
ARM64::FPR32RegClass.hasSubClassEq(RC)) {
CondCycles = 5 + ExtraCondLat;
TrueCycles = FalseCycles = 2;
return true;
}
// Can't do vectors.
return false;
}
void ARM64InstrInfo::insertSelect(MachineBasicBlock &MBB,
MachineBasicBlock::iterator I, DebugLoc DL,
unsigned DstReg,
const SmallVectorImpl<MachineOperand> &Cond,
unsigned TrueReg, unsigned FalseReg) const {
MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
// Parse the condition code, see parseCondBranch() above.
ARM64CC::CondCode CC;
switch (Cond.size()) {
default:
llvm_unreachable("Unknown condition opcode in Cond");
case 1: // b.cc
CC = ARM64CC::CondCode(Cond[0].getImm());
break;
case 3: { // cbz/cbnz
// We must insert a compare against 0.
bool Is64Bit;
switch (Cond[1].getImm()) {
default:
llvm_unreachable("Unknown branch opcode in Cond");
case ARM64::CBZW:
Is64Bit = 0;
CC = ARM64CC::EQ;
break;
case ARM64::CBZX:
Is64Bit = 1;
CC = ARM64CC::EQ;
break;
case ARM64::CBNZW:
Is64Bit = 0;
CC = ARM64CC::NE;
break;
case ARM64::CBNZX:
Is64Bit = 1;
CC = ARM64CC::NE;
break;
}
unsigned SrcReg = Cond[2].getReg();
if (Is64Bit) {
// cmp reg, #0 is actually subs xzr, reg, #0.
MRI.constrainRegClass(SrcReg, &ARM64::GPR64spRegClass);
BuildMI(MBB, I, DL, get(ARM64::SUBSXri), ARM64::XZR)
.addReg(SrcReg)
.addImm(0)
.addImm(0);
} else {
MRI.constrainRegClass(SrcReg, &ARM64::GPR32spRegClass);
BuildMI(MBB, I, DL, get(ARM64::SUBSWri), ARM64::WZR)
.addReg(SrcReg)
.addImm(0)
.addImm(0);
}
break;
}
case 4: { // tbz/tbnz
// We must insert a tst instruction.
switch (Cond[1].getImm()) {
default:
llvm_unreachable("Unknown branch opcode in Cond");
case ARM64::TBZ:
CC = ARM64CC::EQ;
break;
case ARM64::TBNZ:
CC = ARM64CC::NE;
break;
}
// cmp reg, #foo is actually ands xzr, reg, #1<<foo.
BuildMI(MBB, I, DL, get(ARM64::ANDSXri), ARM64::XZR)
.addReg(Cond[2].getReg())
.addImm(ARM64_AM::encodeLogicalImmediate(1ull << Cond[3].getImm(), 64));
break;
}
}
unsigned Opc = 0;
const TargetRegisterClass *RC = nullptr;
bool TryFold = false;
if (MRI.constrainRegClass(DstReg, &ARM64::GPR64RegClass)) {
RC = &ARM64::GPR64RegClass;
Opc = ARM64::CSELXr;
TryFold = true;
} else if (MRI.constrainRegClass(DstReg, &ARM64::GPR32RegClass)) {
RC = &ARM64::GPR32RegClass;
Opc = ARM64::CSELWr;
TryFold = true;
} else if (MRI.constrainRegClass(DstReg, &ARM64::FPR64RegClass)) {
RC = &ARM64::FPR64RegClass;
Opc = ARM64::FCSELDrrr;
} else if (MRI.constrainRegClass(DstReg, &ARM64::FPR32RegClass)) {
RC = &ARM64::FPR32RegClass;
Opc = ARM64::FCSELSrrr;
}
assert(RC && "Unsupported regclass");
// Try folding simple instructions into the csel.
if (TryFold) {
unsigned NewVReg = 0;
unsigned FoldedOpc = canFoldIntoCSel(MRI, TrueReg, &NewVReg);
if (FoldedOpc) {
// The folded opcodes csinc, csinc and csneg apply the operation to
// FalseReg, so we need to invert the condition.
CC = ARM64CC::getInvertedCondCode(CC);
TrueReg = FalseReg;
} else
FoldedOpc = canFoldIntoCSel(MRI, FalseReg, &NewVReg);
// Fold the operation. Leave any dead instructions for DCE to clean up.
if (FoldedOpc) {
FalseReg = NewVReg;
Opc = FoldedOpc;
// The extends the live range of NewVReg.
MRI.clearKillFlags(NewVReg);
}
}
// Pull all virtual register into the appropriate class.
MRI.constrainRegClass(TrueReg, RC);
MRI.constrainRegClass(FalseReg, RC);
// Insert the csel.
BuildMI(MBB, I, DL, get(Opc), DstReg).addReg(TrueReg).addReg(FalseReg).addImm(
CC);
}
bool ARM64InstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
unsigned &SrcReg, unsigned &DstReg,
unsigned &SubIdx) const {
switch (MI.getOpcode()) {
default:
return false;
case ARM64::SBFMXri: // aka sxtw
case ARM64::UBFMXri: // aka uxtw
// Check for the 32 -> 64 bit extension case, these instructions can do
// much more.
if (MI.getOperand(2).getImm() != 0 || MI.getOperand(3).getImm() != 31)
return false;
// This is a signed or unsigned 32 -> 64 bit extension.
SrcReg = MI.getOperand(1).getReg();
DstReg = MI.getOperand(0).getReg();
SubIdx = ARM64::sub_32;
return true;
}
}
/// analyzeCompare - For a comparison instruction, return the source registers
/// in SrcReg and SrcReg2, and the value it compares against in CmpValue.
/// Return true if the comparison instruction can be analyzed.
bool ARM64InstrInfo::analyzeCompare(const MachineInstr *MI, unsigned &SrcReg,
unsigned &SrcReg2, int &CmpMask,
int &CmpValue) const {
switch (MI->getOpcode()) {
default:
break;
case ARM64::SUBSWrr:
case ARM64::SUBSWrs:
case ARM64::SUBSWrx:
case ARM64::SUBSXrr:
case ARM64::SUBSXrs:
case ARM64::SUBSXrx:
case ARM64::ADDSWrr:
case ARM64::ADDSWrs:
case ARM64::ADDSWrx:
case ARM64::ADDSXrr:
case ARM64::ADDSXrs:
case ARM64::ADDSXrx:
// Replace SUBSWrr with SUBWrr if NZCV is not used.
SrcReg = MI->getOperand(1).getReg();
SrcReg2 = MI->getOperand(2).getReg();
CmpMask = ~0;
CmpValue = 0;
return true;
case ARM64::SUBSWri:
case ARM64::ADDSWri:
case ARM64::SUBSXri:
case ARM64::ADDSXri:
SrcReg = MI->getOperand(1).getReg();
SrcReg2 = 0;
CmpMask = ~0;
CmpValue = MI->getOperand(2).getImm();
return true;
case ARM64::ANDSWri:
case ARM64::ANDSXri:
// ANDS does not use the same encoding scheme as the others xxxS
// instructions.
SrcReg = MI->getOperand(1).getReg();
SrcReg2 = 0;
CmpMask = ~0;
CmpValue = ARM64_AM::decodeLogicalImmediate(
MI->getOperand(2).getImm(),
MI->getOpcode() == ARM64::ANDSWri ? 32 : 64);
return true;
}
return false;
}
static bool UpdateOperandRegClass(MachineInstr *Instr) {
MachineBasicBlock *MBB = Instr->getParent();
assert(MBB && "Can't get MachineBasicBlock here");
MachineFunction *MF = MBB->getParent();
assert(MF && "Can't get MachineFunction here");
const TargetMachine *TM = &MF->getTarget();
const TargetInstrInfo *TII = TM->getInstrInfo();
const TargetRegisterInfo *TRI = TM->getRegisterInfo();
MachineRegisterInfo *MRI = &MF->getRegInfo();
for (unsigned OpIdx = 0, EndIdx = Instr->getNumOperands(); OpIdx < EndIdx;
++OpIdx) {
MachineOperand &MO = Instr->getOperand(OpIdx);
const TargetRegisterClass *OpRegCstraints =
Instr->getRegClassConstraint(OpIdx, TII, TRI);
// If there's no constraint, there's nothing to do.
if (!OpRegCstraints)
continue;
// If the operand is a frame index, there's nothing to do here.
// A frame index operand will resolve correctly during PEI.
if (MO.isFI())
continue;
assert(MO.isReg() &&
"Operand has register constraints without being a register!");
unsigned Reg = MO.getReg();
if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
if (!OpRegCstraints->contains(Reg))
return false;
} else if (!OpRegCstraints->hasSubClassEq(MRI->getRegClass(Reg)) &&
!MRI->constrainRegClass(Reg, OpRegCstraints))
return false;
}
return true;
}
/// optimizeCompareInstr - Convert the instruction supplying the argument to the
/// comparison into one that sets the zero bit in the flags register.
bool ARM64InstrInfo::optimizeCompareInstr(
MachineInstr *CmpInstr, unsigned SrcReg, unsigned SrcReg2, int CmpMask,
int CmpValue, const MachineRegisterInfo *MRI) const {
// Replace SUBSWrr with SUBWrr if NZCV is not used.
int Cmp_NZCV = CmpInstr->findRegisterDefOperandIdx(ARM64::NZCV, true);
if (Cmp_NZCV != -1) {
unsigned NewOpc;
switch (CmpInstr->getOpcode()) {
default:
return false;
case ARM64::ADDSWrr: NewOpc = ARM64::ADDWrr; break;
case ARM64::ADDSWri: NewOpc = ARM64::ADDWri; break;
case ARM64::ADDSWrs: NewOpc = ARM64::ADDWrs; break;
case ARM64::ADDSWrx: NewOpc = ARM64::ADDWrx; break;
case ARM64::ADDSXrr: NewOpc = ARM64::ADDXrr; break;
case ARM64::ADDSXri: NewOpc = ARM64::ADDXri; break;
case ARM64::ADDSXrs: NewOpc = ARM64::ADDXrs; break;
case ARM64::ADDSXrx: NewOpc = ARM64::ADDXrx; break;
case ARM64::SUBSWrr: NewOpc = ARM64::SUBWrr; break;
case ARM64::SUBSWri: NewOpc = ARM64::SUBWri; break;
case ARM64::SUBSWrs: NewOpc = ARM64::SUBWrs; break;
case ARM64::SUBSWrx: NewOpc = ARM64::SUBWrx; break;
case ARM64::SUBSXrr: NewOpc = ARM64::SUBXrr; break;
case ARM64::SUBSXri: NewOpc = ARM64::SUBXri; break;
case ARM64::SUBSXrs: NewOpc = ARM64::SUBXrs; break;
case ARM64::SUBSXrx: NewOpc = ARM64::SUBXrx; break;
}
const MCInstrDesc &MCID = get(NewOpc);
CmpInstr->setDesc(MCID);
CmpInstr->RemoveOperand(Cmp_NZCV);
bool succeeded = UpdateOperandRegClass(CmpInstr);
(void)succeeded;
assert(succeeded && "Some operands reg class are incompatible!");
return true;
}
// Continue only if we have a "ri" where immediate is zero.
if (CmpValue != 0 || SrcReg2 != 0)
return false;
// CmpInstr is a Compare instruction if destination register is not used.
if (!MRI->use_nodbg_empty(CmpInstr->getOperand(0).getReg()))
return false;
// Get the unique definition of SrcReg.
MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
if (!MI)
return false;
// We iterate backward, starting from the instruction before CmpInstr and
// stop when reaching the definition of the source register or done with the
// basic block, to check whether NZCV is used or modified in between.
MachineBasicBlock::iterator I = CmpInstr, E = MI,
B = CmpInstr->getParent()->begin();
// Early exit if CmpInstr is at the beginning of the BB.
if (I == B)
return false;
// Check whether the definition of SrcReg is in the same basic block as
// Compare. If not, we can't optimize away the Compare.
if (MI->getParent() != CmpInstr->getParent())
return false;
// Check that NZCV isn't set between the comparison instruction and the one we
// want to change.
const TargetRegisterInfo *TRI = &getRegisterInfo();
for (--I; I != E; --I) {
const MachineInstr &Instr = *I;
if (Instr.modifiesRegister(ARM64::NZCV, TRI) ||
Instr.readsRegister(ARM64::NZCV, TRI))
// This instruction modifies or uses NZCV after the one we want to
// change. We can't do this transformation.
return false;
if (I == B)
// The 'and' is below the comparison instruction.
return false;
}
unsigned NewOpc = MI->getOpcode();
switch (MI->getOpcode()) {
default:
return false;
case ARM64::ADDSWrr:
case ARM64::ADDSWri:
case ARM64::ADDSXrr:
case ARM64::ADDSXri:
case ARM64::SUBSWrr:
case ARM64::SUBSWri:
case ARM64::SUBSXrr:
case ARM64::SUBSXri:
break;
case ARM64::ADDWrr: NewOpc = ARM64::ADDSWrr; break;
case ARM64::ADDWri: NewOpc = ARM64::ADDSWri; break;
case ARM64::ADDXrr: NewOpc = ARM64::ADDSXrr; break;
case ARM64::ADDXri: NewOpc = ARM64::ADDSXri; break;
case ARM64::ADCWr: NewOpc = ARM64::ADCSWr; break;
case ARM64::ADCXr: NewOpc = ARM64::ADCSXr; break;
case ARM64::SUBWrr: NewOpc = ARM64::SUBSWrr; break;
case ARM64::SUBWri: NewOpc = ARM64::SUBSWri; break;
case ARM64::SUBXrr: NewOpc = ARM64::SUBSXrr; break;
case ARM64::SUBXri: NewOpc = ARM64::SUBSXri; break;
case ARM64::SBCWr: NewOpc = ARM64::SBCSWr; break;
case ARM64::SBCXr: NewOpc = ARM64::SBCSXr; break;
case ARM64::ANDWri: NewOpc = ARM64::ANDSWri; break;
case ARM64::ANDXri: NewOpc = ARM64::ANDSXri; break;
}
// Scan forward for the use of NZCV.
// When checking against MI: if it's a conditional code requires
// checking of V bit, then this is not safe to do.
// It is safe to remove CmpInstr if NZCV is redefined or killed.
// If we are done with the basic block, we need to check whether NZCV is
// live-out.
bool IsSafe = false;
for (MachineBasicBlock::iterator I = CmpInstr,
E = CmpInstr->getParent()->end();
!IsSafe && ++I != E;) {
const MachineInstr &Instr = *I;
for (unsigned IO = 0, EO = Instr.getNumOperands(); !IsSafe && IO != EO;
++IO) {
const MachineOperand &MO = Instr.getOperand(IO);
if (MO.isRegMask() && MO.clobbersPhysReg(ARM64::NZCV)) {
IsSafe = true;
break;
}
if (!MO.isReg() || MO.getReg() != ARM64::NZCV)
continue;
if (MO.isDef()) {
IsSafe = true;
break;
}
// Decode the condition code.
unsigned Opc = Instr.getOpcode();
ARM64CC::CondCode CC;
switch (Opc) {
default:
return false;
case ARM64::Bcc:
CC = (ARM64CC::CondCode)Instr.getOperand(IO - 2).getImm();
break;
case ARM64::CSINVWr:
case ARM64::CSINVXr:
case ARM64::CSINCWr:
case ARM64::CSINCXr:
case ARM64::CSELWr:
case ARM64::CSELXr:
case ARM64::CSNEGWr:
case ARM64::CSNEGXr:
case ARM64::FCSELSrrr:
case ARM64::FCSELDrrr:
CC = (ARM64CC::CondCode)Instr.getOperand(IO - 1).getImm();
break;
}
// It is not safe to remove Compare instruction if Overflow(V) is used.
switch (CC) {
default:
// NZCV can be used multiple times, we should continue.
break;
case ARM64CC::VS:
case ARM64CC::VC:
case ARM64CC::GE:
case ARM64CC::LT:
case ARM64CC::GT:
case ARM64CC::LE:
return false;
}
}
}
// If NZCV is not killed nor re-defined, we should check whether it is
// live-out. If it is live-out, do not optimize.
if (!IsSafe) {
MachineBasicBlock *ParentBlock = CmpInstr->getParent();
for (auto *MBB : ParentBlock->successors())
if (MBB->isLiveIn(ARM64::NZCV))
return false;
}
// Update the instruction to set NZCV.
MI->setDesc(get(NewOpc));
CmpInstr->eraseFromParent();
bool succeeded = UpdateOperandRegClass(MI);
(void)succeeded;
assert(succeeded && "Some operands reg class are incompatible!");
MI->addRegisterDefined(ARM64::NZCV, TRI);
return true;
}
// Return true if this instruction simply sets its single destination register
// to zero. This is equivalent to a register rename of the zero-register.
bool ARM64InstrInfo::isGPRZero(const MachineInstr *MI) const {
switch (MI->getOpcode()) {
default:
break;
case ARM64::MOVZWi:
case ARM64::MOVZXi: // movz Rd, #0 (LSL #0)
if (MI->getOperand(1).isImm() && MI->getOperand(1).getImm() == 0) {
assert(MI->getDesc().getNumOperands() == 3 &&
MI->getOperand(2).getImm() == 0 && "invalid MOVZi operands");
return true;
}
break;
case ARM64::ANDWri: // and Rd, Rzr, #imm
return MI->getOperand(1).getReg() == ARM64::WZR;
case ARM64::ANDXri:
return MI->getOperand(1).getReg() == ARM64::XZR;
case TargetOpcode::COPY:
return MI->getOperand(1).getReg() == ARM64::WZR;
}
return false;
}
// Return true if this instruction simply renames a general register without
// modifying bits.
bool ARM64InstrInfo::isGPRCopy(const MachineInstr *MI) const {
switch (MI->getOpcode()) {
default:
break;
case TargetOpcode::COPY: {
// GPR32 copies will by lowered to ORRXrs
unsigned DstReg = MI->getOperand(0).getReg();
return (ARM64::GPR32RegClass.contains(DstReg) ||
ARM64::GPR64RegClass.contains(DstReg));
}
case ARM64::ORRXrs: // orr Xd, Xzr, Xm (LSL #0)
if (MI->getOperand(1).getReg() == ARM64::XZR) {
assert(MI->getDesc().getNumOperands() == 4 &&
MI->getOperand(3).getImm() == 0 && "invalid ORRrs operands");
return true;
}
case ARM64::ADDXri: // add Xd, Xn, #0 (LSL #0)
if (MI->getOperand(2).getImm() == 0) {
assert(MI->getDesc().getNumOperands() == 4 &&
MI->getOperand(3).getImm() == 0 && "invalid ADDXri operands");
return true;
}
}
return false;
}
// Return true if this instruction simply renames a general register without
// modifying bits.
bool ARM64InstrInfo::isFPRCopy(const MachineInstr *MI) const {
switch (MI->getOpcode()) {
default:
break;
case TargetOpcode::COPY: {
// FPR64 copies will by lowered to ORR.16b
unsigned DstReg = MI->getOperand(0).getReg();
return (ARM64::FPR64RegClass.contains(DstReg) ||
ARM64::FPR128RegClass.contains(DstReg));
}
case ARM64::ORRv16i8:
if (MI->getOperand(1).getReg() == MI->getOperand(2).getReg()) {
assert(MI->getDesc().getNumOperands() == 3 && MI->getOperand(0).isReg() &&
"invalid ORRv16i8 operands");
return true;
}
}
return false;
}
unsigned ARM64InstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
int &FrameIndex) const {
switch (MI->getOpcode()) {
default:
break;
case ARM64::LDRWui:
case ARM64::LDRXui:
case ARM64::LDRBui:
case ARM64::LDRHui:
case ARM64::LDRSui:
case ARM64::LDRDui:
case ARM64::LDRQui:
if (MI->getOperand(0).getSubReg() == 0 && MI->getOperand(1).isFI() &&
MI->getOperand(2).isImm() && MI->getOperand(2).getImm() == 0) {
FrameIndex = MI->getOperand(1).getIndex();
return MI->getOperand(0).getReg();
}
break;
}
return 0;
}
unsigned ARM64InstrInfo::isStoreToStackSlot(const MachineInstr *MI,
int &FrameIndex) const {
switch (MI->getOpcode()) {
default:
break;
case ARM64::STRWui:
case ARM64::STRXui:
case ARM64::STRBui:
case ARM64::STRHui:
case ARM64::STRSui:
case ARM64::STRDui:
case ARM64::STRQui:
if (MI->getOperand(0).getSubReg() == 0 && MI->getOperand(1).isFI() &&
MI->getOperand(2).isImm() && MI->getOperand(2).getImm() == 0) {
FrameIndex = MI->getOperand(1).getIndex();
return MI->getOperand(0).getReg();
}
break;
}
return 0;
}
/// Return true if this is load/store scales or extends its register offset.
/// This refers to scaling a dynamic index as opposed to scaled immediates.
/// MI should be a memory op that allows scaled addressing.
bool ARM64InstrInfo::isScaledAddr(const MachineInstr *MI) const {
switch (MI->getOpcode()) {
default:
break;
case ARM64::LDRBBro:
case ARM64::LDRBro:
case ARM64::LDRDro:
case ARM64::LDRHHro:
case ARM64::LDRHro:
case ARM64::LDRQro:
case ARM64::LDRSBWro:
case ARM64::LDRSBXro:
case ARM64::LDRSHWro:
case ARM64::LDRSHXro:
case ARM64::LDRSWro:
case ARM64::LDRSro:
case ARM64::LDRWro:
case ARM64::LDRXro:
case ARM64::STRBBro:
case ARM64::STRBro:
case ARM64::STRDro:
case ARM64::STRHHro:
case ARM64::STRHro:
case ARM64::STRQro:
case ARM64::STRSro:
case ARM64::STRWro:
case ARM64::STRXro:
unsigned Val = MI->getOperand(3).getImm();
ARM64_AM::ExtendType ExtType = ARM64_AM::getMemExtendType(Val);
return (ExtType != ARM64_AM::UXTX) || ARM64_AM::getMemDoShift(Val);
}
return false;
}
/// Check all MachineMemOperands for a hint to suppress pairing.
bool ARM64InstrInfo::isLdStPairSuppressed(const MachineInstr *MI) const {
assert(MOSuppressPair < (1 << MachineMemOperand::MOTargetNumBits) &&
"Too many target MO flags");
for (auto *MM : MI->memoperands()) {
if (MM->getFlags() &
(MOSuppressPair << MachineMemOperand::MOTargetStartBit)) {
return true;
}
}
return false;
}
/// Set a flag on the first MachineMemOperand to suppress pairing.
void ARM64InstrInfo::suppressLdStPair(MachineInstr *MI) const {
if (MI->memoperands_empty())
return;
assert(MOSuppressPair < (1 << MachineMemOperand::MOTargetNumBits) &&
"Too many target MO flags");
(*MI->memoperands_begin())
->setFlags(MOSuppressPair << MachineMemOperand::MOTargetStartBit);
}
bool ARM64InstrInfo::getLdStBaseRegImmOfs(MachineInstr *LdSt, unsigned &BaseReg,
unsigned &Offset,
const TargetRegisterInfo *TRI) const {
switch (LdSt->getOpcode()) {
default:
return false;
case ARM64::STRSui:
case ARM64::STRDui:
case ARM64::STRQui:
case ARM64::STRXui:
case ARM64::STRWui:
case ARM64::LDRSui:
case ARM64::LDRDui:
case ARM64::LDRQui:
case ARM64::LDRXui:
case ARM64::LDRWui:
if (!LdSt->getOperand(1).isReg() || !LdSt->getOperand(2).isImm())
return false;
BaseReg = LdSt->getOperand(1).getReg();
MachineFunction &MF = *LdSt->getParent()->getParent();
unsigned Width = getRegClass(LdSt->getDesc(), 0, TRI, MF)->getSize();
Offset = LdSt->getOperand(2).getImm() * Width;
return true;
};
}
/// Detect opportunities for ldp/stp formation.
///
/// Only called for LdSt for which getLdStBaseRegImmOfs returns true.
bool ARM64InstrInfo::shouldClusterLoads(MachineInstr *FirstLdSt,
MachineInstr *SecondLdSt,
unsigned NumLoads) const {
// Only cluster up to a single pair.
if (NumLoads > 1)
return false;
if (FirstLdSt->getOpcode() != SecondLdSt->getOpcode())
return false;
// getLdStBaseRegImmOfs guarantees that oper 2 isImm.
unsigned Ofs1 = FirstLdSt->getOperand(2).getImm();
// Allow 6 bits of positive range.
if (Ofs1 > 64)
return false;
// The caller should already have ordered First/SecondLdSt by offset.
unsigned Ofs2 = SecondLdSt->getOperand(2).getImm();
return Ofs1 + 1 == Ofs2;
}
bool ARM64InstrInfo::shouldScheduleAdjacent(MachineInstr *First,
MachineInstr *Second) const {
// Cyclone can fuse CMN, CMP followed by Bcc.
// FIXME: B0 can also fuse:
// AND, BIC, ORN, ORR, or EOR (optional S) followed by Bcc or CBZ or CBNZ.
if (Second->getOpcode() != ARM64::Bcc)
return false;
switch (First->getOpcode()) {
default:
return false;
case ARM64::SUBSWri:
case ARM64::ADDSWri:
case ARM64::ANDSWri:
case ARM64::SUBSXri:
case ARM64::ADDSXri:
case ARM64::ANDSXri:
return true;
}
}
MachineInstr *ARM64InstrInfo::emitFrameIndexDebugValue(MachineFunction &MF,
int FrameIx,
uint64_t Offset,
const MDNode *MDPtr,
DebugLoc DL) const {
MachineInstrBuilder MIB = BuildMI(MF, DL, get(ARM64::DBG_VALUE))
.addFrameIndex(FrameIx)
.addImm(0)
.addImm(Offset)
.addMetadata(MDPtr);
return &*MIB;
}
static const MachineInstrBuilder &AddSubReg(const MachineInstrBuilder &MIB,
unsigned Reg, unsigned SubIdx,
unsigned State,
const TargetRegisterInfo *TRI) {
if (!SubIdx)
return MIB.addReg(Reg, State);
if (TargetRegisterInfo::isPhysicalRegister(Reg))
return MIB.addReg(TRI->getSubReg(Reg, SubIdx), State);
return MIB.addReg(Reg, State, SubIdx);
}
static bool forwardCopyWillClobberTuple(unsigned DestReg, unsigned SrcReg,
unsigned NumRegs) {
// We really want the positive remainder mod 32 here, that happens to be
// easily obtainable with a mask.
return ((DestReg - SrcReg) & 0x1f) < NumRegs;
}
void ARM64InstrInfo::copyPhysRegTuple(MachineBasicBlock &MBB,
MachineBasicBlock::iterator I,
DebugLoc DL, unsigned DestReg,
unsigned SrcReg, bool KillSrc,
unsigned Opcode,
llvm::ArrayRef<unsigned> Indices) const {
assert(getSubTarget().hasNEON() &&
"Unexpected register copy without NEON");
const TargetRegisterInfo *TRI = &getRegisterInfo();
uint16_t DestEncoding = TRI->getEncodingValue(DestReg);
uint16_t SrcEncoding = TRI->getEncodingValue(SrcReg);
unsigned NumRegs = Indices.size();
int SubReg = 0, End = NumRegs, Incr = 1;
if (forwardCopyWillClobberTuple(DestEncoding, SrcEncoding, NumRegs)) {
SubReg = NumRegs - 1;
End = -1;
Incr = -1;
}
for (; SubReg != End; SubReg += Incr) {
const MachineInstrBuilder &MIB = BuildMI(MBB, I, DL, get(Opcode));
AddSubReg(MIB, DestReg, Indices[SubReg], RegState::Define, TRI);
AddSubReg(MIB, SrcReg, Indices[SubReg], 0, TRI);
AddSubReg(MIB, SrcReg, Indices[SubReg], getKillRegState(KillSrc), TRI);
}
}
void ARM64InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
MachineBasicBlock::iterator I, DebugLoc DL,
unsigned DestReg, unsigned SrcReg,
bool KillSrc) const {
if (ARM64::GPR32spRegClass.contains(DestReg) &&
(ARM64::GPR32spRegClass.contains(SrcReg) || SrcReg == ARM64::WZR)) {
const TargetRegisterInfo *TRI = &getRegisterInfo();
if (DestReg == ARM64::WSP || SrcReg == ARM64::WSP) {
// If either operand is WSP, expand to ADD #0.
if (Subtarget.hasZeroCycleRegMove()) {
// Cyclone recognizes "ADD Xd, Xn, #0" as a zero-cycle register move.
unsigned DestRegX = TRI->getMatchingSuperReg(DestReg, ARM64::sub_32,
&ARM64::GPR64spRegClass);
unsigned SrcRegX = TRI->getMatchingSuperReg(SrcReg, ARM64::sub_32,
&ARM64::GPR64spRegClass);
// This instruction is reading and writing X registers. This may upset
// the register scavenger and machine verifier, so we need to indicate
// that we are reading an undefined value from SrcRegX, but a proper
// value from SrcReg.
BuildMI(MBB, I, DL, get(ARM64::ADDXri), DestRegX)
.addReg(SrcRegX, RegState::Undef)
.addImm(0)
.addImm(ARM64_AM::getShifterImm(ARM64_AM::LSL, 0))
.addReg(SrcReg, RegState::Implicit | getKillRegState(KillSrc));
} else {
BuildMI(MBB, I, DL, get(ARM64::ADDWri), DestReg)
.addReg(SrcReg, getKillRegState(KillSrc))
.addImm(0)
.addImm(ARM64_AM::getShifterImm(ARM64_AM::LSL, 0));
}
} else if (SrcReg == ARM64::WZR && Subtarget.hasZeroCycleZeroing()) {
BuildMI(MBB, I, DL, get(ARM64::MOVZWi), DestReg).addImm(0).addImm(
ARM64_AM::getShifterImm(ARM64_AM::LSL, 0));
} else {
if (Subtarget.hasZeroCycleRegMove()) {
// Cyclone recognizes "ORR Xd, XZR, Xm" as a zero-cycle register move.
unsigned DestRegX = TRI->getMatchingSuperReg(DestReg, ARM64::sub_32,
&ARM64::GPR64spRegClass);
unsigned SrcRegX = TRI->getMatchingSuperReg(SrcReg, ARM64::sub_32,
&ARM64::GPR64spRegClass);
// This instruction is reading and writing X registers. This may upset
// the register scavenger and machine verifier, so we need to indicate
// that we are reading an undefined value from SrcRegX, but a proper
// value from SrcReg.
BuildMI(MBB, I, DL, get(ARM64::ORRXrr), DestRegX)
.addReg(ARM64::XZR)
.addReg(SrcRegX, RegState::Undef)
.addReg(SrcReg, RegState::Implicit | getKillRegState(KillSrc));
} else {
// Otherwise, expand to ORR WZR.
BuildMI(MBB, I, DL, get(ARM64::ORRWrr), DestReg)
.addReg(ARM64::WZR)
.addReg(SrcReg, getKillRegState(KillSrc));
}
}
return;
}
if (ARM64::GPR64spRegClass.contains(DestReg) &&
(ARM64::GPR64spRegClass.contains(SrcReg) || SrcReg == ARM64::XZR)) {
if (DestReg == ARM64::SP || SrcReg == ARM64::SP) {
// If either operand is SP, expand to ADD #0.
BuildMI(MBB, I, DL, get(ARM64::ADDXri), DestReg)
.addReg(SrcReg, getKillRegState(KillSrc))
.addImm(0)
.addImm(ARM64_AM::getShifterImm(ARM64_AM::LSL, 0));
} else if (SrcReg == ARM64::XZR && Subtarget.hasZeroCycleZeroing()) {
BuildMI(MBB, I, DL, get(ARM64::MOVZXi), DestReg).addImm(0).addImm(
ARM64_AM::getShifterImm(ARM64_AM::LSL, 0));
} else {
// Otherwise, expand to ORR XZR.
BuildMI(MBB, I, DL, get(ARM64::ORRXrr), DestReg)
.addReg(ARM64::XZR)
.addReg(SrcReg, getKillRegState(KillSrc));
}
return;
}
// Copy a DDDD register quad by copying the individual sub-registers.
if (ARM64::DDDDRegClass.contains(DestReg) &&
ARM64::DDDDRegClass.contains(SrcReg)) {
static const unsigned Indices[] = { ARM64::dsub0, ARM64::dsub1,
ARM64::dsub2, ARM64::dsub3 };
copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, ARM64::ORRv8i8,
Indices);
return;
}
// Copy a DDD register triple by copying the individual sub-registers.
if (ARM64::DDDRegClass.contains(DestReg) &&
ARM64::DDDRegClass.contains(SrcReg)) {
static const unsigned Indices[] = { ARM64::dsub0, ARM64::dsub1,
ARM64::dsub2 };
copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, ARM64::ORRv8i8,
Indices);
return;
}
// Copy a DD register pair by copying the individual sub-registers.
if (ARM64::DDRegClass.contains(DestReg) &&
ARM64::DDRegClass.contains(SrcReg)) {
static const unsigned Indices[] = { ARM64::dsub0, ARM64::dsub1 };
copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, ARM64::ORRv8i8,
Indices);
return;
}
// Copy a QQQQ register quad by copying the individual sub-registers.
if (ARM64::QQQQRegClass.contains(DestReg) &&
ARM64::QQQQRegClass.contains(SrcReg)) {
static const unsigned Indices[] = { ARM64::qsub0, ARM64::qsub1,
ARM64::qsub2, ARM64::qsub3 };
copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, ARM64::ORRv16i8,
Indices);
return;
}
// Copy a QQQ register triple by copying the individual sub-registers.
if (ARM64::QQQRegClass.contains(DestReg) &&
ARM64::QQQRegClass.contains(SrcReg)) {
static const unsigned Indices[] = { ARM64::qsub0, ARM64::qsub1,
ARM64::qsub2 };
copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, ARM64::ORRv16i8,
Indices);
return;
}
// Copy a QQ register pair by copying the individual sub-registers.
if (ARM64::QQRegClass.contains(DestReg) &&
ARM64::QQRegClass.contains(SrcReg)) {
static const unsigned Indices[] = { ARM64::qsub0, ARM64::qsub1 };
copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, ARM64::ORRv16i8,
Indices);
return;
}
if (ARM64::FPR128RegClass.contains(DestReg) &&
ARM64::FPR128RegClass.contains(SrcReg)) {
if(getSubTarget().hasNEON()) {
BuildMI(MBB, I, DL, get(ARM64::ORRv16i8), DestReg).addReg(SrcReg).addReg(
SrcReg, getKillRegState(KillSrc));
} else {
BuildMI(MBB, I, DL, get(ARM64::STRQpre))
.addReg(SrcReg, getKillRegState(KillSrc))
.addReg(ARM64::SP)
.addImm(-16);
BuildMI(MBB, I, DL, get(ARM64::LDRQpre))
.addReg(DestReg, RegState::Define)
.addReg(ARM64::SP)
.addImm(16);
}
return;
}
if (ARM64::FPR64RegClass.contains(DestReg) &&
ARM64::FPR64RegClass.contains(SrcReg)) {
if(getSubTarget().hasNEON()) {
DestReg =
RI.getMatchingSuperReg(DestReg, ARM64::dsub, &ARM64::FPR128RegClass);
SrcReg =
RI.getMatchingSuperReg(SrcReg, ARM64::dsub, &ARM64::FPR128RegClass);
BuildMI(MBB, I, DL, get(ARM64::ORRv16i8), DestReg).addReg(SrcReg).addReg(
SrcReg, getKillRegState(KillSrc));
} else {
BuildMI(MBB, I, DL, get(ARM64::FMOVDr), DestReg)
.addReg(SrcReg, getKillRegState(KillSrc));
}
return;
}
if (ARM64::FPR32RegClass.contains(DestReg) &&
ARM64::FPR32RegClass.contains(SrcReg)) {
if(getSubTarget().hasNEON()) {
DestReg =
RI.getMatchingSuperReg(DestReg, ARM64::ssub, &ARM64::FPR128RegClass);
SrcReg =
RI.getMatchingSuperReg(SrcReg, ARM64::ssub, &ARM64::FPR128RegClass);
BuildMI(MBB, I, DL, get(ARM64::ORRv16i8), DestReg).addReg(SrcReg).addReg(
SrcReg, getKillRegState(KillSrc));
} else {
BuildMI(MBB, I, DL, get(ARM64::FMOVSr), DestReg)
.addReg(SrcReg, getKillRegState(KillSrc));
}
return;
}
if (ARM64::FPR16RegClass.contains(DestReg) &&
ARM64::FPR16RegClass.contains(SrcReg)) {
if(getSubTarget().hasNEON()) {
DestReg =
RI.getMatchingSuperReg(DestReg, ARM64::hsub, &ARM64::FPR128RegClass);
SrcReg =
RI.getMatchingSuperReg(SrcReg, ARM64::hsub, &ARM64::FPR128RegClass);
BuildMI(MBB, I, DL, get(ARM64::ORRv16i8), DestReg).addReg(SrcReg).addReg(
SrcReg, getKillRegState(KillSrc));
} else {
DestReg =
RI.getMatchingSuperReg(DestReg, ARM64::hsub, &ARM64::FPR32RegClass);
SrcReg =
RI.getMatchingSuperReg(SrcReg, ARM64::hsub, &ARM64::FPR32RegClass);
BuildMI(MBB, I, DL, get(ARM64::FMOVSr), DestReg)
.addReg(SrcReg, getKillRegState(KillSrc));
}
return;
}
if (ARM64::FPR8RegClass.contains(DestReg) &&
ARM64::FPR8RegClass.contains(SrcReg)) {
if(getSubTarget().hasNEON()) {
DestReg =
RI.getMatchingSuperReg(DestReg, ARM64::bsub, &ARM64::FPR128RegClass);
SrcReg =
RI.getMatchingSuperReg(SrcReg, ARM64::bsub, &ARM64::FPR128RegClass);
BuildMI(MBB, I, DL, get(ARM64::ORRv16i8), DestReg).addReg(SrcReg).addReg(
SrcReg, getKillRegState(KillSrc));
} else {
DestReg =
RI.getMatchingSuperReg(DestReg, ARM64::bsub, &ARM64::FPR32RegClass);
SrcReg =
RI.getMatchingSuperReg(SrcReg, ARM64::bsub, &ARM64::FPR32RegClass);
BuildMI(MBB, I, DL, get(ARM64::FMOVSr), DestReg)
.addReg(SrcReg, getKillRegState(KillSrc));
}
return;
}
// Copies between GPR64 and FPR64.
if (ARM64::FPR64RegClass.contains(DestReg) &&
ARM64::GPR64RegClass.contains(SrcReg)) {
BuildMI(MBB, I, DL, get(ARM64::FMOVXDr), DestReg)
.addReg(SrcReg, getKillRegState(KillSrc));
return;
}
if (ARM64::GPR64RegClass.contains(DestReg) &&
ARM64::FPR64RegClass.contains(SrcReg)) {
BuildMI(MBB, I, DL, get(ARM64::FMOVDXr), DestReg)
.addReg(SrcReg, getKillRegState(KillSrc));
return;
}
// Copies between GPR32 and FPR32.
if (ARM64::FPR32RegClass.contains(DestReg) &&
ARM64::GPR32RegClass.contains(SrcReg)) {
BuildMI(MBB, I, DL, get(ARM64::FMOVWSr), DestReg)
.addReg(SrcReg, getKillRegState(KillSrc));
return;
}
if (ARM64::GPR32RegClass.contains(DestReg) &&
ARM64::FPR32RegClass.contains(SrcReg)) {
BuildMI(MBB, I, DL, get(ARM64::FMOVSWr), DestReg)
.addReg(SrcReg, getKillRegState(KillSrc));
return;
}
assert(0 && "unimplemented reg-to-reg copy");
}
void ARM64InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI,
unsigned SrcReg, bool isKill, int FI,
const TargetRegisterClass *RC,
const TargetRegisterInfo *TRI) const {
DebugLoc DL;
if (MBBI != MBB.end())
DL = MBBI->getDebugLoc();
MachineFunction &MF = *MBB.getParent();
MachineFrameInfo &MFI = *MF.getFrameInfo();
unsigned Align = MFI.getObjectAlignment(FI);
MachinePointerInfo PtrInfo(PseudoSourceValue::getFixedStack(FI));
MachineMemOperand *MMO = MF.getMachineMemOperand(
PtrInfo, MachineMemOperand::MOStore, MFI.getObjectSize(FI), Align);
unsigned Opc = 0;
bool Offset = true;
switch (RC->getSize()) {
case 1:
if (ARM64::FPR8RegClass.hasSubClassEq(RC))
Opc = ARM64::STRBui;
break;
case 2:
if (ARM64::FPR16RegClass.hasSubClassEq(RC))
Opc = ARM64::STRHui;
break;
case 4:
if (ARM64::GPR32allRegClass.hasSubClassEq(RC)) {
Opc = ARM64::STRWui;
if (TargetRegisterInfo::isVirtualRegister(SrcReg))
MF.getRegInfo().constrainRegClass(SrcReg, &ARM64::GPR32RegClass);
else
assert(SrcReg != ARM64::WSP);
} else if (ARM64::FPR32RegClass.hasSubClassEq(RC))
Opc = ARM64::STRSui;
break;
case 8:
if (ARM64::GPR64allRegClass.hasSubClassEq(RC)) {
Opc = ARM64::STRXui;
if (TargetRegisterInfo::isVirtualRegister(SrcReg))
MF.getRegInfo().constrainRegClass(SrcReg, &ARM64::GPR64RegClass);
else
assert(SrcReg != ARM64::SP);
} else if (ARM64::FPR64RegClass.hasSubClassEq(RC))
Opc = ARM64::STRDui;
break;
case 16:
if (ARM64::FPR128RegClass.hasSubClassEq(RC))
Opc = ARM64::STRQui;
else if (ARM64::DDRegClass.hasSubClassEq(RC)) {
assert(getSubTarget().hasNEON() &&
"Unexpected register store without NEON");
Opc = ARM64::ST1Twov1d, Offset = false;
}
break;
case 24:
if (ARM64::DDDRegClass.hasSubClassEq(RC)) {
assert(getSubTarget().hasNEON() &&
"Unexpected register store without NEON");
Opc = ARM64::ST1Threev1d, Offset = false;
}
break;
case 32:
if (ARM64::DDDDRegClass.hasSubClassEq(RC)) {
assert(getSubTarget().hasNEON() &&
"Unexpected register store without NEON");
Opc = ARM64::ST1Fourv1d, Offset = false;
} else if (ARM64::QQRegClass.hasSubClassEq(RC)) {
assert(getSubTarget().hasNEON() &&
"Unexpected register store without NEON");
Opc = ARM64::ST1Twov2d, Offset = false;
}
break;
case 48:
if (ARM64::QQQRegClass.hasSubClassEq(RC)) {
assert(getSubTarget().hasNEON() &&
"Unexpected register store without NEON");
Opc = ARM64::ST1Threev2d, Offset = false;
}
break;
case 64:
if (ARM64::QQQQRegClass.hasSubClassEq(RC)) {
assert(getSubTarget().hasNEON() &&
"Unexpected register store without NEON");
Opc = ARM64::ST1Fourv2d, Offset = false;
}
break;
}
assert(Opc && "Unknown register class");
const MachineInstrBuilder &MI = BuildMI(MBB, MBBI, DL, get(Opc))
.addReg(SrcReg, getKillRegState(isKill))
.addFrameIndex(FI);
if (Offset)
MI.addImm(0);
MI.addMemOperand(MMO);
}
void ARM64InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI,
unsigned DestReg, int FI,
const TargetRegisterClass *RC,
const TargetRegisterInfo *TRI) const {
DebugLoc DL;
if (MBBI != MBB.end())
DL = MBBI->getDebugLoc();
MachineFunction &MF = *MBB.getParent();
MachineFrameInfo &MFI = *MF.getFrameInfo();
unsigned Align = MFI.getObjectAlignment(FI);
MachinePointerInfo PtrInfo(PseudoSourceValue::getFixedStack(FI));
MachineMemOperand *MMO = MF.getMachineMemOperand(
PtrInfo, MachineMemOperand::MOLoad, MFI.getObjectSize(FI), Align);
unsigned Opc = 0;
bool Offset = true;
switch (RC->getSize()) {
case 1:
if (ARM64::FPR8RegClass.hasSubClassEq(RC))
Opc = ARM64::LDRBui;
break;
case 2:
if (ARM64::FPR16RegClass.hasSubClassEq(RC))
Opc = ARM64::LDRHui;
break;
case 4:
if (ARM64::GPR32allRegClass.hasSubClassEq(RC)) {
Opc = ARM64::LDRWui;
if (TargetRegisterInfo::isVirtualRegister(DestReg))
MF.getRegInfo().constrainRegClass(DestReg, &ARM64::GPR32RegClass);
else
assert(DestReg != ARM64::WSP);
} else if (ARM64::FPR32RegClass.hasSubClassEq(RC))
Opc = ARM64::LDRSui;
break;
case 8:
if (ARM64::GPR64allRegClass.hasSubClassEq(RC)) {
Opc = ARM64::LDRXui;
if (TargetRegisterInfo::isVirtualRegister(DestReg))
MF.getRegInfo().constrainRegClass(DestReg, &ARM64::GPR64RegClass);
else
assert(DestReg != ARM64::SP);
} else if (ARM64::FPR64RegClass.hasSubClassEq(RC))
Opc = ARM64::LDRDui;
break;
case 16:
if (ARM64::FPR128RegClass.hasSubClassEq(RC))
Opc = ARM64::LDRQui;
else if (ARM64::DDRegClass.hasSubClassEq(RC)) {
assert(getSubTarget().hasNEON() &&
"Unexpected register load without NEON");
Opc = ARM64::LD1Twov1d, Offset = false;
}
break;
case 24:
if (ARM64::DDDRegClass.hasSubClassEq(RC)) {
assert(getSubTarget().hasNEON() &&
"Unexpected register load without NEON");
Opc = ARM64::LD1Threev1d, Offset = false;
}
break;
case 32:
if (ARM64::DDDDRegClass.hasSubClassEq(RC)) {
assert(getSubTarget().hasNEON() &&
"Unexpected register load without NEON");
Opc = ARM64::LD1Fourv1d, Offset = false;
} else if (ARM64::QQRegClass.hasSubClassEq(RC)) {
assert(getSubTarget().hasNEON() &&
"Unexpected register load without NEON");
Opc = ARM64::LD1Twov2d, Offset = false;
}
break;
case 48:
if (ARM64::QQQRegClass.hasSubClassEq(RC)) {
assert(getSubTarget().hasNEON() &&
"Unexpected register load without NEON");
Opc = ARM64::LD1Threev2d, Offset = false;
}
break;
case 64:
if (ARM64::QQQQRegClass.hasSubClassEq(RC)) {
assert(getSubTarget().hasNEON() &&
"Unexpected register load without NEON");
Opc = ARM64::LD1Fourv2d, Offset = false;
}
break;
}
assert(Opc && "Unknown register class");
const MachineInstrBuilder &MI = BuildMI(MBB, MBBI, DL, get(Opc))
.addReg(DestReg, getDefRegState(true))
.addFrameIndex(FI);
if (Offset)
MI.addImm(0);
MI.addMemOperand(MMO);
}
void llvm::emitFrameOffset(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI, DebugLoc DL,
unsigned DestReg, unsigned SrcReg, int Offset,
const ARM64InstrInfo *TII, MachineInstr::MIFlag Flag,
bool SetNZCV) {
if (DestReg == SrcReg && Offset == 0)
return;
bool isSub = Offset < 0;
if (isSub)
Offset = -Offset;
// FIXME: If the offset won't fit in 24-bits, compute the offset into a
// scratch register. If DestReg is a virtual register, use it as the
// scratch register; otherwise, create a new virtual register (to be
// replaced by the scavenger at the end of PEI). That case can be optimized
// slightly if DestReg is SP which is always 16-byte aligned, so the scratch
// register can be loaded with offset%8 and the add/sub can use an extending
// instruction with LSL#3.
// Currently the function handles any offsets but generates a poor sequence
// of code.
// assert(Offset < (1 << 24) && "unimplemented reg plus immediate");
unsigned Opc;
if (SetNZCV)
Opc = isSub ? ARM64::SUBSXri : ARM64::ADDSXri;
else
Opc = isSub ? ARM64::SUBXri : ARM64::ADDXri;
const unsigned MaxEncoding = 0xfff;
const unsigned ShiftSize = 12;
const unsigned MaxEncodableValue = MaxEncoding << ShiftSize;
while (((unsigned)Offset) >= (1 << ShiftSize)) {
unsigned ThisVal;
if (((unsigned)Offset) > MaxEncodableValue) {
ThisVal = MaxEncodableValue;
} else {
ThisVal = Offset & MaxEncodableValue;
}
assert((ThisVal >> ShiftSize) <= MaxEncoding &&
"Encoding cannot handle value that big");
BuildMI(MBB, MBBI, DL, TII->get(Opc), DestReg)
.addReg(SrcReg)
.addImm(ThisVal >> ShiftSize)
.addImm(ARM64_AM::getShifterImm(ARM64_AM::LSL, ShiftSize))
.setMIFlag(Flag);
SrcReg = DestReg;
Offset -= ThisVal;
if (Offset == 0)
return;
}
BuildMI(MBB, MBBI, DL, TII->get(Opc), DestReg)
.addReg(SrcReg)
.addImm(Offset)
.addImm(ARM64_AM::getShifterImm(ARM64_AM::LSL, 0))
.setMIFlag(Flag);
}
MachineInstr *
ARM64InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, MachineInstr *MI,
const SmallVectorImpl<unsigned> &Ops,
int FrameIndex) const {
// This is a bit of a hack. Consider this instruction:
//
// %vreg0<def> = COPY %SP; GPR64all:%vreg0
//
// We explicitly chose GPR64all for the virtual register so such a copy might
// be eliminated by RegisterCoalescer. However, that may not be possible, and
// %vreg0 may even spill. We can't spill %SP, and since it is in the GPR64all
// register class, TargetInstrInfo::foldMemoryOperand() is going to try.
//
// To prevent that, we are going to constrain the %vreg0 register class here.
//
// <rdar://problem/11522048>
//
if (MI->isCopy()) {
unsigned DstReg = MI->getOperand(0).getReg();
unsigned SrcReg = MI->getOperand(1).getReg();
if (SrcReg == ARM64::SP && TargetRegisterInfo::isVirtualRegister(DstReg)) {
MF.getRegInfo().constrainRegClass(DstReg, &ARM64::GPR64RegClass);
return nullptr;
}
if (DstReg == ARM64::SP && TargetRegisterInfo::isVirtualRegister(SrcReg)) {
MF.getRegInfo().constrainRegClass(SrcReg, &ARM64::GPR64RegClass);
return nullptr;
}
}
// Cannot fold.
return nullptr;
}
int llvm::isARM64FrameOffsetLegal(const MachineInstr &MI, int &Offset,
bool *OutUseUnscaledOp,
unsigned *OutUnscaledOp,
int *EmittableOffset) {
int Scale = 1;
bool IsSigned = false;
// The ImmIdx should be changed case by case if it is not 2.
unsigned ImmIdx = 2;
unsigned UnscaledOp = 0;
// Set output values in case of early exit.
if (EmittableOffset)
*EmittableOffset = 0;
if (OutUseUnscaledOp)
*OutUseUnscaledOp = false;
if (OutUnscaledOp)
*OutUnscaledOp = 0;
switch (MI.getOpcode()) {
default:
assert(0 && "unhandled opcode in rewriteARM64FrameIndex");
// Vector spills/fills can't take an immediate offset.
case ARM64::LD1Twov2d:
case ARM64::LD1Threev2d:
case ARM64::LD1Fourv2d:
case ARM64::LD1Twov1d:
case ARM64::LD1Threev1d:
case ARM64::LD1Fourv1d:
case ARM64::ST1Twov2d:
case ARM64::ST1Threev2d:
case ARM64::ST1Fourv2d:
case ARM64::ST1Twov1d:
case ARM64::ST1Threev1d:
case ARM64::ST1Fourv1d:
return ARM64FrameOffsetCannotUpdate;
case ARM64::PRFMui:
Scale = 8;
UnscaledOp = ARM64::PRFUMi;
break;
case ARM64::LDRXui:
Scale = 8;
UnscaledOp = ARM64::LDURXi;
break;
case ARM64::LDRWui:
Scale = 4;
UnscaledOp = ARM64::LDURWi;
break;
case ARM64::LDRBui:
Scale = 1;
UnscaledOp = ARM64::LDURBi;
break;
case ARM64::LDRHui:
Scale = 2;
UnscaledOp = ARM64::LDURHi;
break;
case ARM64::LDRSui:
Scale = 4;
UnscaledOp = ARM64::LDURSi;
break;
case ARM64::LDRDui:
Scale = 8;
UnscaledOp = ARM64::LDURDi;
break;
case ARM64::LDRQui:
Scale = 16;
UnscaledOp = ARM64::LDURQi;
break;
case ARM64::LDRBBui:
Scale = 1;
UnscaledOp = ARM64::LDURBBi;
break;
case ARM64::LDRHHui:
Scale = 2;
UnscaledOp = ARM64::LDURHHi;
break;
case ARM64::LDRSBXui:
Scale = 1;
UnscaledOp = ARM64::LDURSBXi;
break;
case ARM64::LDRSBWui:
Scale = 1;
UnscaledOp = ARM64::LDURSBWi;
break;
case ARM64::LDRSHXui:
Scale = 2;
UnscaledOp = ARM64::LDURSHXi;
break;
case ARM64::LDRSHWui:
Scale = 2;
UnscaledOp = ARM64::LDURSHWi;
break;
case ARM64::LDRSWui:
Scale = 4;
UnscaledOp = ARM64::LDURSWi;
break;
case ARM64::STRXui:
Scale = 8;
UnscaledOp = ARM64::STURXi;
break;
case ARM64::STRWui:
Scale = 4;
UnscaledOp = ARM64::STURWi;
break;
case ARM64::STRBui:
Scale = 1;
UnscaledOp = ARM64::STURBi;
break;
case ARM64::STRHui:
Scale = 2;
UnscaledOp = ARM64::STURHi;
break;
case ARM64::STRSui:
Scale = 4;
UnscaledOp = ARM64::STURSi;
break;
case ARM64::STRDui:
Scale = 8;
UnscaledOp = ARM64::STURDi;
break;
case ARM64::STRQui:
Scale = 16;
UnscaledOp = ARM64::STURQi;
break;
case ARM64::STRBBui:
Scale = 1;
UnscaledOp = ARM64::STURBBi;
break;
case ARM64::STRHHui:
Scale = 2;
UnscaledOp = ARM64::STURHHi;
break;
case ARM64::LDPXi:
case ARM64::LDPDi:
case ARM64::STPXi:
case ARM64::STPDi:
IsSigned = true;
Scale = 8;
break;
case ARM64::LDPQi:
case ARM64::STPQi:
IsSigned = true;
Scale = 16;
break;
case ARM64::LDPWi:
case ARM64::LDPSi:
case ARM64::STPWi:
case ARM64::STPSi:
IsSigned = true;
Scale = 4;
break;
case ARM64::LDURXi:
case ARM64::LDURWi:
case ARM64::LDURBi:
case ARM64::LDURHi:
case ARM64::LDURSi:
case ARM64::LDURDi:
case ARM64::LDURQi:
case ARM64::LDURHHi:
case ARM64::LDURBBi:
case ARM64::LDURSBXi:
case ARM64::LDURSBWi:
case ARM64::LDURSHXi:
case ARM64::LDURSHWi:
case ARM64::LDURSWi:
case ARM64::STURXi:
case ARM64::STURWi:
case ARM64::STURBi:
case ARM64::STURHi:
case ARM64::STURSi:
case ARM64::STURDi:
case ARM64::STURQi:
case ARM64::STURBBi:
case ARM64::STURHHi:
Scale = 1;
break;
}
Offset += MI.getOperand(ImmIdx).getImm() * Scale;
bool useUnscaledOp = false;
// If the offset doesn't match the scale, we rewrite the instruction to
// use the unscaled instruction instead. Likewise, if we have a negative
// offset (and have an unscaled op to use).
if ((Offset & (Scale - 1)) != 0 || (Offset < 0 && UnscaledOp != 0))
useUnscaledOp = true;
// Use an unscaled addressing mode if the instruction has a negative offset
// (or if the instruction is already using an unscaled addressing mode).
unsigned MaskBits;
if (IsSigned) {
// ldp/stp instructions.
MaskBits = 7;
Offset /= Scale;
} else if (UnscaledOp == 0 || useUnscaledOp) {
MaskBits = 9;
IsSigned = true;
Scale = 1;
} else {
MaskBits = 12;
IsSigned = false;
Offset /= Scale;
}
// Attempt to fold address computation.
int MaxOff = (1 << (MaskBits - IsSigned)) - 1;
int MinOff = (IsSigned ? (-MaxOff - 1) : 0);
if (Offset >= MinOff && Offset <= MaxOff) {
if (EmittableOffset)
*EmittableOffset = Offset;
Offset = 0;
} else {
int NewOff = Offset < 0 ? MinOff : MaxOff;
if (EmittableOffset)
*EmittableOffset = NewOff;
Offset = (Offset - NewOff) * Scale;
}
if (OutUseUnscaledOp)
*OutUseUnscaledOp = useUnscaledOp;
if (OutUnscaledOp)
*OutUnscaledOp = UnscaledOp;
return ARM64FrameOffsetCanUpdate |
(Offset == 0 ? ARM64FrameOffsetIsLegal : 0);
}
bool llvm::rewriteARM64FrameIndex(MachineInstr &MI, unsigned FrameRegIdx,
unsigned FrameReg, int &Offset,
const ARM64InstrInfo *TII) {
unsigned Opcode = MI.getOpcode();
unsigned ImmIdx = FrameRegIdx + 1;
if (Opcode == ARM64::ADDSXri || Opcode == ARM64::ADDXri) {
Offset += MI.getOperand(ImmIdx).getImm();
emitFrameOffset(*MI.getParent(), MI, MI.getDebugLoc(),
MI.getOperand(0).getReg(), FrameReg, Offset, TII,
MachineInstr::NoFlags, (Opcode == ARM64::ADDSXri));
MI.eraseFromParent();
Offset = 0;
return true;
}
int NewOffset;
unsigned UnscaledOp;
bool UseUnscaledOp;
int Status = isARM64FrameOffsetLegal(MI, Offset, &UseUnscaledOp, &UnscaledOp,
&NewOffset);
if (Status & ARM64FrameOffsetCanUpdate) {
if (Status & ARM64FrameOffsetIsLegal)
// Replace the FrameIndex with FrameReg.
MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
if (UseUnscaledOp)
MI.setDesc(TII->get(UnscaledOp));
MI.getOperand(ImmIdx).ChangeToImmediate(NewOffset);
return Offset == 0;
}
return false;
}
void ARM64InstrInfo::getNoopForMachoTarget(MCInst &NopInst) const {
NopInst.setOpcode(ARM64::HINT);
NopInst.addOperand(MCOperand::CreateImm(0));
}