mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-15 04:30:12 +00:00
f09e02f01a
This happens when there is both stack realignment and a dynamic alloca in the function. If we overwrite %esi (rep;movsl uses fixed registers) we'll lose the base pointer and the next register spill will write into oblivion. Fixes PR15249 and unbreaks firefox on i386/freebsd. Mozilla uses dynamic allocas and freebsd a 4 byte stack alignment. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@175057 91177308-0d34-0410-b5e6-96231b3b80d8
271 lines
10 KiB
C++
271 lines
10 KiB
C++
//===-- X86SelectionDAGInfo.cpp - X86 SelectionDAG Info -------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the X86SelectionDAGInfo class.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "x86-selectiondag-info"
|
|
#include "X86TargetMachine.h"
|
|
#include "llvm/CodeGen/SelectionDAG.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
using namespace llvm;
|
|
|
|
X86SelectionDAGInfo::X86SelectionDAGInfo(const X86TargetMachine &TM) :
|
|
TargetSelectionDAGInfo(TM),
|
|
Subtarget(&TM.getSubtarget<X86Subtarget>()),
|
|
TLI(*TM.getTargetLowering()) {
|
|
}
|
|
|
|
X86SelectionDAGInfo::~X86SelectionDAGInfo() {
|
|
}
|
|
|
|
SDValue
|
|
X86SelectionDAGInfo::EmitTargetCodeForMemset(SelectionDAG &DAG, DebugLoc dl,
|
|
SDValue Chain,
|
|
SDValue Dst, SDValue Src,
|
|
SDValue Size, unsigned Align,
|
|
bool isVolatile,
|
|
MachinePointerInfo DstPtrInfo) const {
|
|
ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
|
|
|
|
// If to a segment-relative address space, use the default lowering.
|
|
if (DstPtrInfo.getAddrSpace() >= 256)
|
|
return SDValue();
|
|
|
|
// If not DWORD aligned or size is more than the threshold, call the library.
|
|
// The libc version is likely to be faster for these cases. It can use the
|
|
// address value and run time information about the CPU.
|
|
if ((Align & 3) != 0 ||
|
|
!ConstantSize ||
|
|
ConstantSize->getZExtValue() >
|
|
Subtarget->getMaxInlineSizeThreshold()) {
|
|
SDValue InFlag(0, 0);
|
|
|
|
// Check to see if there is a specialized entry-point for memory zeroing.
|
|
ConstantSDNode *V = dyn_cast<ConstantSDNode>(Src);
|
|
|
|
if (const char *bzeroEntry = V &&
|
|
V->isNullValue() ? Subtarget->getBZeroEntry() : 0) {
|
|
EVT IntPtr = TLI.getPointerTy();
|
|
Type *IntPtrTy = getDataLayout()->getIntPtrType(*DAG.getContext());
|
|
TargetLowering::ArgListTy Args;
|
|
TargetLowering::ArgListEntry Entry;
|
|
Entry.Node = Dst;
|
|
Entry.Ty = IntPtrTy;
|
|
Args.push_back(Entry);
|
|
Entry.Node = Size;
|
|
Args.push_back(Entry);
|
|
TargetLowering::
|
|
CallLoweringInfo CLI(Chain, Type::getVoidTy(*DAG.getContext()),
|
|
false, false, false, false,
|
|
0, CallingConv::C, /*isTailCall=*/false,
|
|
/*doesNotRet=*/false, /*isReturnValueUsed=*/false,
|
|
DAG.getExternalSymbol(bzeroEntry, IntPtr), Args,
|
|
DAG, dl);
|
|
std::pair<SDValue,SDValue> CallResult =
|
|
TLI.LowerCallTo(CLI);
|
|
return CallResult.second;
|
|
}
|
|
|
|
// Otherwise have the target-independent code call memset.
|
|
return SDValue();
|
|
}
|
|
|
|
uint64_t SizeVal = ConstantSize->getZExtValue();
|
|
SDValue InFlag(0, 0);
|
|
EVT AVT;
|
|
SDValue Count;
|
|
ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Src);
|
|
unsigned BytesLeft = 0;
|
|
bool TwoRepStos = false;
|
|
if (ValC) {
|
|
unsigned ValReg;
|
|
uint64_t Val = ValC->getZExtValue() & 255;
|
|
|
|
// If the value is a constant, then we can potentially use larger sets.
|
|
switch (Align & 3) {
|
|
case 2: // WORD aligned
|
|
AVT = MVT::i16;
|
|
ValReg = X86::AX;
|
|
Val = (Val << 8) | Val;
|
|
break;
|
|
case 0: // DWORD aligned
|
|
AVT = MVT::i32;
|
|
ValReg = X86::EAX;
|
|
Val = (Val << 8) | Val;
|
|
Val = (Val << 16) | Val;
|
|
if (Subtarget->is64Bit() && ((Align & 0x7) == 0)) { // QWORD aligned
|
|
AVT = MVT::i64;
|
|
ValReg = X86::RAX;
|
|
Val = (Val << 32) | Val;
|
|
}
|
|
break;
|
|
default: // Byte aligned
|
|
AVT = MVT::i8;
|
|
ValReg = X86::AL;
|
|
Count = DAG.getIntPtrConstant(SizeVal);
|
|
break;
|
|
}
|
|
|
|
if (AVT.bitsGT(MVT::i8)) {
|
|
unsigned UBytes = AVT.getSizeInBits() / 8;
|
|
Count = DAG.getIntPtrConstant(SizeVal / UBytes);
|
|
BytesLeft = SizeVal % UBytes;
|
|
}
|
|
|
|
Chain = DAG.getCopyToReg(Chain, dl, ValReg, DAG.getConstant(Val, AVT),
|
|
InFlag);
|
|
InFlag = Chain.getValue(1);
|
|
} else {
|
|
AVT = MVT::i8;
|
|
Count = DAG.getIntPtrConstant(SizeVal);
|
|
Chain = DAG.getCopyToReg(Chain, dl, X86::AL, Src, InFlag);
|
|
InFlag = Chain.getValue(1);
|
|
}
|
|
|
|
Chain = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RCX :
|
|
X86::ECX,
|
|
Count, InFlag);
|
|
InFlag = Chain.getValue(1);
|
|
Chain = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RDI :
|
|
X86::EDI,
|
|
Dst, InFlag);
|
|
InFlag = Chain.getValue(1);
|
|
|
|
SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
|
|
SDValue Ops[] = { Chain, DAG.getValueType(AVT), InFlag };
|
|
Chain = DAG.getNode(X86ISD::REP_STOS, dl, Tys, Ops, array_lengthof(Ops));
|
|
|
|
if (TwoRepStos) {
|
|
InFlag = Chain.getValue(1);
|
|
Count = Size;
|
|
EVT CVT = Count.getValueType();
|
|
SDValue Left = DAG.getNode(ISD::AND, dl, CVT, Count,
|
|
DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
|
|
Chain = DAG.getCopyToReg(Chain, dl, (CVT == MVT::i64) ? X86::RCX :
|
|
X86::ECX,
|
|
Left, InFlag);
|
|
InFlag = Chain.getValue(1);
|
|
Tys = DAG.getVTList(MVT::Other, MVT::Glue);
|
|
SDValue Ops[] = { Chain, DAG.getValueType(MVT::i8), InFlag };
|
|
Chain = DAG.getNode(X86ISD::REP_STOS, dl, Tys, Ops, array_lengthof(Ops));
|
|
} else if (BytesLeft) {
|
|
// Handle the last 1 - 7 bytes.
|
|
unsigned Offset = SizeVal - BytesLeft;
|
|
EVT AddrVT = Dst.getValueType();
|
|
EVT SizeVT = Size.getValueType();
|
|
|
|
Chain = DAG.getMemset(Chain, dl,
|
|
DAG.getNode(ISD::ADD, dl, AddrVT, Dst,
|
|
DAG.getConstant(Offset, AddrVT)),
|
|
Src,
|
|
DAG.getConstant(BytesLeft, SizeVT),
|
|
Align, isVolatile, DstPtrInfo.getWithOffset(Offset));
|
|
}
|
|
|
|
// TODO: Use a Tokenfactor, as in memcpy, instead of a single chain.
|
|
return Chain;
|
|
}
|
|
|
|
SDValue
|
|
X86SelectionDAGInfo::EmitTargetCodeForMemcpy(SelectionDAG &DAG, DebugLoc dl,
|
|
SDValue Chain, SDValue Dst, SDValue Src,
|
|
SDValue Size, unsigned Align,
|
|
bool isVolatile, bool AlwaysInline,
|
|
MachinePointerInfo DstPtrInfo,
|
|
MachinePointerInfo SrcPtrInfo) const {
|
|
// This requires the copy size to be a constant, preferably
|
|
// within a subtarget-specific limit.
|
|
ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
|
|
if (!ConstantSize)
|
|
return SDValue();
|
|
uint64_t SizeVal = ConstantSize->getZExtValue();
|
|
if (!AlwaysInline && SizeVal > Subtarget->getMaxInlineSizeThreshold())
|
|
return SDValue();
|
|
|
|
/// If not DWORD aligned, it is more efficient to call the library. However
|
|
/// if calling the library is not allowed (AlwaysInline), then soldier on as
|
|
/// the code generated here is better than the long load-store sequence we
|
|
/// would otherwise get.
|
|
if (!AlwaysInline && (Align & 3) != 0)
|
|
return SDValue();
|
|
|
|
// If to a segment-relative address space, use the default lowering.
|
|
if (DstPtrInfo.getAddrSpace() >= 256 ||
|
|
SrcPtrInfo.getAddrSpace() >= 256)
|
|
return SDValue();
|
|
|
|
// ESI might be used as a base pointer, in that case we can't simply overwrite
|
|
// the register. Fall back to generic code.
|
|
const X86RegisterInfo *TRI =
|
|
static_cast<const X86RegisterInfo *>(DAG.getTarget().getRegisterInfo());
|
|
if (TRI->hasBasePointer(DAG.getMachineFunction()) &&
|
|
TRI->getBaseRegister() == X86::ESI)
|
|
return SDValue();
|
|
|
|
MVT AVT;
|
|
if (Align & 1)
|
|
AVT = MVT::i8;
|
|
else if (Align & 2)
|
|
AVT = MVT::i16;
|
|
else if (Align & 4)
|
|
// DWORD aligned
|
|
AVT = MVT::i32;
|
|
else
|
|
// QWORD aligned
|
|
AVT = Subtarget->is64Bit() ? MVT::i64 : MVT::i32;
|
|
|
|
unsigned UBytes = AVT.getSizeInBits() / 8;
|
|
unsigned CountVal = SizeVal / UBytes;
|
|
SDValue Count = DAG.getIntPtrConstant(CountVal);
|
|
unsigned BytesLeft = SizeVal % UBytes;
|
|
|
|
SDValue InFlag(0, 0);
|
|
Chain = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RCX :
|
|
X86::ECX,
|
|
Count, InFlag);
|
|
InFlag = Chain.getValue(1);
|
|
Chain = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RDI :
|
|
X86::EDI,
|
|
Dst, InFlag);
|
|
InFlag = Chain.getValue(1);
|
|
Chain = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RSI :
|
|
X86::ESI,
|
|
Src, InFlag);
|
|
InFlag = Chain.getValue(1);
|
|
|
|
SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
|
|
SDValue Ops[] = { Chain, DAG.getValueType(AVT), InFlag };
|
|
SDValue RepMovs = DAG.getNode(X86ISD::REP_MOVS, dl, Tys, Ops,
|
|
array_lengthof(Ops));
|
|
|
|
SmallVector<SDValue, 4> Results;
|
|
Results.push_back(RepMovs);
|
|
if (BytesLeft) {
|
|
// Handle the last 1 - 7 bytes.
|
|
unsigned Offset = SizeVal - BytesLeft;
|
|
EVT DstVT = Dst.getValueType();
|
|
EVT SrcVT = Src.getValueType();
|
|
EVT SizeVT = Size.getValueType();
|
|
Results.push_back(DAG.getMemcpy(Chain, dl,
|
|
DAG.getNode(ISD::ADD, dl, DstVT, Dst,
|
|
DAG.getConstant(Offset, DstVT)),
|
|
DAG.getNode(ISD::ADD, dl, SrcVT, Src,
|
|
DAG.getConstant(Offset, SrcVT)),
|
|
DAG.getConstant(BytesLeft, SizeVT),
|
|
Align, isVolatile, AlwaysInline,
|
|
DstPtrInfo.getWithOffset(Offset),
|
|
SrcPtrInfo.getWithOffset(Offset)));
|
|
}
|
|
|
|
return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
|
|
&Results[0], Results.size());
|
|
}
|