mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-13 20:32:21 +00:00
0e407e7bbf
Summary: The loop which emits AssemblerPredicate conditions also links them together by emitting a '&&'. If the 1st predicate is not an AssemblerPredicate, while the 2nd one is, nothing gets emitted for the 1st one, but we still emit the '&&' because of the 2nd predicate. This generated code looks like "( && Cond2)" and is invalid. Reviewers: dsanders Reviewed By: dsanders Subscribers: dsanders, llvm-commits Differential Revision: http://reviews.llvm.org/D8294 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234312 91177308-0d34-0410-b5e6-96231b3b80d8
2225 lines
77 KiB
C++
2225 lines
77 KiB
C++
//===------------ FixedLenDecoderEmitter.cpp - Decoder Generator ----------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// It contains the tablegen backend that emits the decoder functions for
|
|
// targets with fixed length instruction set.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "CodeGenTarget.h"
|
|
#include "llvm/ADT/APInt.h"
|
|
#include "llvm/ADT/SmallString.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/ADT/Twine.h"
|
|
#include "llvm/MC/MCFixedLenDisassembler.h"
|
|
#include "llvm/Support/DataTypes.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/FormattedStream.h"
|
|
#include "llvm/Support/LEB128.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/TableGen/Error.h"
|
|
#include "llvm/TableGen/Record.h"
|
|
#include <map>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "decoder-emitter"
|
|
|
|
namespace {
|
|
struct EncodingField {
|
|
unsigned Base, Width, Offset;
|
|
EncodingField(unsigned B, unsigned W, unsigned O)
|
|
: Base(B), Width(W), Offset(O) { }
|
|
};
|
|
|
|
struct OperandInfo {
|
|
std::vector<EncodingField> Fields;
|
|
std::string Decoder;
|
|
|
|
OperandInfo(std::string D)
|
|
: Decoder(D) { }
|
|
|
|
void addField(unsigned Base, unsigned Width, unsigned Offset) {
|
|
Fields.push_back(EncodingField(Base, Width, Offset));
|
|
}
|
|
|
|
unsigned numFields() const { return Fields.size(); }
|
|
|
|
typedef std::vector<EncodingField>::const_iterator const_iterator;
|
|
|
|
const_iterator begin() const { return Fields.begin(); }
|
|
const_iterator end() const { return Fields.end(); }
|
|
};
|
|
|
|
typedef std::vector<uint8_t> DecoderTable;
|
|
typedef uint32_t DecoderFixup;
|
|
typedef std::vector<DecoderFixup> FixupList;
|
|
typedef std::vector<FixupList> FixupScopeList;
|
|
typedef SetVector<std::string> PredicateSet;
|
|
typedef SetVector<std::string> DecoderSet;
|
|
struct DecoderTableInfo {
|
|
DecoderTable Table;
|
|
FixupScopeList FixupStack;
|
|
PredicateSet Predicates;
|
|
DecoderSet Decoders;
|
|
};
|
|
|
|
} // End anonymous namespace
|
|
|
|
namespace {
|
|
class FixedLenDecoderEmitter {
|
|
const std::vector<const CodeGenInstruction*> *NumberedInstructions;
|
|
public:
|
|
|
|
// Defaults preserved here for documentation, even though they aren't
|
|
// strictly necessary given the way that this is currently being called.
|
|
FixedLenDecoderEmitter(RecordKeeper &R,
|
|
std::string PredicateNamespace,
|
|
std::string GPrefix = "if (",
|
|
std::string GPostfix = " == MCDisassembler::Fail)"
|
|
" return MCDisassembler::Fail;",
|
|
std::string ROK = "MCDisassembler::Success",
|
|
std::string RFail = "MCDisassembler::Fail",
|
|
std::string L = "") :
|
|
Target(R),
|
|
PredicateNamespace(PredicateNamespace),
|
|
GuardPrefix(GPrefix), GuardPostfix(GPostfix),
|
|
ReturnOK(ROK), ReturnFail(RFail), Locals(L) {}
|
|
|
|
// Emit the decoder state machine table.
|
|
void emitTable(formatted_raw_ostream &o, DecoderTable &Table,
|
|
unsigned Indentation, unsigned BitWidth,
|
|
StringRef Namespace) const;
|
|
void emitPredicateFunction(formatted_raw_ostream &OS,
|
|
PredicateSet &Predicates,
|
|
unsigned Indentation) const;
|
|
void emitDecoderFunction(formatted_raw_ostream &OS,
|
|
DecoderSet &Decoders,
|
|
unsigned Indentation) const;
|
|
|
|
// run - Output the code emitter
|
|
void run(raw_ostream &o);
|
|
|
|
private:
|
|
CodeGenTarget Target;
|
|
public:
|
|
std::string PredicateNamespace;
|
|
std::string GuardPrefix, GuardPostfix;
|
|
std::string ReturnOK, ReturnFail;
|
|
std::string Locals;
|
|
};
|
|
} // End anonymous namespace
|
|
|
|
// The set (BIT_TRUE, BIT_FALSE, BIT_UNSET) represents a ternary logic system
|
|
// for a bit value.
|
|
//
|
|
// BIT_UNFILTERED is used as the init value for a filter position. It is used
|
|
// only for filter processings.
|
|
typedef enum {
|
|
BIT_TRUE, // '1'
|
|
BIT_FALSE, // '0'
|
|
BIT_UNSET, // '?'
|
|
BIT_UNFILTERED // unfiltered
|
|
} bit_value_t;
|
|
|
|
static bool ValueSet(bit_value_t V) {
|
|
return (V == BIT_TRUE || V == BIT_FALSE);
|
|
}
|
|
static bool ValueNotSet(bit_value_t V) {
|
|
return (V == BIT_UNSET);
|
|
}
|
|
static int Value(bit_value_t V) {
|
|
return ValueNotSet(V) ? -1 : (V == BIT_FALSE ? 0 : 1);
|
|
}
|
|
static bit_value_t bitFromBits(const BitsInit &bits, unsigned index) {
|
|
if (BitInit *bit = dyn_cast<BitInit>(bits.getBit(index)))
|
|
return bit->getValue() ? BIT_TRUE : BIT_FALSE;
|
|
|
|
// The bit is uninitialized.
|
|
return BIT_UNSET;
|
|
}
|
|
// Prints the bit value for each position.
|
|
static void dumpBits(raw_ostream &o, const BitsInit &bits) {
|
|
for (unsigned index = bits.getNumBits(); index > 0; --index) {
|
|
switch (bitFromBits(bits, index - 1)) {
|
|
case BIT_TRUE:
|
|
o << "1";
|
|
break;
|
|
case BIT_FALSE:
|
|
o << "0";
|
|
break;
|
|
case BIT_UNSET:
|
|
o << "_";
|
|
break;
|
|
default:
|
|
llvm_unreachable("unexpected return value from bitFromBits");
|
|
}
|
|
}
|
|
}
|
|
|
|
static BitsInit &getBitsField(const Record &def, const char *str) {
|
|
BitsInit *bits = def.getValueAsBitsInit(str);
|
|
return *bits;
|
|
}
|
|
|
|
// Forward declaration.
|
|
namespace {
|
|
class FilterChooser;
|
|
} // End anonymous namespace
|
|
|
|
// Representation of the instruction to work on.
|
|
typedef std::vector<bit_value_t> insn_t;
|
|
|
|
/// Filter - Filter works with FilterChooser to produce the decoding tree for
|
|
/// the ISA.
|
|
///
|
|
/// It is useful to think of a Filter as governing the switch stmts of the
|
|
/// decoding tree in a certain level. Each case stmt delegates to an inferior
|
|
/// FilterChooser to decide what further decoding logic to employ, or in another
|
|
/// words, what other remaining bits to look at. The FilterChooser eventually
|
|
/// chooses a best Filter to do its job.
|
|
///
|
|
/// This recursive scheme ends when the number of Opcodes assigned to the
|
|
/// FilterChooser becomes 1 or if there is a conflict. A conflict happens when
|
|
/// the Filter/FilterChooser combo does not know how to distinguish among the
|
|
/// Opcodes assigned.
|
|
///
|
|
/// An example of a conflict is
|
|
///
|
|
/// Conflict:
|
|
/// 111101000.00........00010000....
|
|
/// 111101000.00........0001........
|
|
/// 1111010...00........0001........
|
|
/// 1111010...00....................
|
|
/// 1111010.........................
|
|
/// 1111............................
|
|
/// ................................
|
|
/// VST4q8a 111101000_00________00010000____
|
|
/// VST4q8b 111101000_00________00010000____
|
|
///
|
|
/// The Debug output shows the path that the decoding tree follows to reach the
|
|
/// the conclusion that there is a conflict. VST4q8a is a vst4 to double-spaced
|
|
/// even registers, while VST4q8b is a vst4 to double-spaced odd regsisters.
|
|
///
|
|
/// The encoding info in the .td files does not specify this meta information,
|
|
/// which could have been used by the decoder to resolve the conflict. The
|
|
/// decoder could try to decode the even/odd register numbering and assign to
|
|
/// VST4q8a or VST4q8b, but for the time being, the decoder chooses the "a"
|
|
/// version and return the Opcode since the two have the same Asm format string.
|
|
namespace {
|
|
class Filter {
|
|
protected:
|
|
const FilterChooser *Owner;// points to the FilterChooser who owns this filter
|
|
unsigned StartBit; // the starting bit position
|
|
unsigned NumBits; // number of bits to filter
|
|
bool Mixed; // a mixed region contains both set and unset bits
|
|
|
|
// Map of well-known segment value to the set of uid's with that value.
|
|
std::map<uint64_t, std::vector<unsigned> > FilteredInstructions;
|
|
|
|
// Set of uid's with non-constant segment values.
|
|
std::vector<unsigned> VariableInstructions;
|
|
|
|
// Map of well-known segment value to its delegate.
|
|
std::map<unsigned, std::unique_ptr<const FilterChooser>> FilterChooserMap;
|
|
|
|
// Number of instructions which fall under FilteredInstructions category.
|
|
unsigned NumFiltered;
|
|
|
|
// Keeps track of the last opcode in the filtered bucket.
|
|
unsigned LastOpcFiltered;
|
|
|
|
public:
|
|
unsigned getNumFiltered() const { return NumFiltered; }
|
|
unsigned getSingletonOpc() const {
|
|
assert(NumFiltered == 1);
|
|
return LastOpcFiltered;
|
|
}
|
|
// Return the filter chooser for the group of instructions without constant
|
|
// segment values.
|
|
const FilterChooser &getVariableFC() const {
|
|
assert(NumFiltered == 1);
|
|
assert(FilterChooserMap.size() == 1);
|
|
return *(FilterChooserMap.find((unsigned)-1)->second);
|
|
}
|
|
|
|
Filter(Filter &&f);
|
|
Filter(FilterChooser &owner, unsigned startBit, unsigned numBits, bool mixed);
|
|
|
|
~Filter();
|
|
|
|
// Divides the decoding task into sub tasks and delegates them to the
|
|
// inferior FilterChooser's.
|
|
//
|
|
// A special case arises when there's only one entry in the filtered
|
|
// instructions. In order to unambiguously decode the singleton, we need to
|
|
// match the remaining undecoded encoding bits against the singleton.
|
|
void recurse();
|
|
|
|
// Emit table entries to decode instructions given a segment or segments of
|
|
// bits.
|
|
void emitTableEntry(DecoderTableInfo &TableInfo) const;
|
|
|
|
// Returns the number of fanout produced by the filter. More fanout implies
|
|
// the filter distinguishes more categories of instructions.
|
|
unsigned usefulness() const;
|
|
}; // End of class Filter
|
|
} // End anonymous namespace
|
|
|
|
// These are states of our finite state machines used in FilterChooser's
|
|
// filterProcessor() which produces the filter candidates to use.
|
|
typedef enum {
|
|
ATTR_NONE,
|
|
ATTR_FILTERED,
|
|
ATTR_ALL_SET,
|
|
ATTR_ALL_UNSET,
|
|
ATTR_MIXED
|
|
} bitAttr_t;
|
|
|
|
/// FilterChooser - FilterChooser chooses the best filter among a set of Filters
|
|
/// in order to perform the decoding of instructions at the current level.
|
|
///
|
|
/// Decoding proceeds from the top down. Based on the well-known encoding bits
|
|
/// of instructions available, FilterChooser builds up the possible Filters that
|
|
/// can further the task of decoding by distinguishing among the remaining
|
|
/// candidate instructions.
|
|
///
|
|
/// Once a filter has been chosen, it is called upon to divide the decoding task
|
|
/// into sub-tasks and delegates them to its inferior FilterChoosers for further
|
|
/// processings.
|
|
///
|
|
/// It is useful to think of a Filter as governing the switch stmts of the
|
|
/// decoding tree. And each case is delegated to an inferior FilterChooser to
|
|
/// decide what further remaining bits to look at.
|
|
namespace {
|
|
class FilterChooser {
|
|
protected:
|
|
friend class Filter;
|
|
|
|
// Vector of codegen instructions to choose our filter.
|
|
const std::vector<const CodeGenInstruction*> &AllInstructions;
|
|
|
|
// Vector of uid's for this filter chooser to work on.
|
|
const std::vector<unsigned> &Opcodes;
|
|
|
|
// Lookup table for the operand decoding of instructions.
|
|
const std::map<unsigned, std::vector<OperandInfo> > &Operands;
|
|
|
|
// Vector of candidate filters.
|
|
std::vector<Filter> Filters;
|
|
|
|
// Array of bit values passed down from our parent.
|
|
// Set to all BIT_UNFILTERED's for Parent == NULL.
|
|
std::vector<bit_value_t> FilterBitValues;
|
|
|
|
// Links to the FilterChooser above us in the decoding tree.
|
|
const FilterChooser *Parent;
|
|
|
|
// Index of the best filter from Filters.
|
|
int BestIndex;
|
|
|
|
// Width of instructions
|
|
unsigned BitWidth;
|
|
|
|
// Parent emitter
|
|
const FixedLenDecoderEmitter *Emitter;
|
|
|
|
FilterChooser(const FilterChooser &) = delete;
|
|
void operator=(const FilterChooser &) = delete;
|
|
public:
|
|
|
|
FilterChooser(const std::vector<const CodeGenInstruction*> &Insts,
|
|
const std::vector<unsigned> &IDs,
|
|
const std::map<unsigned, std::vector<OperandInfo> > &Ops,
|
|
unsigned BW,
|
|
const FixedLenDecoderEmitter *E)
|
|
: AllInstructions(Insts), Opcodes(IDs), Operands(Ops), Filters(),
|
|
FilterBitValues(BW, BIT_UNFILTERED), Parent(nullptr), BestIndex(-1),
|
|
BitWidth(BW), Emitter(E) {
|
|
doFilter();
|
|
}
|
|
|
|
FilterChooser(const std::vector<const CodeGenInstruction*> &Insts,
|
|
const std::vector<unsigned> &IDs,
|
|
const std::map<unsigned, std::vector<OperandInfo> > &Ops,
|
|
const std::vector<bit_value_t> &ParentFilterBitValues,
|
|
const FilterChooser &parent)
|
|
: AllInstructions(Insts), Opcodes(IDs), Operands(Ops),
|
|
Filters(), FilterBitValues(ParentFilterBitValues),
|
|
Parent(&parent), BestIndex(-1), BitWidth(parent.BitWidth),
|
|
Emitter(parent.Emitter) {
|
|
doFilter();
|
|
}
|
|
|
|
unsigned getBitWidth() const { return BitWidth; }
|
|
|
|
protected:
|
|
// Populates the insn given the uid.
|
|
void insnWithID(insn_t &Insn, unsigned Opcode) const {
|
|
BitsInit &Bits = getBitsField(*AllInstructions[Opcode]->TheDef, "Inst");
|
|
|
|
// We may have a SoftFail bitmask, which specifies a mask where an encoding
|
|
// may differ from the value in "Inst" and yet still be valid, but the
|
|
// disassembler should return SoftFail instead of Success.
|
|
//
|
|
// This is used for marking UNPREDICTABLE instructions in the ARM world.
|
|
BitsInit *SFBits =
|
|
AllInstructions[Opcode]->TheDef->getValueAsBitsInit("SoftFail");
|
|
|
|
for (unsigned i = 0; i < BitWidth; ++i) {
|
|
if (SFBits && bitFromBits(*SFBits, i) == BIT_TRUE)
|
|
Insn.push_back(BIT_UNSET);
|
|
else
|
|
Insn.push_back(bitFromBits(Bits, i));
|
|
}
|
|
}
|
|
|
|
// Returns the record name.
|
|
const std::string &nameWithID(unsigned Opcode) const {
|
|
return AllInstructions[Opcode]->TheDef->getName();
|
|
}
|
|
|
|
// Populates the field of the insn given the start position and the number of
|
|
// consecutive bits to scan for.
|
|
//
|
|
// Returns false if there exists any uninitialized bit value in the range.
|
|
// Returns true, otherwise.
|
|
bool fieldFromInsn(uint64_t &Field, insn_t &Insn, unsigned StartBit,
|
|
unsigned NumBits) const;
|
|
|
|
/// dumpFilterArray - dumpFilterArray prints out debugging info for the given
|
|
/// filter array as a series of chars.
|
|
void dumpFilterArray(raw_ostream &o,
|
|
const std::vector<bit_value_t> & filter) const;
|
|
|
|
/// dumpStack - dumpStack traverses the filter chooser chain and calls
|
|
/// dumpFilterArray on each filter chooser up to the top level one.
|
|
void dumpStack(raw_ostream &o, const char *prefix) const;
|
|
|
|
Filter &bestFilter() {
|
|
assert(BestIndex != -1 && "BestIndex not set");
|
|
return Filters[BestIndex];
|
|
}
|
|
|
|
// Called from Filter::recurse() when singleton exists. For debug purpose.
|
|
void SingletonExists(unsigned Opc) const;
|
|
|
|
bool PositionFiltered(unsigned i) const {
|
|
return ValueSet(FilterBitValues[i]);
|
|
}
|
|
|
|
// Calculates the island(s) needed to decode the instruction.
|
|
// This returns a lit of undecoded bits of an instructions, for example,
|
|
// Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be
|
|
// decoded bits in order to verify that the instruction matches the Opcode.
|
|
unsigned getIslands(std::vector<unsigned> &StartBits,
|
|
std::vector<unsigned> &EndBits,
|
|
std::vector<uint64_t> &FieldVals,
|
|
const insn_t &Insn) const;
|
|
|
|
// Emits code to check the Predicates member of an instruction are true.
|
|
// Returns true if predicate matches were emitted, false otherwise.
|
|
bool emitPredicateMatch(raw_ostream &o, unsigned &Indentation,
|
|
unsigned Opc) const;
|
|
|
|
bool doesOpcodeNeedPredicate(unsigned Opc) const;
|
|
unsigned getPredicateIndex(DecoderTableInfo &TableInfo, StringRef P) const;
|
|
void emitPredicateTableEntry(DecoderTableInfo &TableInfo,
|
|
unsigned Opc) const;
|
|
|
|
void emitSoftFailTableEntry(DecoderTableInfo &TableInfo,
|
|
unsigned Opc) const;
|
|
|
|
// Emits table entries to decode the singleton.
|
|
void emitSingletonTableEntry(DecoderTableInfo &TableInfo,
|
|
unsigned Opc) const;
|
|
|
|
// Emits code to decode the singleton, and then to decode the rest.
|
|
void emitSingletonTableEntry(DecoderTableInfo &TableInfo,
|
|
const Filter &Best) const;
|
|
|
|
void emitBinaryParser(raw_ostream &o, unsigned &Indentation,
|
|
const OperandInfo &OpInfo) const;
|
|
|
|
void emitDecoder(raw_ostream &OS, unsigned Indentation, unsigned Opc) const;
|
|
unsigned getDecoderIndex(DecoderSet &Decoders, unsigned Opc) const;
|
|
|
|
// Assign a single filter and run with it.
|
|
void runSingleFilter(unsigned startBit, unsigned numBit, bool mixed);
|
|
|
|
// reportRegion is a helper function for filterProcessor to mark a region as
|
|
// eligible for use as a filter region.
|
|
void reportRegion(bitAttr_t RA, unsigned StartBit, unsigned BitIndex,
|
|
bool AllowMixed);
|
|
|
|
// FilterProcessor scans the well-known encoding bits of the instructions and
|
|
// builds up a list of candidate filters. It chooses the best filter and
|
|
// recursively descends down the decoding tree.
|
|
bool filterProcessor(bool AllowMixed, bool Greedy = true);
|
|
|
|
// Decides on the best configuration of filter(s) to use in order to decode
|
|
// the instructions. A conflict of instructions may occur, in which case we
|
|
// dump the conflict set to the standard error.
|
|
void doFilter();
|
|
|
|
public:
|
|
// emitTableEntries - Emit state machine entries to decode our share of
|
|
// instructions.
|
|
void emitTableEntries(DecoderTableInfo &TableInfo) const;
|
|
};
|
|
} // End anonymous namespace
|
|
|
|
///////////////////////////
|
|
// //
|
|
// Filter Implementation //
|
|
// //
|
|
///////////////////////////
|
|
|
|
Filter::Filter(Filter &&f)
|
|
: Owner(f.Owner), StartBit(f.StartBit), NumBits(f.NumBits), Mixed(f.Mixed),
|
|
FilteredInstructions(std::move(f.FilteredInstructions)),
|
|
VariableInstructions(std::move(f.VariableInstructions)),
|
|
FilterChooserMap(std::move(f.FilterChooserMap)), NumFiltered(f.NumFiltered),
|
|
LastOpcFiltered(f.LastOpcFiltered) {
|
|
}
|
|
|
|
Filter::Filter(FilterChooser &owner, unsigned startBit, unsigned numBits,
|
|
bool mixed)
|
|
: Owner(&owner), StartBit(startBit), NumBits(numBits), Mixed(mixed) {
|
|
assert(StartBit + NumBits - 1 < Owner->BitWidth);
|
|
|
|
NumFiltered = 0;
|
|
LastOpcFiltered = 0;
|
|
|
|
for (unsigned i = 0, e = Owner->Opcodes.size(); i != e; ++i) {
|
|
insn_t Insn;
|
|
|
|
// Populates the insn given the uid.
|
|
Owner->insnWithID(Insn, Owner->Opcodes[i]);
|
|
|
|
uint64_t Field;
|
|
// Scans the segment for possibly well-specified encoding bits.
|
|
bool ok = Owner->fieldFromInsn(Field, Insn, StartBit, NumBits);
|
|
|
|
if (ok) {
|
|
// The encoding bits are well-known. Lets add the uid of the
|
|
// instruction into the bucket keyed off the constant field value.
|
|
LastOpcFiltered = Owner->Opcodes[i];
|
|
FilteredInstructions[Field].push_back(LastOpcFiltered);
|
|
++NumFiltered;
|
|
} else {
|
|
// Some of the encoding bit(s) are unspecified. This contributes to
|
|
// one additional member of "Variable" instructions.
|
|
VariableInstructions.push_back(Owner->Opcodes[i]);
|
|
}
|
|
}
|
|
|
|
assert((FilteredInstructions.size() + VariableInstructions.size() > 0)
|
|
&& "Filter returns no instruction categories");
|
|
}
|
|
|
|
Filter::~Filter() {
|
|
}
|
|
|
|
// Divides the decoding task into sub tasks and delegates them to the
|
|
// inferior FilterChooser's.
|
|
//
|
|
// A special case arises when there's only one entry in the filtered
|
|
// instructions. In order to unambiguously decode the singleton, we need to
|
|
// match the remaining undecoded encoding bits against the singleton.
|
|
void Filter::recurse() {
|
|
// Starts by inheriting our parent filter chooser's filter bit values.
|
|
std::vector<bit_value_t> BitValueArray(Owner->FilterBitValues);
|
|
|
|
if (!VariableInstructions.empty()) {
|
|
// Conservatively marks each segment position as BIT_UNSET.
|
|
for (unsigned bitIndex = 0; bitIndex < NumBits; ++bitIndex)
|
|
BitValueArray[StartBit + bitIndex] = BIT_UNSET;
|
|
|
|
// Delegates to an inferior filter chooser for further processing on this
|
|
// group of instructions whose segment values are variable.
|
|
FilterChooserMap.insert(
|
|
std::make_pair(-1U, llvm::make_unique<FilterChooser>(
|
|
Owner->AllInstructions, VariableInstructions,
|
|
Owner->Operands, BitValueArray, *Owner)));
|
|
}
|
|
|
|
// No need to recurse for a singleton filtered instruction.
|
|
// See also Filter::emit*().
|
|
if (getNumFiltered() == 1) {
|
|
//Owner->SingletonExists(LastOpcFiltered);
|
|
assert(FilterChooserMap.size() == 1);
|
|
return;
|
|
}
|
|
|
|
// Otherwise, create sub choosers.
|
|
for (const auto &Inst : FilteredInstructions) {
|
|
|
|
// Marks all the segment positions with either BIT_TRUE or BIT_FALSE.
|
|
for (unsigned bitIndex = 0; bitIndex < NumBits; ++bitIndex) {
|
|
if (Inst.first & (1ULL << bitIndex))
|
|
BitValueArray[StartBit + bitIndex] = BIT_TRUE;
|
|
else
|
|
BitValueArray[StartBit + bitIndex] = BIT_FALSE;
|
|
}
|
|
|
|
// Delegates to an inferior filter chooser for further processing on this
|
|
// category of instructions.
|
|
FilterChooserMap.insert(std::make_pair(
|
|
Inst.first, llvm::make_unique<FilterChooser>(
|
|
Owner->AllInstructions, Inst.second,
|
|
Owner->Operands, BitValueArray, *Owner)));
|
|
}
|
|
}
|
|
|
|
static void resolveTableFixups(DecoderTable &Table, const FixupList &Fixups,
|
|
uint32_t DestIdx) {
|
|
// Any NumToSkip fixups in the current scope can resolve to the
|
|
// current location.
|
|
for (FixupList::const_reverse_iterator I = Fixups.rbegin(),
|
|
E = Fixups.rend();
|
|
I != E; ++I) {
|
|
// Calculate the distance from the byte following the fixup entry byte
|
|
// to the destination. The Target is calculated from after the 16-bit
|
|
// NumToSkip entry itself, so subtract two from the displacement here
|
|
// to account for that.
|
|
uint32_t FixupIdx = *I;
|
|
uint32_t Delta = DestIdx - FixupIdx - 2;
|
|
// Our NumToSkip entries are 16-bits. Make sure our table isn't too
|
|
// big.
|
|
assert(Delta < 65536U && "disassembler decoding table too large!");
|
|
Table[FixupIdx] = (uint8_t)Delta;
|
|
Table[FixupIdx + 1] = (uint8_t)(Delta >> 8);
|
|
}
|
|
}
|
|
|
|
// Emit table entries to decode instructions given a segment or segments
|
|
// of bits.
|
|
void Filter::emitTableEntry(DecoderTableInfo &TableInfo) const {
|
|
TableInfo.Table.push_back(MCD::OPC_ExtractField);
|
|
TableInfo.Table.push_back(StartBit);
|
|
TableInfo.Table.push_back(NumBits);
|
|
|
|
// A new filter entry begins a new scope for fixup resolution.
|
|
TableInfo.FixupStack.push_back(FixupList());
|
|
|
|
DecoderTable &Table = TableInfo.Table;
|
|
|
|
size_t PrevFilter = 0;
|
|
bool HasFallthrough = false;
|
|
for (auto &Filter : FilterChooserMap) {
|
|
// Field value -1 implies a non-empty set of variable instructions.
|
|
// See also recurse().
|
|
if (Filter.first == (unsigned)-1) {
|
|
HasFallthrough = true;
|
|
|
|
// Each scope should always have at least one filter value to check
|
|
// for.
|
|
assert(PrevFilter != 0 && "empty filter set!");
|
|
FixupList &CurScope = TableInfo.FixupStack.back();
|
|
// Resolve any NumToSkip fixups in the current scope.
|
|
resolveTableFixups(Table, CurScope, Table.size());
|
|
CurScope.clear();
|
|
PrevFilter = 0; // Don't re-process the filter's fallthrough.
|
|
} else {
|
|
Table.push_back(MCD::OPC_FilterValue);
|
|
// Encode and emit the value to filter against.
|
|
uint8_t Buffer[8];
|
|
unsigned Len = encodeULEB128(Filter.first, Buffer);
|
|
Table.insert(Table.end(), Buffer, Buffer + Len);
|
|
// Reserve space for the NumToSkip entry. We'll backpatch the value
|
|
// later.
|
|
PrevFilter = Table.size();
|
|
Table.push_back(0);
|
|
Table.push_back(0);
|
|
}
|
|
|
|
// We arrive at a category of instructions with the same segment value.
|
|
// Now delegate to the sub filter chooser for further decodings.
|
|
// The case may fallthrough, which happens if the remaining well-known
|
|
// encoding bits do not match exactly.
|
|
Filter.second->emitTableEntries(TableInfo);
|
|
|
|
// Now that we've emitted the body of the handler, update the NumToSkip
|
|
// of the filter itself to be able to skip forward when false. Subtract
|
|
// two as to account for the width of the NumToSkip field itself.
|
|
if (PrevFilter) {
|
|
uint32_t NumToSkip = Table.size() - PrevFilter - 2;
|
|
assert(NumToSkip < 65536U && "disassembler decoding table too large!");
|
|
Table[PrevFilter] = (uint8_t)NumToSkip;
|
|
Table[PrevFilter + 1] = (uint8_t)(NumToSkip >> 8);
|
|
}
|
|
}
|
|
|
|
// Any remaining unresolved fixups bubble up to the parent fixup scope.
|
|
assert(TableInfo.FixupStack.size() > 1 && "fixup stack underflow!");
|
|
FixupScopeList::iterator Source = TableInfo.FixupStack.end() - 1;
|
|
FixupScopeList::iterator Dest = Source - 1;
|
|
Dest->insert(Dest->end(), Source->begin(), Source->end());
|
|
TableInfo.FixupStack.pop_back();
|
|
|
|
// If there is no fallthrough, then the final filter should get fixed
|
|
// up according to the enclosing scope rather than the current position.
|
|
if (!HasFallthrough)
|
|
TableInfo.FixupStack.back().push_back(PrevFilter);
|
|
}
|
|
|
|
// Returns the number of fanout produced by the filter. More fanout implies
|
|
// the filter distinguishes more categories of instructions.
|
|
unsigned Filter::usefulness() const {
|
|
if (!VariableInstructions.empty())
|
|
return FilteredInstructions.size();
|
|
else
|
|
return FilteredInstructions.size() + 1;
|
|
}
|
|
|
|
//////////////////////////////////
|
|
// //
|
|
// Filterchooser Implementation //
|
|
// //
|
|
//////////////////////////////////
|
|
|
|
// Emit the decoder state machine table.
|
|
void FixedLenDecoderEmitter::emitTable(formatted_raw_ostream &OS,
|
|
DecoderTable &Table,
|
|
unsigned Indentation,
|
|
unsigned BitWidth,
|
|
StringRef Namespace) const {
|
|
OS.indent(Indentation) << "static const uint8_t DecoderTable" << Namespace
|
|
<< BitWidth << "[] = {\n";
|
|
|
|
Indentation += 2;
|
|
|
|
// FIXME: We may be able to use the NumToSkip values to recover
|
|
// appropriate indentation levels.
|
|
DecoderTable::const_iterator I = Table.begin();
|
|
DecoderTable::const_iterator E = Table.end();
|
|
while (I != E) {
|
|
assert (I < E && "incomplete decode table entry!");
|
|
|
|
uint64_t Pos = I - Table.begin();
|
|
OS << "/* " << Pos << " */";
|
|
OS.PadToColumn(12);
|
|
|
|
switch (*I) {
|
|
default:
|
|
PrintFatalError("invalid decode table opcode");
|
|
case MCD::OPC_ExtractField: {
|
|
++I;
|
|
unsigned Start = *I++;
|
|
unsigned Len = *I++;
|
|
OS.indent(Indentation) << "MCD::OPC_ExtractField, " << Start << ", "
|
|
<< Len << ", // Inst{";
|
|
if (Len > 1)
|
|
OS << (Start + Len - 1) << "-";
|
|
OS << Start << "} ...\n";
|
|
break;
|
|
}
|
|
case MCD::OPC_FilterValue: {
|
|
++I;
|
|
OS.indent(Indentation) << "MCD::OPC_FilterValue, ";
|
|
// The filter value is ULEB128 encoded.
|
|
while (*I >= 128)
|
|
OS << utostr(*I++) << ", ";
|
|
OS << utostr(*I++) << ", ";
|
|
|
|
// 16-bit numtoskip value.
|
|
uint8_t Byte = *I++;
|
|
uint32_t NumToSkip = Byte;
|
|
OS << utostr(Byte) << ", ";
|
|
Byte = *I++;
|
|
OS << utostr(Byte) << ", ";
|
|
NumToSkip |= Byte << 8;
|
|
OS << "// Skip to: " << ((I - Table.begin()) + NumToSkip) << "\n";
|
|
break;
|
|
}
|
|
case MCD::OPC_CheckField: {
|
|
++I;
|
|
unsigned Start = *I++;
|
|
unsigned Len = *I++;
|
|
OS.indent(Indentation) << "MCD::OPC_CheckField, " << Start << ", "
|
|
<< Len << ", ";// << Val << ", " << NumToSkip << ",\n";
|
|
// ULEB128 encoded field value.
|
|
for (; *I >= 128; ++I)
|
|
OS << utostr(*I) << ", ";
|
|
OS << utostr(*I++) << ", ";
|
|
// 16-bit numtoskip value.
|
|
uint8_t Byte = *I++;
|
|
uint32_t NumToSkip = Byte;
|
|
OS << utostr(Byte) << ", ";
|
|
Byte = *I++;
|
|
OS << utostr(Byte) << ", ";
|
|
NumToSkip |= Byte << 8;
|
|
OS << "// Skip to: " << ((I - Table.begin()) + NumToSkip) << "\n";
|
|
break;
|
|
}
|
|
case MCD::OPC_CheckPredicate: {
|
|
++I;
|
|
OS.indent(Indentation) << "MCD::OPC_CheckPredicate, ";
|
|
for (; *I >= 128; ++I)
|
|
OS << utostr(*I) << ", ";
|
|
OS << utostr(*I++) << ", ";
|
|
|
|
// 16-bit numtoskip value.
|
|
uint8_t Byte = *I++;
|
|
uint32_t NumToSkip = Byte;
|
|
OS << utostr(Byte) << ", ";
|
|
Byte = *I++;
|
|
OS << utostr(Byte) << ", ";
|
|
NumToSkip |= Byte << 8;
|
|
OS << "// Skip to: " << ((I - Table.begin()) + NumToSkip) << "\n";
|
|
break;
|
|
}
|
|
case MCD::OPC_Decode: {
|
|
++I;
|
|
// Extract the ULEB128 encoded Opcode to a buffer.
|
|
uint8_t Buffer[8], *p = Buffer;
|
|
while ((*p++ = *I++) >= 128)
|
|
assert((p - Buffer) <= (ptrdiff_t)sizeof(Buffer)
|
|
&& "ULEB128 value too large!");
|
|
// Decode the Opcode value.
|
|
unsigned Opc = decodeULEB128(Buffer);
|
|
OS.indent(Indentation) << "MCD::OPC_Decode, ";
|
|
for (p = Buffer; *p >= 128; ++p)
|
|
OS << utostr(*p) << ", ";
|
|
OS << utostr(*p) << ", ";
|
|
|
|
// Decoder index.
|
|
for (; *I >= 128; ++I)
|
|
OS << utostr(*I) << ", ";
|
|
OS << utostr(*I++) << ", ";
|
|
|
|
OS << "// Opcode: "
|
|
<< NumberedInstructions->at(Opc)->TheDef->getName() << "\n";
|
|
break;
|
|
}
|
|
case MCD::OPC_SoftFail: {
|
|
++I;
|
|
OS.indent(Indentation) << "MCD::OPC_SoftFail";
|
|
// Positive mask
|
|
uint64_t Value = 0;
|
|
unsigned Shift = 0;
|
|
do {
|
|
OS << ", " << utostr(*I);
|
|
Value += (*I & 0x7f) << Shift;
|
|
Shift += 7;
|
|
} while (*I++ >= 128);
|
|
if (Value > 127)
|
|
OS << " /* 0x" << utohexstr(Value) << " */";
|
|
// Negative mask
|
|
Value = 0;
|
|
Shift = 0;
|
|
do {
|
|
OS << ", " << utostr(*I);
|
|
Value += (*I & 0x7f) << Shift;
|
|
Shift += 7;
|
|
} while (*I++ >= 128);
|
|
if (Value > 127)
|
|
OS << " /* 0x" << utohexstr(Value) << " */";
|
|
OS << ",\n";
|
|
break;
|
|
}
|
|
case MCD::OPC_Fail: {
|
|
++I;
|
|
OS.indent(Indentation) << "MCD::OPC_Fail,\n";
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
OS.indent(Indentation) << "0\n";
|
|
|
|
Indentation -= 2;
|
|
|
|
OS.indent(Indentation) << "};\n\n";
|
|
}
|
|
|
|
void FixedLenDecoderEmitter::
|
|
emitPredicateFunction(formatted_raw_ostream &OS, PredicateSet &Predicates,
|
|
unsigned Indentation) const {
|
|
// The predicate function is just a big switch statement based on the
|
|
// input predicate index.
|
|
OS.indent(Indentation) << "static bool checkDecoderPredicate(unsigned Idx, "
|
|
<< "uint64_t Bits) {\n";
|
|
Indentation += 2;
|
|
if (!Predicates.empty()) {
|
|
OS.indent(Indentation) << "switch (Idx) {\n";
|
|
OS.indent(Indentation) << "default: llvm_unreachable(\"Invalid index!\");\n";
|
|
unsigned Index = 0;
|
|
for (const auto &Predicate : Predicates) {
|
|
OS.indent(Indentation) << "case " << Index++ << ":\n";
|
|
OS.indent(Indentation+2) << "return (" << Predicate << ");\n";
|
|
}
|
|
OS.indent(Indentation) << "}\n";
|
|
} else {
|
|
// No case statement to emit
|
|
OS.indent(Indentation) << "llvm_unreachable(\"Invalid index!\");\n";
|
|
}
|
|
Indentation -= 2;
|
|
OS.indent(Indentation) << "}\n\n";
|
|
}
|
|
|
|
void FixedLenDecoderEmitter::
|
|
emitDecoderFunction(formatted_raw_ostream &OS, DecoderSet &Decoders,
|
|
unsigned Indentation) const {
|
|
// The decoder function is just a big switch statement based on the
|
|
// input decoder index.
|
|
OS.indent(Indentation) << "template<typename InsnType>\n";
|
|
OS.indent(Indentation) << "static DecodeStatus decodeToMCInst(DecodeStatus S,"
|
|
<< " unsigned Idx, InsnType insn, MCInst &MI,\n";
|
|
OS.indent(Indentation) << " uint64_t "
|
|
<< "Address, const void *Decoder) {\n";
|
|
Indentation += 2;
|
|
OS.indent(Indentation) << "InsnType tmp;\n";
|
|
OS.indent(Indentation) << "switch (Idx) {\n";
|
|
OS.indent(Indentation) << "default: llvm_unreachable(\"Invalid index!\");\n";
|
|
unsigned Index = 0;
|
|
for (const auto &Decoder : Decoders) {
|
|
OS.indent(Indentation) << "case " << Index++ << ":\n";
|
|
OS << Decoder;
|
|
OS.indent(Indentation+2) << "return S;\n";
|
|
}
|
|
OS.indent(Indentation) << "}\n";
|
|
Indentation -= 2;
|
|
OS.indent(Indentation) << "}\n\n";
|
|
}
|
|
|
|
// Populates the field of the insn given the start position and the number of
|
|
// consecutive bits to scan for.
|
|
//
|
|
// Returns false if and on the first uninitialized bit value encountered.
|
|
// Returns true, otherwise.
|
|
bool FilterChooser::fieldFromInsn(uint64_t &Field, insn_t &Insn,
|
|
unsigned StartBit, unsigned NumBits) const {
|
|
Field = 0;
|
|
|
|
for (unsigned i = 0; i < NumBits; ++i) {
|
|
if (Insn[StartBit + i] == BIT_UNSET)
|
|
return false;
|
|
|
|
if (Insn[StartBit + i] == BIT_TRUE)
|
|
Field = Field | (1ULL << i);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// dumpFilterArray - dumpFilterArray prints out debugging info for the given
|
|
/// filter array as a series of chars.
|
|
void FilterChooser::dumpFilterArray(raw_ostream &o,
|
|
const std::vector<bit_value_t> &filter) const {
|
|
for (unsigned bitIndex = BitWidth; bitIndex > 0; bitIndex--) {
|
|
switch (filter[bitIndex - 1]) {
|
|
case BIT_UNFILTERED:
|
|
o << ".";
|
|
break;
|
|
case BIT_UNSET:
|
|
o << "_";
|
|
break;
|
|
case BIT_TRUE:
|
|
o << "1";
|
|
break;
|
|
case BIT_FALSE:
|
|
o << "0";
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// dumpStack - dumpStack traverses the filter chooser chain and calls
|
|
/// dumpFilterArray on each filter chooser up to the top level one.
|
|
void FilterChooser::dumpStack(raw_ostream &o, const char *prefix) const {
|
|
const FilterChooser *current = this;
|
|
|
|
while (current) {
|
|
o << prefix;
|
|
dumpFilterArray(o, current->FilterBitValues);
|
|
o << '\n';
|
|
current = current->Parent;
|
|
}
|
|
}
|
|
|
|
// Called from Filter::recurse() when singleton exists. For debug purpose.
|
|
void FilterChooser::SingletonExists(unsigned Opc) const {
|
|
insn_t Insn0;
|
|
insnWithID(Insn0, Opc);
|
|
|
|
errs() << "Singleton exists: " << nameWithID(Opc)
|
|
<< " with its decoding dominating ";
|
|
for (unsigned i = 0; i < Opcodes.size(); ++i) {
|
|
if (Opcodes[i] == Opc) continue;
|
|
errs() << nameWithID(Opcodes[i]) << ' ';
|
|
}
|
|
errs() << '\n';
|
|
|
|
dumpStack(errs(), "\t\t");
|
|
for (unsigned i = 0; i < Opcodes.size(); ++i) {
|
|
const std::string &Name = nameWithID(Opcodes[i]);
|
|
|
|
errs() << '\t' << Name << " ";
|
|
dumpBits(errs(),
|
|
getBitsField(*AllInstructions[Opcodes[i]]->TheDef, "Inst"));
|
|
errs() << '\n';
|
|
}
|
|
}
|
|
|
|
// Calculates the island(s) needed to decode the instruction.
|
|
// This returns a list of undecoded bits of an instructions, for example,
|
|
// Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be
|
|
// decoded bits in order to verify that the instruction matches the Opcode.
|
|
unsigned FilterChooser::getIslands(std::vector<unsigned> &StartBits,
|
|
std::vector<unsigned> &EndBits,
|
|
std::vector<uint64_t> &FieldVals,
|
|
const insn_t &Insn) const {
|
|
unsigned Num, BitNo;
|
|
Num = BitNo = 0;
|
|
|
|
uint64_t FieldVal = 0;
|
|
|
|
// 0: Init
|
|
// 1: Water (the bit value does not affect decoding)
|
|
// 2: Island (well-known bit value needed for decoding)
|
|
int State = 0;
|
|
int Val = -1;
|
|
|
|
for (unsigned i = 0; i < BitWidth; ++i) {
|
|
Val = Value(Insn[i]);
|
|
bool Filtered = PositionFiltered(i);
|
|
switch (State) {
|
|
default: llvm_unreachable("Unreachable code!");
|
|
case 0:
|
|
case 1:
|
|
if (Filtered || Val == -1)
|
|
State = 1; // Still in Water
|
|
else {
|
|
State = 2; // Into the Island
|
|
BitNo = 0;
|
|
StartBits.push_back(i);
|
|
FieldVal = Val;
|
|
}
|
|
break;
|
|
case 2:
|
|
if (Filtered || Val == -1) {
|
|
State = 1; // Into the Water
|
|
EndBits.push_back(i - 1);
|
|
FieldVals.push_back(FieldVal);
|
|
++Num;
|
|
} else {
|
|
State = 2; // Still in Island
|
|
++BitNo;
|
|
FieldVal = FieldVal | Val << BitNo;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
// If we are still in Island after the loop, do some housekeeping.
|
|
if (State == 2) {
|
|
EndBits.push_back(BitWidth - 1);
|
|
FieldVals.push_back(FieldVal);
|
|
++Num;
|
|
}
|
|
|
|
assert(StartBits.size() == Num && EndBits.size() == Num &&
|
|
FieldVals.size() == Num);
|
|
return Num;
|
|
}
|
|
|
|
void FilterChooser::emitBinaryParser(raw_ostream &o, unsigned &Indentation,
|
|
const OperandInfo &OpInfo) const {
|
|
const std::string &Decoder = OpInfo.Decoder;
|
|
|
|
if (OpInfo.numFields() != 1)
|
|
o.indent(Indentation) << "tmp = 0;\n";
|
|
|
|
for (const EncodingField &EF : OpInfo) {
|
|
o.indent(Indentation) << "tmp ";
|
|
if (OpInfo.numFields() != 1) o << '|';
|
|
o << "= fieldFromInstruction"
|
|
<< "(insn, " << EF.Base << ", " << EF.Width << ')';
|
|
if (OpInfo.numFields() != 1 || EF.Offset != 0)
|
|
o << " << " << EF.Offset;
|
|
o << ";\n";
|
|
}
|
|
|
|
if (Decoder != "")
|
|
o.indent(Indentation) << Emitter->GuardPrefix << Decoder
|
|
<< "(MI, tmp, Address, Decoder)"
|
|
<< Emitter->GuardPostfix << "\n";
|
|
else
|
|
o.indent(Indentation) << "MI.addOperand(MCOperand::CreateImm(tmp));\n";
|
|
|
|
}
|
|
|
|
void FilterChooser::emitDecoder(raw_ostream &OS, unsigned Indentation,
|
|
unsigned Opc) const {
|
|
for (const auto &Op : Operands.find(Opc)->second) {
|
|
// If a custom instruction decoder was specified, use that.
|
|
if (Op.numFields() == 0 && Op.Decoder.size()) {
|
|
OS.indent(Indentation) << Emitter->GuardPrefix << Op.Decoder
|
|
<< "(MI, insn, Address, Decoder)"
|
|
<< Emitter->GuardPostfix << "\n";
|
|
break;
|
|
}
|
|
|
|
emitBinaryParser(OS, Indentation, Op);
|
|
}
|
|
}
|
|
|
|
unsigned FilterChooser::getDecoderIndex(DecoderSet &Decoders,
|
|
unsigned Opc) const {
|
|
// Build up the predicate string.
|
|
SmallString<256> Decoder;
|
|
// FIXME: emitDecoder() function can take a buffer directly rather than
|
|
// a stream.
|
|
raw_svector_ostream S(Decoder);
|
|
unsigned I = 4;
|
|
emitDecoder(S, I, Opc);
|
|
S.flush();
|
|
|
|
// Using the full decoder string as the key value here is a bit
|
|
// heavyweight, but is effective. If the string comparisons become a
|
|
// performance concern, we can implement a mangling of the predicate
|
|
// data easilly enough with a map back to the actual string. That's
|
|
// overkill for now, though.
|
|
|
|
// Make sure the predicate is in the table.
|
|
Decoders.insert(StringRef(Decoder));
|
|
// Now figure out the index for when we write out the table.
|
|
DecoderSet::const_iterator P = std::find(Decoders.begin(),
|
|
Decoders.end(),
|
|
Decoder.str());
|
|
return (unsigned)(P - Decoders.begin());
|
|
}
|
|
|
|
static void emitSinglePredicateMatch(raw_ostream &o, StringRef str,
|
|
const std::string &PredicateNamespace) {
|
|
if (str[0] == '!')
|
|
o << "!(Bits & " << PredicateNamespace << "::"
|
|
<< str.slice(1,str.size()) << ")";
|
|
else
|
|
o << "(Bits & " << PredicateNamespace << "::" << str << ")";
|
|
}
|
|
|
|
bool FilterChooser::emitPredicateMatch(raw_ostream &o, unsigned &Indentation,
|
|
unsigned Opc) const {
|
|
ListInit *Predicates =
|
|
AllInstructions[Opc]->TheDef->getValueAsListInit("Predicates");
|
|
bool IsFirstEmission = true;
|
|
for (unsigned i = 0; i < Predicates->getSize(); ++i) {
|
|
Record *Pred = Predicates->getElementAsRecord(i);
|
|
if (!Pred->getValue("AssemblerMatcherPredicate"))
|
|
continue;
|
|
|
|
std::string P = Pred->getValueAsString("AssemblerCondString");
|
|
|
|
if (!P.length())
|
|
continue;
|
|
|
|
if (!IsFirstEmission)
|
|
o << " && ";
|
|
|
|
StringRef SR(P);
|
|
std::pair<StringRef, StringRef> pairs = SR.split(',');
|
|
while (pairs.second.size()) {
|
|
emitSinglePredicateMatch(o, pairs.first, Emitter->PredicateNamespace);
|
|
o << " && ";
|
|
pairs = pairs.second.split(',');
|
|
}
|
|
emitSinglePredicateMatch(o, pairs.first, Emitter->PredicateNamespace);
|
|
IsFirstEmission = false;
|
|
}
|
|
return Predicates->getSize() > 0;
|
|
}
|
|
|
|
bool FilterChooser::doesOpcodeNeedPredicate(unsigned Opc) const {
|
|
ListInit *Predicates =
|
|
AllInstructions[Opc]->TheDef->getValueAsListInit("Predicates");
|
|
for (unsigned i = 0; i < Predicates->getSize(); ++i) {
|
|
Record *Pred = Predicates->getElementAsRecord(i);
|
|
if (!Pred->getValue("AssemblerMatcherPredicate"))
|
|
continue;
|
|
|
|
std::string P = Pred->getValueAsString("AssemblerCondString");
|
|
|
|
if (!P.length())
|
|
continue;
|
|
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
unsigned FilterChooser::getPredicateIndex(DecoderTableInfo &TableInfo,
|
|
StringRef Predicate) const {
|
|
// Using the full predicate string as the key value here is a bit
|
|
// heavyweight, but is effective. If the string comparisons become a
|
|
// performance concern, we can implement a mangling of the predicate
|
|
// data easilly enough with a map back to the actual string. That's
|
|
// overkill for now, though.
|
|
|
|
// Make sure the predicate is in the table.
|
|
TableInfo.Predicates.insert(Predicate.str());
|
|
// Now figure out the index for when we write out the table.
|
|
PredicateSet::const_iterator P = std::find(TableInfo.Predicates.begin(),
|
|
TableInfo.Predicates.end(),
|
|
Predicate.str());
|
|
return (unsigned)(P - TableInfo.Predicates.begin());
|
|
}
|
|
|
|
void FilterChooser::emitPredicateTableEntry(DecoderTableInfo &TableInfo,
|
|
unsigned Opc) const {
|
|
if (!doesOpcodeNeedPredicate(Opc))
|
|
return;
|
|
|
|
// Build up the predicate string.
|
|
SmallString<256> Predicate;
|
|
// FIXME: emitPredicateMatch() functions can take a buffer directly rather
|
|
// than a stream.
|
|
raw_svector_ostream PS(Predicate);
|
|
unsigned I = 0;
|
|
emitPredicateMatch(PS, I, Opc);
|
|
|
|
// Figure out the index into the predicate table for the predicate just
|
|
// computed.
|
|
unsigned PIdx = getPredicateIndex(TableInfo, PS.str());
|
|
SmallString<16> PBytes;
|
|
raw_svector_ostream S(PBytes);
|
|
encodeULEB128(PIdx, S);
|
|
S.flush();
|
|
|
|
TableInfo.Table.push_back(MCD::OPC_CheckPredicate);
|
|
// Predicate index
|
|
for (unsigned i = 0, e = PBytes.size(); i != e; ++i)
|
|
TableInfo.Table.push_back(PBytes[i]);
|
|
// Push location for NumToSkip backpatching.
|
|
TableInfo.FixupStack.back().push_back(TableInfo.Table.size());
|
|
TableInfo.Table.push_back(0);
|
|
TableInfo.Table.push_back(0);
|
|
}
|
|
|
|
void FilterChooser::emitSoftFailTableEntry(DecoderTableInfo &TableInfo,
|
|
unsigned Opc) const {
|
|
BitsInit *SFBits =
|
|
AllInstructions[Opc]->TheDef->getValueAsBitsInit("SoftFail");
|
|
if (!SFBits) return;
|
|
BitsInit *InstBits = AllInstructions[Opc]->TheDef->getValueAsBitsInit("Inst");
|
|
|
|
APInt PositiveMask(BitWidth, 0ULL);
|
|
APInt NegativeMask(BitWidth, 0ULL);
|
|
for (unsigned i = 0; i < BitWidth; ++i) {
|
|
bit_value_t B = bitFromBits(*SFBits, i);
|
|
bit_value_t IB = bitFromBits(*InstBits, i);
|
|
|
|
if (B != BIT_TRUE) continue;
|
|
|
|
switch (IB) {
|
|
case BIT_FALSE:
|
|
// The bit is meant to be false, so emit a check to see if it is true.
|
|
PositiveMask.setBit(i);
|
|
break;
|
|
case BIT_TRUE:
|
|
// The bit is meant to be true, so emit a check to see if it is false.
|
|
NegativeMask.setBit(i);
|
|
break;
|
|
default:
|
|
// The bit is not set; this must be an error!
|
|
StringRef Name = AllInstructions[Opc]->TheDef->getName();
|
|
errs() << "SoftFail Conflict: bit SoftFail{" << i << "} in " << Name
|
|
<< " is set but Inst{" << i << "} is unset!\n"
|
|
<< " - You can only mark a bit as SoftFail if it is fully defined"
|
|
<< " (1/0 - not '?') in Inst\n";
|
|
return;
|
|
}
|
|
}
|
|
|
|
bool NeedPositiveMask = PositiveMask.getBoolValue();
|
|
bool NeedNegativeMask = NegativeMask.getBoolValue();
|
|
|
|
if (!NeedPositiveMask && !NeedNegativeMask)
|
|
return;
|
|
|
|
TableInfo.Table.push_back(MCD::OPC_SoftFail);
|
|
|
|
SmallString<16> MaskBytes;
|
|
raw_svector_ostream S(MaskBytes);
|
|
if (NeedPositiveMask) {
|
|
encodeULEB128(PositiveMask.getZExtValue(), S);
|
|
S.flush();
|
|
for (unsigned i = 0, e = MaskBytes.size(); i != e; ++i)
|
|
TableInfo.Table.push_back(MaskBytes[i]);
|
|
} else
|
|
TableInfo.Table.push_back(0);
|
|
if (NeedNegativeMask) {
|
|
MaskBytes.clear();
|
|
S.resync();
|
|
encodeULEB128(NegativeMask.getZExtValue(), S);
|
|
S.flush();
|
|
for (unsigned i = 0, e = MaskBytes.size(); i != e; ++i)
|
|
TableInfo.Table.push_back(MaskBytes[i]);
|
|
} else
|
|
TableInfo.Table.push_back(0);
|
|
}
|
|
|
|
// Emits table entries to decode the singleton.
|
|
void FilterChooser::emitSingletonTableEntry(DecoderTableInfo &TableInfo,
|
|
unsigned Opc) const {
|
|
std::vector<unsigned> StartBits;
|
|
std::vector<unsigned> EndBits;
|
|
std::vector<uint64_t> FieldVals;
|
|
insn_t Insn;
|
|
insnWithID(Insn, Opc);
|
|
|
|
// Look for islands of undecoded bits of the singleton.
|
|
getIslands(StartBits, EndBits, FieldVals, Insn);
|
|
|
|
unsigned Size = StartBits.size();
|
|
|
|
// Emit the predicate table entry if one is needed.
|
|
emitPredicateTableEntry(TableInfo, Opc);
|
|
|
|
// Check any additional encoding fields needed.
|
|
for (unsigned I = Size; I != 0; --I) {
|
|
unsigned NumBits = EndBits[I-1] - StartBits[I-1] + 1;
|
|
TableInfo.Table.push_back(MCD::OPC_CheckField);
|
|
TableInfo.Table.push_back(StartBits[I-1]);
|
|
TableInfo.Table.push_back(NumBits);
|
|
uint8_t Buffer[8], *p;
|
|
encodeULEB128(FieldVals[I-1], Buffer);
|
|
for (p = Buffer; *p >= 128 ; ++p)
|
|
TableInfo.Table.push_back(*p);
|
|
TableInfo.Table.push_back(*p);
|
|
// Push location for NumToSkip backpatching.
|
|
TableInfo.FixupStack.back().push_back(TableInfo.Table.size());
|
|
// The fixup is always 16-bits, so go ahead and allocate the space
|
|
// in the table so all our relative position calculations work OK even
|
|
// before we fully resolve the real value here.
|
|
TableInfo.Table.push_back(0);
|
|
TableInfo.Table.push_back(0);
|
|
}
|
|
|
|
// Check for soft failure of the match.
|
|
emitSoftFailTableEntry(TableInfo, Opc);
|
|
|
|
TableInfo.Table.push_back(MCD::OPC_Decode);
|
|
uint8_t Buffer[8], *p;
|
|
encodeULEB128(Opc, Buffer);
|
|
for (p = Buffer; *p >= 128 ; ++p)
|
|
TableInfo.Table.push_back(*p);
|
|
TableInfo.Table.push_back(*p);
|
|
|
|
unsigned DIdx = getDecoderIndex(TableInfo.Decoders, Opc);
|
|
SmallString<16> Bytes;
|
|
raw_svector_ostream S(Bytes);
|
|
encodeULEB128(DIdx, S);
|
|
S.flush();
|
|
|
|
// Decoder index
|
|
for (unsigned i = 0, e = Bytes.size(); i != e; ++i)
|
|
TableInfo.Table.push_back(Bytes[i]);
|
|
}
|
|
|
|
// Emits table entries to decode the singleton, and then to decode the rest.
|
|
void FilterChooser::emitSingletonTableEntry(DecoderTableInfo &TableInfo,
|
|
const Filter &Best) const {
|
|
unsigned Opc = Best.getSingletonOpc();
|
|
|
|
// complex singletons need predicate checks from the first singleton
|
|
// to refer forward to the variable filterchooser that follows.
|
|
TableInfo.FixupStack.push_back(FixupList());
|
|
|
|
emitSingletonTableEntry(TableInfo, Opc);
|
|
|
|
resolveTableFixups(TableInfo.Table, TableInfo.FixupStack.back(),
|
|
TableInfo.Table.size());
|
|
TableInfo.FixupStack.pop_back();
|
|
|
|
Best.getVariableFC().emitTableEntries(TableInfo);
|
|
}
|
|
|
|
|
|
// Assign a single filter and run with it. Top level API client can initialize
|
|
// with a single filter to start the filtering process.
|
|
void FilterChooser::runSingleFilter(unsigned startBit, unsigned numBit,
|
|
bool mixed) {
|
|
Filters.clear();
|
|
Filters.push_back(Filter(*this, startBit, numBit, true));
|
|
BestIndex = 0; // Sole Filter instance to choose from.
|
|
bestFilter().recurse();
|
|
}
|
|
|
|
// reportRegion is a helper function for filterProcessor to mark a region as
|
|
// eligible for use as a filter region.
|
|
void FilterChooser::reportRegion(bitAttr_t RA, unsigned StartBit,
|
|
unsigned BitIndex, bool AllowMixed) {
|
|
if (RA == ATTR_MIXED && AllowMixed)
|
|
Filters.push_back(Filter(*this, StartBit, BitIndex - StartBit, true));
|
|
else if (RA == ATTR_ALL_SET && !AllowMixed)
|
|
Filters.push_back(Filter(*this, StartBit, BitIndex - StartBit, false));
|
|
}
|
|
|
|
// FilterProcessor scans the well-known encoding bits of the instructions and
|
|
// builds up a list of candidate filters. It chooses the best filter and
|
|
// recursively descends down the decoding tree.
|
|
bool FilterChooser::filterProcessor(bool AllowMixed, bool Greedy) {
|
|
Filters.clear();
|
|
BestIndex = -1;
|
|
unsigned numInstructions = Opcodes.size();
|
|
|
|
assert(numInstructions && "Filter created with no instructions");
|
|
|
|
// No further filtering is necessary.
|
|
if (numInstructions == 1)
|
|
return true;
|
|
|
|
// Heuristics. See also doFilter()'s "Heuristics" comment when num of
|
|
// instructions is 3.
|
|
if (AllowMixed && !Greedy) {
|
|
assert(numInstructions == 3);
|
|
|
|
for (unsigned i = 0; i < Opcodes.size(); ++i) {
|
|
std::vector<unsigned> StartBits;
|
|
std::vector<unsigned> EndBits;
|
|
std::vector<uint64_t> FieldVals;
|
|
insn_t Insn;
|
|
|
|
insnWithID(Insn, Opcodes[i]);
|
|
|
|
// Look for islands of undecoded bits of any instruction.
|
|
if (getIslands(StartBits, EndBits, FieldVals, Insn) > 0) {
|
|
// Found an instruction with island(s). Now just assign a filter.
|
|
runSingleFilter(StartBits[0], EndBits[0] - StartBits[0] + 1, true);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
unsigned BitIndex;
|
|
|
|
// We maintain BIT_WIDTH copies of the bitAttrs automaton.
|
|
// The automaton consumes the corresponding bit from each
|
|
// instruction.
|
|
//
|
|
// Input symbols: 0, 1, and _ (unset).
|
|
// States: NONE, FILTERED, ALL_SET, ALL_UNSET, and MIXED.
|
|
// Initial state: NONE.
|
|
//
|
|
// (NONE) ------- [01] -> (ALL_SET)
|
|
// (NONE) ------- _ ----> (ALL_UNSET)
|
|
// (ALL_SET) ---- [01] -> (ALL_SET)
|
|
// (ALL_SET) ---- _ ----> (MIXED)
|
|
// (ALL_UNSET) -- [01] -> (MIXED)
|
|
// (ALL_UNSET) -- _ ----> (ALL_UNSET)
|
|
// (MIXED) ------ . ----> (MIXED)
|
|
// (FILTERED)---- . ----> (FILTERED)
|
|
|
|
std::vector<bitAttr_t> bitAttrs;
|
|
|
|
// FILTERED bit positions provide no entropy and are not worthy of pursuing.
|
|
// Filter::recurse() set either BIT_TRUE or BIT_FALSE for each position.
|
|
for (BitIndex = 0; BitIndex < BitWidth; ++BitIndex)
|
|
if (FilterBitValues[BitIndex] == BIT_TRUE ||
|
|
FilterBitValues[BitIndex] == BIT_FALSE)
|
|
bitAttrs.push_back(ATTR_FILTERED);
|
|
else
|
|
bitAttrs.push_back(ATTR_NONE);
|
|
|
|
for (unsigned InsnIndex = 0; InsnIndex < numInstructions; ++InsnIndex) {
|
|
insn_t insn;
|
|
|
|
insnWithID(insn, Opcodes[InsnIndex]);
|
|
|
|
for (BitIndex = 0; BitIndex < BitWidth; ++BitIndex) {
|
|
switch (bitAttrs[BitIndex]) {
|
|
case ATTR_NONE:
|
|
if (insn[BitIndex] == BIT_UNSET)
|
|
bitAttrs[BitIndex] = ATTR_ALL_UNSET;
|
|
else
|
|
bitAttrs[BitIndex] = ATTR_ALL_SET;
|
|
break;
|
|
case ATTR_ALL_SET:
|
|
if (insn[BitIndex] == BIT_UNSET)
|
|
bitAttrs[BitIndex] = ATTR_MIXED;
|
|
break;
|
|
case ATTR_ALL_UNSET:
|
|
if (insn[BitIndex] != BIT_UNSET)
|
|
bitAttrs[BitIndex] = ATTR_MIXED;
|
|
break;
|
|
case ATTR_MIXED:
|
|
case ATTR_FILTERED:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// The regionAttr automaton consumes the bitAttrs automatons' state,
|
|
// lowest-to-highest.
|
|
//
|
|
// Input symbols: F(iltered), (all_)S(et), (all_)U(nset), M(ixed)
|
|
// States: NONE, ALL_SET, MIXED
|
|
// Initial state: NONE
|
|
//
|
|
// (NONE) ----- F --> (NONE)
|
|
// (NONE) ----- S --> (ALL_SET) ; and set region start
|
|
// (NONE) ----- U --> (NONE)
|
|
// (NONE) ----- M --> (MIXED) ; and set region start
|
|
// (ALL_SET) -- F --> (NONE) ; and report an ALL_SET region
|
|
// (ALL_SET) -- S --> (ALL_SET)
|
|
// (ALL_SET) -- U --> (NONE) ; and report an ALL_SET region
|
|
// (ALL_SET) -- M --> (MIXED) ; and report an ALL_SET region
|
|
// (MIXED) ---- F --> (NONE) ; and report a MIXED region
|
|
// (MIXED) ---- S --> (ALL_SET) ; and report a MIXED region
|
|
// (MIXED) ---- U --> (NONE) ; and report a MIXED region
|
|
// (MIXED) ---- M --> (MIXED)
|
|
|
|
bitAttr_t RA = ATTR_NONE;
|
|
unsigned StartBit = 0;
|
|
|
|
for (BitIndex = 0; BitIndex < BitWidth; ++BitIndex) {
|
|
bitAttr_t bitAttr = bitAttrs[BitIndex];
|
|
|
|
assert(bitAttr != ATTR_NONE && "Bit without attributes");
|
|
|
|
switch (RA) {
|
|
case ATTR_NONE:
|
|
switch (bitAttr) {
|
|
case ATTR_FILTERED:
|
|
break;
|
|
case ATTR_ALL_SET:
|
|
StartBit = BitIndex;
|
|
RA = ATTR_ALL_SET;
|
|
break;
|
|
case ATTR_ALL_UNSET:
|
|
break;
|
|
case ATTR_MIXED:
|
|
StartBit = BitIndex;
|
|
RA = ATTR_MIXED;
|
|
break;
|
|
default:
|
|
llvm_unreachable("Unexpected bitAttr!");
|
|
}
|
|
break;
|
|
case ATTR_ALL_SET:
|
|
switch (bitAttr) {
|
|
case ATTR_FILTERED:
|
|
reportRegion(RA, StartBit, BitIndex, AllowMixed);
|
|
RA = ATTR_NONE;
|
|
break;
|
|
case ATTR_ALL_SET:
|
|
break;
|
|
case ATTR_ALL_UNSET:
|
|
reportRegion(RA, StartBit, BitIndex, AllowMixed);
|
|
RA = ATTR_NONE;
|
|
break;
|
|
case ATTR_MIXED:
|
|
reportRegion(RA, StartBit, BitIndex, AllowMixed);
|
|
StartBit = BitIndex;
|
|
RA = ATTR_MIXED;
|
|
break;
|
|
default:
|
|
llvm_unreachable("Unexpected bitAttr!");
|
|
}
|
|
break;
|
|
case ATTR_MIXED:
|
|
switch (bitAttr) {
|
|
case ATTR_FILTERED:
|
|
reportRegion(RA, StartBit, BitIndex, AllowMixed);
|
|
StartBit = BitIndex;
|
|
RA = ATTR_NONE;
|
|
break;
|
|
case ATTR_ALL_SET:
|
|
reportRegion(RA, StartBit, BitIndex, AllowMixed);
|
|
StartBit = BitIndex;
|
|
RA = ATTR_ALL_SET;
|
|
break;
|
|
case ATTR_ALL_UNSET:
|
|
reportRegion(RA, StartBit, BitIndex, AllowMixed);
|
|
RA = ATTR_NONE;
|
|
break;
|
|
case ATTR_MIXED:
|
|
break;
|
|
default:
|
|
llvm_unreachable("Unexpected bitAttr!");
|
|
}
|
|
break;
|
|
case ATTR_ALL_UNSET:
|
|
llvm_unreachable("regionAttr state machine has no ATTR_UNSET state");
|
|
case ATTR_FILTERED:
|
|
llvm_unreachable("regionAttr state machine has no ATTR_FILTERED state");
|
|
}
|
|
}
|
|
|
|
// At the end, if we're still in ALL_SET or MIXED states, report a region
|
|
switch (RA) {
|
|
case ATTR_NONE:
|
|
break;
|
|
case ATTR_FILTERED:
|
|
break;
|
|
case ATTR_ALL_SET:
|
|
reportRegion(RA, StartBit, BitIndex, AllowMixed);
|
|
break;
|
|
case ATTR_ALL_UNSET:
|
|
break;
|
|
case ATTR_MIXED:
|
|
reportRegion(RA, StartBit, BitIndex, AllowMixed);
|
|
break;
|
|
}
|
|
|
|
// We have finished with the filter processings. Now it's time to choose
|
|
// the best performing filter.
|
|
BestIndex = 0;
|
|
bool AllUseless = true;
|
|
unsigned BestScore = 0;
|
|
|
|
for (unsigned i = 0, e = Filters.size(); i != e; ++i) {
|
|
unsigned Usefulness = Filters[i].usefulness();
|
|
|
|
if (Usefulness)
|
|
AllUseless = false;
|
|
|
|
if (Usefulness > BestScore) {
|
|
BestIndex = i;
|
|
BestScore = Usefulness;
|
|
}
|
|
}
|
|
|
|
if (!AllUseless)
|
|
bestFilter().recurse();
|
|
|
|
return !AllUseless;
|
|
} // end of FilterChooser::filterProcessor(bool)
|
|
|
|
// Decides on the best configuration of filter(s) to use in order to decode
|
|
// the instructions. A conflict of instructions may occur, in which case we
|
|
// dump the conflict set to the standard error.
|
|
void FilterChooser::doFilter() {
|
|
unsigned Num = Opcodes.size();
|
|
assert(Num && "FilterChooser created with no instructions");
|
|
|
|
// Try regions of consecutive known bit values first.
|
|
if (filterProcessor(false))
|
|
return;
|
|
|
|
// Then regions of mixed bits (both known and unitialized bit values allowed).
|
|
if (filterProcessor(true))
|
|
return;
|
|
|
|
// Heuristics to cope with conflict set {t2CMPrs, t2SUBSrr, t2SUBSrs} where
|
|
// no single instruction for the maximum ATTR_MIXED region Inst{14-4} has a
|
|
// well-known encoding pattern. In such case, we backtrack and scan for the
|
|
// the very first consecutive ATTR_ALL_SET region and assign a filter to it.
|
|
if (Num == 3 && filterProcessor(true, false))
|
|
return;
|
|
|
|
// If we come to here, the instruction decoding has failed.
|
|
// Set the BestIndex to -1 to indicate so.
|
|
BestIndex = -1;
|
|
}
|
|
|
|
// emitTableEntries - Emit state machine entries to decode our share of
|
|
// instructions.
|
|
void FilterChooser::emitTableEntries(DecoderTableInfo &TableInfo) const {
|
|
if (Opcodes.size() == 1) {
|
|
// There is only one instruction in the set, which is great!
|
|
// Call emitSingletonDecoder() to see whether there are any remaining
|
|
// encodings bits.
|
|
emitSingletonTableEntry(TableInfo, Opcodes[0]);
|
|
return;
|
|
}
|
|
|
|
// Choose the best filter to do the decodings!
|
|
if (BestIndex != -1) {
|
|
const Filter &Best = Filters[BestIndex];
|
|
if (Best.getNumFiltered() == 1)
|
|
emitSingletonTableEntry(TableInfo, Best);
|
|
else
|
|
Best.emitTableEntry(TableInfo);
|
|
return;
|
|
}
|
|
|
|
// We don't know how to decode these instructions! Dump the
|
|
// conflict set and bail.
|
|
|
|
// Print out useful conflict information for postmortem analysis.
|
|
errs() << "Decoding Conflict:\n";
|
|
|
|
dumpStack(errs(), "\t\t");
|
|
|
|
for (unsigned i = 0; i < Opcodes.size(); ++i) {
|
|
const std::string &Name = nameWithID(Opcodes[i]);
|
|
|
|
errs() << '\t' << Name << " ";
|
|
dumpBits(errs(),
|
|
getBitsField(*AllInstructions[Opcodes[i]]->TheDef, "Inst"));
|
|
errs() << '\n';
|
|
}
|
|
}
|
|
|
|
static bool populateInstruction(CodeGenTarget &Target,
|
|
const CodeGenInstruction &CGI, unsigned Opc,
|
|
std::map<unsigned, std::vector<OperandInfo> > &Operands){
|
|
const Record &Def = *CGI.TheDef;
|
|
// If all the bit positions are not specified; do not decode this instruction.
|
|
// We are bound to fail! For proper disassembly, the well-known encoding bits
|
|
// of the instruction must be fully specified.
|
|
|
|
BitsInit &Bits = getBitsField(Def, "Inst");
|
|
if (Bits.allInComplete()) return false;
|
|
|
|
std::vector<OperandInfo> InsnOperands;
|
|
|
|
// If the instruction has specified a custom decoding hook, use that instead
|
|
// of trying to auto-generate the decoder.
|
|
std::string InstDecoder = Def.getValueAsString("DecoderMethod");
|
|
if (InstDecoder != "") {
|
|
InsnOperands.push_back(OperandInfo(InstDecoder));
|
|
Operands[Opc] = InsnOperands;
|
|
return true;
|
|
}
|
|
|
|
// Generate a description of the operand of the instruction that we know
|
|
// how to decode automatically.
|
|
// FIXME: We'll need to have a way to manually override this as needed.
|
|
|
|
// Gather the outputs/inputs of the instruction, so we can find their
|
|
// positions in the encoding. This assumes for now that they appear in the
|
|
// MCInst in the order that they're listed.
|
|
std::vector<std::pair<Init*, std::string> > InOutOperands;
|
|
DagInit *Out = Def.getValueAsDag("OutOperandList");
|
|
DagInit *In = Def.getValueAsDag("InOperandList");
|
|
for (unsigned i = 0; i < Out->getNumArgs(); ++i)
|
|
InOutOperands.push_back(std::make_pair(Out->getArg(i), Out->getArgName(i)));
|
|
for (unsigned i = 0; i < In->getNumArgs(); ++i)
|
|
InOutOperands.push_back(std::make_pair(In->getArg(i), In->getArgName(i)));
|
|
|
|
// Search for tied operands, so that we can correctly instantiate
|
|
// operands that are not explicitly represented in the encoding.
|
|
std::map<std::string, std::string> TiedNames;
|
|
for (unsigned i = 0; i < CGI.Operands.size(); ++i) {
|
|
int tiedTo = CGI.Operands[i].getTiedRegister();
|
|
if (tiedTo != -1) {
|
|
std::pair<unsigned, unsigned> SO =
|
|
CGI.Operands.getSubOperandNumber(tiedTo);
|
|
TiedNames[InOutOperands[i].second] = InOutOperands[SO.first].second;
|
|
TiedNames[InOutOperands[SO.first].second] = InOutOperands[i].second;
|
|
}
|
|
}
|
|
|
|
std::map<std::string, std::vector<OperandInfo> > NumberedInsnOperands;
|
|
std::set<std::string> NumberedInsnOperandsNoTie;
|
|
if (Target.getInstructionSet()->
|
|
getValueAsBit("decodePositionallyEncodedOperands")) {
|
|
const std::vector<RecordVal> &Vals = Def.getValues();
|
|
unsigned NumberedOp = 0;
|
|
|
|
std::set<unsigned> NamedOpIndices;
|
|
if (Target.getInstructionSet()->
|
|
getValueAsBit("noNamedPositionallyEncodedOperands"))
|
|
// Collect the set of operand indices that might correspond to named
|
|
// operand, and skip these when assigning operands based on position.
|
|
for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
|
|
unsigned OpIdx;
|
|
if (!CGI.Operands.hasOperandNamed(Vals[i].getName(), OpIdx))
|
|
continue;
|
|
|
|
NamedOpIndices.insert(OpIdx);
|
|
}
|
|
|
|
for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
|
|
// Ignore fixed fields in the record, we're looking for values like:
|
|
// bits<5> RST = { ?, ?, ?, ?, ? };
|
|
if (Vals[i].getPrefix() || Vals[i].getValue()->isComplete())
|
|
continue;
|
|
|
|
// Determine if Vals[i] actually contributes to the Inst encoding.
|
|
unsigned bi = 0;
|
|
for (; bi < Bits.getNumBits(); ++bi) {
|
|
VarInit *Var = nullptr;
|
|
VarBitInit *BI = dyn_cast<VarBitInit>(Bits.getBit(bi));
|
|
if (BI)
|
|
Var = dyn_cast<VarInit>(BI->getBitVar());
|
|
else
|
|
Var = dyn_cast<VarInit>(Bits.getBit(bi));
|
|
|
|
if (Var && Var->getName() == Vals[i].getName())
|
|
break;
|
|
}
|
|
|
|
if (bi == Bits.getNumBits())
|
|
continue;
|
|
|
|
// Skip variables that correspond to explicitly-named operands.
|
|
unsigned OpIdx;
|
|
if (CGI.Operands.hasOperandNamed(Vals[i].getName(), OpIdx))
|
|
continue;
|
|
|
|
// Get the bit range for this operand:
|
|
unsigned bitStart = bi++, bitWidth = 1;
|
|
for (; bi < Bits.getNumBits(); ++bi) {
|
|
VarInit *Var = nullptr;
|
|
VarBitInit *BI = dyn_cast<VarBitInit>(Bits.getBit(bi));
|
|
if (BI)
|
|
Var = dyn_cast<VarInit>(BI->getBitVar());
|
|
else
|
|
Var = dyn_cast<VarInit>(Bits.getBit(bi));
|
|
|
|
if (!Var)
|
|
break;
|
|
|
|
if (Var->getName() != Vals[i].getName())
|
|
break;
|
|
|
|
++bitWidth;
|
|
}
|
|
|
|
unsigned NumberOps = CGI.Operands.size();
|
|
while (NumberedOp < NumberOps &&
|
|
(CGI.Operands.isFlatOperandNotEmitted(NumberedOp) ||
|
|
(!NamedOpIndices.empty() && NamedOpIndices.count(
|
|
CGI.Operands.getSubOperandNumber(NumberedOp).first))))
|
|
++NumberedOp;
|
|
|
|
OpIdx = NumberedOp++;
|
|
|
|
// OpIdx now holds the ordered operand number of Vals[i].
|
|
std::pair<unsigned, unsigned> SO =
|
|
CGI.Operands.getSubOperandNumber(OpIdx);
|
|
const std::string &Name = CGI.Operands[SO.first].Name;
|
|
|
|
DEBUG(dbgs() << "Numbered operand mapping for " << Def.getName() << ": " <<
|
|
Name << "(" << SO.first << ", " << SO.second << ") => " <<
|
|
Vals[i].getName() << "\n");
|
|
|
|
std::string Decoder = "";
|
|
Record *TypeRecord = CGI.Operands[SO.first].Rec;
|
|
|
|
RecordVal *DecoderString = TypeRecord->getValue("DecoderMethod");
|
|
StringInit *String = DecoderString ?
|
|
dyn_cast<StringInit>(DecoderString->getValue()) : nullptr;
|
|
if (String && String->getValue() != "")
|
|
Decoder = String->getValue();
|
|
|
|
if (Decoder == "" &&
|
|
CGI.Operands[SO.first].MIOperandInfo &&
|
|
CGI.Operands[SO.first].MIOperandInfo->getNumArgs()) {
|
|
Init *Arg = CGI.Operands[SO.first].MIOperandInfo->
|
|
getArg(SO.second);
|
|
if (TypedInit *TI = cast<TypedInit>(Arg)) {
|
|
RecordRecTy *Type = cast<RecordRecTy>(TI->getType());
|
|
TypeRecord = Type->getRecord();
|
|
}
|
|
}
|
|
|
|
bool isReg = false;
|
|
if (TypeRecord->isSubClassOf("RegisterOperand"))
|
|
TypeRecord = TypeRecord->getValueAsDef("RegClass");
|
|
if (TypeRecord->isSubClassOf("RegisterClass")) {
|
|
Decoder = "Decode" + TypeRecord->getName() + "RegisterClass";
|
|
isReg = true;
|
|
} else if (TypeRecord->isSubClassOf("PointerLikeRegClass")) {
|
|
Decoder = "DecodePointerLikeRegClass" +
|
|
utostr(TypeRecord->getValueAsInt("RegClassKind"));
|
|
isReg = true;
|
|
}
|
|
|
|
DecoderString = TypeRecord->getValue("DecoderMethod");
|
|
String = DecoderString ?
|
|
dyn_cast<StringInit>(DecoderString->getValue()) : nullptr;
|
|
if (!isReg && String && String->getValue() != "")
|
|
Decoder = String->getValue();
|
|
|
|
OperandInfo OpInfo(Decoder);
|
|
OpInfo.addField(bitStart, bitWidth, 0);
|
|
|
|
NumberedInsnOperands[Name].push_back(OpInfo);
|
|
|
|
// FIXME: For complex operands with custom decoders we can't handle tied
|
|
// sub-operands automatically. Skip those here and assume that this is
|
|
// fixed up elsewhere.
|
|
if (CGI.Operands[SO.first].MIOperandInfo &&
|
|
CGI.Operands[SO.first].MIOperandInfo->getNumArgs() > 1 &&
|
|
String && String->getValue() != "")
|
|
NumberedInsnOperandsNoTie.insert(Name);
|
|
}
|
|
}
|
|
|
|
// For each operand, see if we can figure out where it is encoded.
|
|
for (const auto &Op : InOutOperands) {
|
|
if (!NumberedInsnOperands[Op.second].empty()) {
|
|
InsnOperands.insert(InsnOperands.end(),
|
|
NumberedInsnOperands[Op.second].begin(),
|
|
NumberedInsnOperands[Op.second].end());
|
|
continue;
|
|
}
|
|
if (!NumberedInsnOperands[TiedNames[Op.second]].empty()) {
|
|
if (!NumberedInsnOperandsNoTie.count(TiedNames[Op.second])) {
|
|
// Figure out to which (sub)operand we're tied.
|
|
unsigned i = CGI.Operands.getOperandNamed(TiedNames[Op.second]);
|
|
int tiedTo = CGI.Operands[i].getTiedRegister();
|
|
if (tiedTo == -1) {
|
|
i = CGI.Operands.getOperandNamed(Op.second);
|
|
tiedTo = CGI.Operands[i].getTiedRegister();
|
|
}
|
|
|
|
if (tiedTo != -1) {
|
|
std::pair<unsigned, unsigned> SO =
|
|
CGI.Operands.getSubOperandNumber(tiedTo);
|
|
|
|
InsnOperands.push_back(NumberedInsnOperands[TiedNames[Op.second]]
|
|
[SO.second]);
|
|
}
|
|
}
|
|
continue;
|
|
}
|
|
|
|
std::string Decoder = "";
|
|
|
|
// At this point, we can locate the field, but we need to know how to
|
|
// interpret it. As a first step, require the target to provide callbacks
|
|
// for decoding register classes.
|
|
// FIXME: This need to be extended to handle instructions with custom
|
|
// decoder methods, and operands with (simple) MIOperandInfo's.
|
|
TypedInit *TI = cast<TypedInit>(Op.first);
|
|
RecordRecTy *Type = cast<RecordRecTy>(TI->getType());
|
|
Record *TypeRecord = Type->getRecord();
|
|
bool isReg = false;
|
|
if (TypeRecord->isSubClassOf("RegisterOperand"))
|
|
TypeRecord = TypeRecord->getValueAsDef("RegClass");
|
|
if (TypeRecord->isSubClassOf("RegisterClass")) {
|
|
Decoder = "Decode" + TypeRecord->getName() + "RegisterClass";
|
|
isReg = true;
|
|
} else if (TypeRecord->isSubClassOf("PointerLikeRegClass")) {
|
|
Decoder = "DecodePointerLikeRegClass" +
|
|
utostr(TypeRecord->getValueAsInt("RegClassKind"));
|
|
isReg = true;
|
|
}
|
|
|
|
RecordVal *DecoderString = TypeRecord->getValue("DecoderMethod");
|
|
StringInit *String = DecoderString ?
|
|
dyn_cast<StringInit>(DecoderString->getValue()) : nullptr;
|
|
if (!isReg && String && String->getValue() != "")
|
|
Decoder = String->getValue();
|
|
|
|
OperandInfo OpInfo(Decoder);
|
|
unsigned Base = ~0U;
|
|
unsigned Width = 0;
|
|
unsigned Offset = 0;
|
|
|
|
for (unsigned bi = 0; bi < Bits.getNumBits(); ++bi) {
|
|
VarInit *Var = nullptr;
|
|
VarBitInit *BI = dyn_cast<VarBitInit>(Bits.getBit(bi));
|
|
if (BI)
|
|
Var = dyn_cast<VarInit>(BI->getBitVar());
|
|
else
|
|
Var = dyn_cast<VarInit>(Bits.getBit(bi));
|
|
|
|
if (!Var) {
|
|
if (Base != ~0U) {
|
|
OpInfo.addField(Base, Width, Offset);
|
|
Base = ~0U;
|
|
Width = 0;
|
|
Offset = 0;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
if (Var->getName() != Op.second &&
|
|
Var->getName() != TiedNames[Op.second]) {
|
|
if (Base != ~0U) {
|
|
OpInfo.addField(Base, Width, Offset);
|
|
Base = ~0U;
|
|
Width = 0;
|
|
Offset = 0;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
if (Base == ~0U) {
|
|
Base = bi;
|
|
Width = 1;
|
|
Offset = BI ? BI->getBitNum() : 0;
|
|
} else if (BI && BI->getBitNum() != Offset + Width) {
|
|
OpInfo.addField(Base, Width, Offset);
|
|
Base = bi;
|
|
Width = 1;
|
|
Offset = BI->getBitNum();
|
|
} else {
|
|
++Width;
|
|
}
|
|
}
|
|
|
|
if (Base != ~0U)
|
|
OpInfo.addField(Base, Width, Offset);
|
|
|
|
if (OpInfo.numFields() > 0)
|
|
InsnOperands.push_back(OpInfo);
|
|
}
|
|
|
|
Operands[Opc] = InsnOperands;
|
|
|
|
|
|
#if 0
|
|
DEBUG({
|
|
// Dumps the instruction encoding bits.
|
|
dumpBits(errs(), Bits);
|
|
|
|
errs() << '\n';
|
|
|
|
// Dumps the list of operand info.
|
|
for (unsigned i = 0, e = CGI.Operands.size(); i != e; ++i) {
|
|
const CGIOperandList::OperandInfo &Info = CGI.Operands[i];
|
|
const std::string &OperandName = Info.Name;
|
|
const Record &OperandDef = *Info.Rec;
|
|
|
|
errs() << "\t" << OperandName << " (" << OperandDef.getName() << ")\n";
|
|
}
|
|
});
|
|
#endif
|
|
|
|
return true;
|
|
}
|
|
|
|
// emitFieldFromInstruction - Emit the templated helper function
|
|
// fieldFromInstruction().
|
|
static void emitFieldFromInstruction(formatted_raw_ostream &OS) {
|
|
OS << "// Helper function for extracting fields from encoded instructions.\n"
|
|
<< "template<typename InsnType>\n"
|
|
<< "static InsnType fieldFromInstruction(InsnType insn, unsigned startBit,\n"
|
|
<< " unsigned numBits) {\n"
|
|
<< " assert(startBit + numBits <= (sizeof(InsnType)*8) &&\n"
|
|
<< " \"Instruction field out of bounds!\");\n"
|
|
<< " InsnType fieldMask;\n"
|
|
<< " if (numBits == sizeof(InsnType)*8)\n"
|
|
<< " fieldMask = (InsnType)(-1LL);\n"
|
|
<< " else\n"
|
|
<< " fieldMask = (((InsnType)1 << numBits) - 1) << startBit;\n"
|
|
<< " return (insn & fieldMask) >> startBit;\n"
|
|
<< "}\n\n";
|
|
}
|
|
|
|
// emitDecodeInstruction - Emit the templated helper function
|
|
// decodeInstruction().
|
|
static void emitDecodeInstruction(formatted_raw_ostream &OS) {
|
|
OS << "template<typename InsnType>\n"
|
|
<< "static DecodeStatus decodeInstruction(const uint8_t DecodeTable[], MCInst &MI,\n"
|
|
<< " InsnType insn, uint64_t Address,\n"
|
|
<< " const void *DisAsm,\n"
|
|
<< " const MCSubtargetInfo &STI) {\n"
|
|
<< " uint64_t Bits = STI.getFeatureBits();\n"
|
|
<< "\n"
|
|
<< " const uint8_t *Ptr = DecodeTable;\n"
|
|
<< " uint32_t CurFieldValue = 0;\n"
|
|
<< " DecodeStatus S = MCDisassembler::Success;\n"
|
|
<< " for (;;) {\n"
|
|
<< " ptrdiff_t Loc = Ptr - DecodeTable;\n"
|
|
<< " switch (*Ptr) {\n"
|
|
<< " default:\n"
|
|
<< " errs() << Loc << \": Unexpected decode table opcode!\\n\";\n"
|
|
<< " return MCDisassembler::Fail;\n"
|
|
<< " case MCD::OPC_ExtractField: {\n"
|
|
<< " unsigned Start = *++Ptr;\n"
|
|
<< " unsigned Len = *++Ptr;\n"
|
|
<< " ++Ptr;\n"
|
|
<< " CurFieldValue = fieldFromInstruction(insn, Start, Len);\n"
|
|
<< " DEBUG(dbgs() << Loc << \": OPC_ExtractField(\" << Start << \", \"\n"
|
|
<< " << Len << \"): \" << CurFieldValue << \"\\n\");\n"
|
|
<< " break;\n"
|
|
<< " }\n"
|
|
<< " case MCD::OPC_FilterValue: {\n"
|
|
<< " // Decode the field value.\n"
|
|
<< " unsigned Len;\n"
|
|
<< " InsnType Val = decodeULEB128(++Ptr, &Len);\n"
|
|
<< " Ptr += Len;\n"
|
|
<< " // NumToSkip is a plain 16-bit integer.\n"
|
|
<< " unsigned NumToSkip = *Ptr++;\n"
|
|
<< " NumToSkip |= (*Ptr++) << 8;\n"
|
|
<< "\n"
|
|
<< " // Perform the filter operation.\n"
|
|
<< " if (Val != CurFieldValue)\n"
|
|
<< " Ptr += NumToSkip;\n"
|
|
<< " DEBUG(dbgs() << Loc << \": OPC_FilterValue(\" << Val << \", \" << NumToSkip\n"
|
|
<< " << \"): \" << ((Val != CurFieldValue) ? \"FAIL:\" : \"PASS:\")\n"
|
|
<< " << \" continuing at \" << (Ptr - DecodeTable) << \"\\n\");\n"
|
|
<< "\n"
|
|
<< " break;\n"
|
|
<< " }\n"
|
|
<< " case MCD::OPC_CheckField: {\n"
|
|
<< " unsigned Start = *++Ptr;\n"
|
|
<< " unsigned Len = *++Ptr;\n"
|
|
<< " InsnType FieldValue = fieldFromInstruction(insn, Start, Len);\n"
|
|
<< " // Decode the field value.\n"
|
|
<< " uint32_t ExpectedValue = decodeULEB128(++Ptr, &Len);\n"
|
|
<< " Ptr += Len;\n"
|
|
<< " // NumToSkip is a plain 16-bit integer.\n"
|
|
<< " unsigned NumToSkip = *Ptr++;\n"
|
|
<< " NumToSkip |= (*Ptr++) << 8;\n"
|
|
<< "\n"
|
|
<< " // If the actual and expected values don't match, skip.\n"
|
|
<< " if (ExpectedValue != FieldValue)\n"
|
|
<< " Ptr += NumToSkip;\n"
|
|
<< " DEBUG(dbgs() << Loc << \": OPC_CheckField(\" << Start << \", \"\n"
|
|
<< " << Len << \", \" << ExpectedValue << \", \" << NumToSkip\n"
|
|
<< " << \"): FieldValue = \" << FieldValue << \", ExpectedValue = \"\n"
|
|
<< " << ExpectedValue << \": \"\n"
|
|
<< " << ((ExpectedValue == FieldValue) ? \"PASS\\n\" : \"FAIL\\n\"));\n"
|
|
<< " break;\n"
|
|
<< " }\n"
|
|
<< " case MCD::OPC_CheckPredicate: {\n"
|
|
<< " unsigned Len;\n"
|
|
<< " // Decode the Predicate Index value.\n"
|
|
<< " unsigned PIdx = decodeULEB128(++Ptr, &Len);\n"
|
|
<< " Ptr += Len;\n"
|
|
<< " // NumToSkip is a plain 16-bit integer.\n"
|
|
<< " unsigned NumToSkip = *Ptr++;\n"
|
|
<< " NumToSkip |= (*Ptr++) << 8;\n"
|
|
<< " // Check the predicate.\n"
|
|
<< " bool Pred;\n"
|
|
<< " if (!(Pred = checkDecoderPredicate(PIdx, Bits)))\n"
|
|
<< " Ptr += NumToSkip;\n"
|
|
<< " (void)Pred;\n"
|
|
<< " DEBUG(dbgs() << Loc << \": OPC_CheckPredicate(\" << PIdx << \"): \"\n"
|
|
<< " << (Pred ? \"PASS\\n\" : \"FAIL\\n\"));\n"
|
|
<< "\n"
|
|
<< " break;\n"
|
|
<< " }\n"
|
|
<< " case MCD::OPC_Decode: {\n"
|
|
<< " unsigned Len;\n"
|
|
<< " // Decode the Opcode value.\n"
|
|
<< " unsigned Opc = decodeULEB128(++Ptr, &Len);\n"
|
|
<< " Ptr += Len;\n"
|
|
<< " unsigned DecodeIdx = decodeULEB128(Ptr, &Len);\n"
|
|
<< " Ptr += Len;\n"
|
|
<< " DEBUG(dbgs() << Loc << \": OPC_Decode: opcode \" << Opc\n"
|
|
<< " << \", using decoder \" << DecodeIdx << \"\\n\" );\n"
|
|
<< " DEBUG(dbgs() << \"----- DECODE SUCCESSFUL -----\\n\");\n"
|
|
<< "\n"
|
|
<< " MI.setOpcode(Opc);\n"
|
|
<< " return decodeToMCInst(S, DecodeIdx, insn, MI, Address, DisAsm);\n"
|
|
<< " }\n"
|
|
<< " case MCD::OPC_SoftFail: {\n"
|
|
<< " // Decode the mask values.\n"
|
|
<< " unsigned Len;\n"
|
|
<< " InsnType PositiveMask = decodeULEB128(++Ptr, &Len);\n"
|
|
<< " Ptr += Len;\n"
|
|
<< " InsnType NegativeMask = decodeULEB128(Ptr, &Len);\n"
|
|
<< " Ptr += Len;\n"
|
|
<< " bool Fail = (insn & PositiveMask) || (~insn & NegativeMask);\n"
|
|
<< " if (Fail)\n"
|
|
<< " S = MCDisassembler::SoftFail;\n"
|
|
<< " DEBUG(dbgs() << Loc << \": OPC_SoftFail: \" << (Fail ? \"FAIL\\n\":\"PASS\\n\"));\n"
|
|
<< " break;\n"
|
|
<< " }\n"
|
|
<< " case MCD::OPC_Fail: {\n"
|
|
<< " DEBUG(dbgs() << Loc << \": OPC_Fail\\n\");\n"
|
|
<< " return MCDisassembler::Fail;\n"
|
|
<< " }\n"
|
|
<< " }\n"
|
|
<< " }\n"
|
|
<< " llvm_unreachable(\"bogosity detected in disassembler state machine!\");\n"
|
|
<< "}\n\n";
|
|
}
|
|
|
|
// Emits disassembler code for instruction decoding.
|
|
void FixedLenDecoderEmitter::run(raw_ostream &o) {
|
|
formatted_raw_ostream OS(o);
|
|
OS << "#include \"llvm/MC/MCInst.h\"\n";
|
|
OS << "#include \"llvm/Support/Debug.h\"\n";
|
|
OS << "#include \"llvm/Support/DataTypes.h\"\n";
|
|
OS << "#include \"llvm/Support/LEB128.h\"\n";
|
|
OS << "#include \"llvm/Support/raw_ostream.h\"\n";
|
|
OS << "#include <assert.h>\n";
|
|
OS << '\n';
|
|
OS << "namespace llvm {\n\n";
|
|
|
|
emitFieldFromInstruction(OS);
|
|
|
|
Target.reverseBitsForLittleEndianEncoding();
|
|
|
|
// Parameterize the decoders based on namespace and instruction width.
|
|
NumberedInstructions = &Target.getInstructionsByEnumValue();
|
|
std::map<std::pair<std::string, unsigned>,
|
|
std::vector<unsigned> > OpcMap;
|
|
std::map<unsigned, std::vector<OperandInfo> > Operands;
|
|
|
|
for (unsigned i = 0; i < NumberedInstructions->size(); ++i) {
|
|
const CodeGenInstruction *Inst = NumberedInstructions->at(i);
|
|
const Record *Def = Inst->TheDef;
|
|
unsigned Size = Def->getValueAsInt("Size");
|
|
if (Def->getValueAsString("Namespace") == "TargetOpcode" ||
|
|
Def->getValueAsBit("isPseudo") ||
|
|
Def->getValueAsBit("isAsmParserOnly") ||
|
|
Def->getValueAsBit("isCodeGenOnly"))
|
|
continue;
|
|
|
|
std::string DecoderNamespace = Def->getValueAsString("DecoderNamespace");
|
|
|
|
if (Size) {
|
|
if (populateInstruction(Target, *Inst, i, Operands)) {
|
|
OpcMap[std::make_pair(DecoderNamespace, Size)].push_back(i);
|
|
}
|
|
}
|
|
}
|
|
|
|
DecoderTableInfo TableInfo;
|
|
for (const auto &Opc : OpcMap) {
|
|
// Emit the decoder for this namespace+width combination.
|
|
FilterChooser FC(*NumberedInstructions, Opc.second, Operands,
|
|
8*Opc.first.second, this);
|
|
|
|
// The decode table is cleared for each top level decoder function. The
|
|
// predicates and decoders themselves, however, are shared across all
|
|
// decoders to give more opportunities for uniqueing.
|
|
TableInfo.Table.clear();
|
|
TableInfo.FixupStack.clear();
|
|
TableInfo.Table.reserve(16384);
|
|
TableInfo.FixupStack.push_back(FixupList());
|
|
FC.emitTableEntries(TableInfo);
|
|
// Any NumToSkip fixups in the top level scope can resolve to the
|
|
// OPC_Fail at the end of the table.
|
|
assert(TableInfo.FixupStack.size() == 1 && "fixup stack phasing error!");
|
|
// Resolve any NumToSkip fixups in the current scope.
|
|
resolveTableFixups(TableInfo.Table, TableInfo.FixupStack.back(),
|
|
TableInfo.Table.size());
|
|
TableInfo.FixupStack.clear();
|
|
|
|
TableInfo.Table.push_back(MCD::OPC_Fail);
|
|
|
|
// Print the table to the output stream.
|
|
emitTable(OS, TableInfo.Table, 0, FC.getBitWidth(), Opc.first.first);
|
|
OS.flush();
|
|
}
|
|
|
|
// Emit the predicate function.
|
|
emitPredicateFunction(OS, TableInfo.Predicates, 0);
|
|
|
|
// Emit the decoder function.
|
|
emitDecoderFunction(OS, TableInfo.Decoders, 0);
|
|
|
|
// Emit the main entry point for the decoder, decodeInstruction().
|
|
emitDecodeInstruction(OS);
|
|
|
|
OS << "\n} // End llvm namespace\n";
|
|
}
|
|
|
|
namespace llvm {
|
|
|
|
void EmitFixedLenDecoder(RecordKeeper &RK, raw_ostream &OS,
|
|
std::string PredicateNamespace,
|
|
std::string GPrefix,
|
|
std::string GPostfix,
|
|
std::string ROK,
|
|
std::string RFail,
|
|
std::string L) {
|
|
FixedLenDecoderEmitter(RK, PredicateNamespace, GPrefix, GPostfix,
|
|
ROK, RFail, L).run(OS);
|
|
}
|
|
|
|
} // End llvm namespace
|