mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-26 21:32:10 +00:00
8749b61178
especially in the case of addresses computed from loop induction variables. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@61075 91177308-0d34-0410-b5e6-96231b3b80d8
115 lines
4.5 KiB
C++
115 lines
4.5 KiB
C++
//===---- LatencyPriorityQueue.cpp - A latency-oriented priority queue ----===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the LatencyPriorityQueue class, which is a
|
|
// SchedulingPriorityQueue that schedules using latency information to
|
|
// reduce the length of the critical path through the basic block.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "scheduler"
|
|
#include "llvm/CodeGen/LatencyPriorityQueue.h"
|
|
#include "llvm/Support/Debug.h"
|
|
using namespace llvm;
|
|
|
|
bool latency_sort::operator()(const SUnit *LHS, const SUnit *RHS) const {
|
|
// The isScheduleHigh flag allows nodes with wraparound dependencies that
|
|
// cannot easily be modeled as edges with latencies to be scheduled as
|
|
// soon as possible in a top-down schedule.
|
|
if (LHS->isScheduleHigh && !RHS->isScheduleHigh)
|
|
return false;
|
|
if (!LHS->isScheduleHigh && RHS->isScheduleHigh)
|
|
return true;
|
|
|
|
unsigned LHSNum = LHS->NodeNum;
|
|
unsigned RHSNum = RHS->NodeNum;
|
|
|
|
// The most important heuristic is scheduling the critical path.
|
|
unsigned LHSLatency = PQ->getLatency(LHSNum);
|
|
unsigned RHSLatency = PQ->getLatency(RHSNum);
|
|
if (LHSLatency < RHSLatency) return true;
|
|
if (LHSLatency > RHSLatency) return false;
|
|
|
|
// After that, if two nodes have identical latencies, look to see if one will
|
|
// unblock more other nodes than the other.
|
|
unsigned LHSBlocked = PQ->getNumSolelyBlockNodes(LHSNum);
|
|
unsigned RHSBlocked = PQ->getNumSolelyBlockNodes(RHSNum);
|
|
if (LHSBlocked < RHSBlocked) return true;
|
|
if (LHSBlocked > RHSBlocked) return false;
|
|
|
|
// Finally, just to provide a stable ordering, use the node number as a
|
|
// deciding factor.
|
|
return LHSNum < RHSNum;
|
|
}
|
|
|
|
|
|
/// getSingleUnscheduledPred - If there is exactly one unscheduled predecessor
|
|
/// of SU, return it, otherwise return null.
|
|
SUnit *LatencyPriorityQueue::getSingleUnscheduledPred(SUnit *SU) {
|
|
SUnit *OnlyAvailablePred = 0;
|
|
for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
|
|
I != E; ++I) {
|
|
SUnit &Pred = *I->getSUnit();
|
|
if (!Pred.isScheduled) {
|
|
// We found an available, but not scheduled, predecessor. If it's the
|
|
// only one we have found, keep track of it... otherwise give up.
|
|
if (OnlyAvailablePred && OnlyAvailablePred != &Pred)
|
|
return 0;
|
|
OnlyAvailablePred = &Pred;
|
|
}
|
|
}
|
|
|
|
return OnlyAvailablePred;
|
|
}
|
|
|
|
void LatencyPriorityQueue::push_impl(SUnit *SU) {
|
|
// Look at all of the successors of this node. Count the number of nodes that
|
|
// this node is the sole unscheduled node for.
|
|
unsigned NumNodesBlocking = 0;
|
|
for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
|
|
I != E; ++I)
|
|
if (getSingleUnscheduledPred(I->getSUnit()) == SU)
|
|
++NumNodesBlocking;
|
|
NumNodesSolelyBlocking[SU->NodeNum] = NumNodesBlocking;
|
|
|
|
Queue.push(SU);
|
|
}
|
|
|
|
|
|
// ScheduledNode - As nodes are scheduled, we look to see if there are any
|
|
// successor nodes that have a single unscheduled predecessor. If so, that
|
|
// single predecessor has a higher priority, since scheduling it will make
|
|
// the node available.
|
|
void LatencyPriorityQueue::ScheduledNode(SUnit *SU) {
|
|
for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
|
|
I != E; ++I)
|
|
AdjustPriorityOfUnscheduledPreds(I->getSUnit());
|
|
}
|
|
|
|
/// AdjustPriorityOfUnscheduledPreds - One of the predecessors of SU was just
|
|
/// scheduled. If SU is not itself available, then there is at least one
|
|
/// predecessor node that has not been scheduled yet. If SU has exactly ONE
|
|
/// unscheduled predecessor, we want to increase its priority: it getting
|
|
/// scheduled will make this node available, so it is better than some other
|
|
/// node of the same priority that will not make a node available.
|
|
void LatencyPriorityQueue::AdjustPriorityOfUnscheduledPreds(SUnit *SU) {
|
|
if (SU->isAvailable) return; // All preds scheduled.
|
|
|
|
SUnit *OnlyAvailablePred = getSingleUnscheduledPred(SU);
|
|
if (OnlyAvailablePred == 0 || !OnlyAvailablePred->isAvailable) return;
|
|
|
|
// Okay, we found a single predecessor that is available, but not scheduled.
|
|
// Since it is available, it must be in the priority queue. First remove it.
|
|
remove(OnlyAvailablePred);
|
|
|
|
// Reinsert the node into the priority queue, which recomputes its
|
|
// NumNodesSolelyBlocking value.
|
|
push(OnlyAvailablePred);
|
|
}
|