mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-17 21:35:07 +00:00
f2bdcb3187
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@30839 91177308-0d34-0410-b5e6-96231b3b80d8
407 lines
11 KiB
C++
407 lines
11 KiB
C++
//===- llvm/ADT/SmallVector.h - 'Normally small' vectors --------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by Chris Lattner and is distributed under
|
|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the SmallVector class.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_ADT_SMALLVECTOR_H
|
|
#define LLVM_ADT_SMALLVECTOR_H
|
|
|
|
#include <algorithm>
|
|
#include <iterator>
|
|
#include <memory>
|
|
|
|
namespace llvm {
|
|
|
|
/// SmallVectorImpl - This class consists of common code factored out of the
|
|
/// SmallVector class to reduce code duplication based on the SmallVector 'N'
|
|
/// template parameter.
|
|
template <typename T>
|
|
class SmallVectorImpl {
|
|
T *Begin, *End, *Capacity;
|
|
|
|
// Allocate raw space for N elements of type T. If T has a ctor or dtor, we
|
|
// don't want it to be automatically run, so we need to represent the space as
|
|
// something else. An array of char would work great, but might not be
|
|
// aligned sufficiently. Instead, we either use GCC extensions, or some
|
|
// number of union instances for the space, which guarantee maximal alignment.
|
|
protected:
|
|
#ifdef __GNUC__
|
|
typedef char U;
|
|
U FirstEl __attribute__((aligned));
|
|
#else
|
|
union U {
|
|
double D;
|
|
long double LD;
|
|
long long L;
|
|
void *P;
|
|
} FirstEl;
|
|
#endif
|
|
// Space after 'FirstEl' is clobbered, do not add any instance vars after it.
|
|
public:
|
|
// Default ctor - Initialize to empty.
|
|
SmallVectorImpl(unsigned N)
|
|
: Begin((T*)&FirstEl), End((T*)&FirstEl), Capacity((T*)&FirstEl+N) {
|
|
}
|
|
|
|
~SmallVectorImpl() {
|
|
// Destroy the constructed elements in the vector.
|
|
destroy_range(Begin, End);
|
|
|
|
// If this wasn't grown from the inline copy, deallocate the old space.
|
|
if (!isSmall())
|
|
delete[] (char*)Begin;
|
|
}
|
|
|
|
typedef size_t size_type;
|
|
typedef T* iterator;
|
|
typedef const T* const_iterator;
|
|
typedef T& reference;
|
|
typedef const T& const_reference;
|
|
|
|
bool empty() const { return Begin == End; }
|
|
size_type size() const { return End-Begin; }
|
|
|
|
iterator begin() { return Begin; }
|
|
const_iterator begin() const { return Begin; }
|
|
|
|
iterator end() { return End; }
|
|
const_iterator end() const { return End; }
|
|
|
|
reference operator[](unsigned idx) {
|
|
return Begin[idx];
|
|
}
|
|
const_reference operator[](unsigned idx) const {
|
|
return Begin[idx];
|
|
}
|
|
|
|
reference front() {
|
|
return begin()[0];
|
|
}
|
|
const_reference front() const {
|
|
return begin()[0];
|
|
}
|
|
|
|
reference back() {
|
|
return end()[-1];
|
|
}
|
|
const_reference back() const {
|
|
return end()[-1];
|
|
}
|
|
|
|
void push_back(const_reference Elt) {
|
|
if (End < Capacity) {
|
|
Retry:
|
|
new (End) T(Elt);
|
|
++End;
|
|
return;
|
|
}
|
|
grow();
|
|
goto Retry;
|
|
}
|
|
|
|
void pop_back() {
|
|
--End;
|
|
End->~T();
|
|
}
|
|
|
|
void clear() {
|
|
destroy_range(Begin, End);
|
|
End = Begin;
|
|
}
|
|
|
|
void resize(unsigned N) {
|
|
if (N < size()) {
|
|
destroy_range(Begin+N, End);
|
|
End = Begin+N;
|
|
} else if (N > size()) {
|
|
if (Begin+N > Capacity)
|
|
grow(N);
|
|
construct_range(End, Begin+N, T());
|
|
End = Begin+N;
|
|
}
|
|
}
|
|
|
|
void resize(unsigned N, const T &NV) {
|
|
if (N < size()) {
|
|
destroy_range(Begin+N, End);
|
|
End = Begin+N;
|
|
} else if (N > size()) {
|
|
if (Begin+N > Capacity)
|
|
grow(N);
|
|
construct_range(End, Begin+N, NV);
|
|
End = Begin+N;
|
|
}
|
|
}
|
|
|
|
void reserve(unsigned N) {
|
|
if (unsigned(Capacity-Begin) < N)
|
|
grow(N);
|
|
}
|
|
|
|
void swap(SmallVectorImpl &RHS);
|
|
|
|
/// append - Add the specified range to the end of the SmallVector.
|
|
///
|
|
template<typename in_iter>
|
|
void append(in_iter in_start, in_iter in_end) {
|
|
unsigned NumInputs = std::distance(in_start, in_end);
|
|
// Grow allocated space if needed.
|
|
if (End+NumInputs > Capacity)
|
|
grow(size()+NumInputs);
|
|
|
|
// Copy the new elements over.
|
|
std::uninitialized_copy(in_start, in_end, End);
|
|
End += NumInputs;
|
|
}
|
|
|
|
void assign(unsigned NumElts, const T &Elt) {
|
|
clear();
|
|
if (Begin+NumElts > Capacity)
|
|
grow(NumElts);
|
|
End = Begin+NumElts;
|
|
construct_range(Begin, End, Elt);
|
|
}
|
|
|
|
void erase(iterator I) {
|
|
// Shift all elts down one.
|
|
std::copy(I+1, End, I);
|
|
// Drop the last elt.
|
|
pop_back();
|
|
}
|
|
|
|
void erase(iterator S, iterator E) {
|
|
// Shift all elts down.
|
|
iterator I = std::copy(E, End, S);
|
|
// Drop the last elts.
|
|
destroy_range(I, End);
|
|
End = I;
|
|
}
|
|
|
|
iterator insert(iterator I, const T &Elt) {
|
|
if (I == End) { // Important special case for empty vector.
|
|
push_back(Elt);
|
|
return end()-1;
|
|
}
|
|
|
|
if (End < Capacity) {
|
|
Retry:
|
|
new (End) T(back());
|
|
++End;
|
|
// Push everything else over.
|
|
std::copy_backward(I, End-1, End);
|
|
*I = Elt;
|
|
return I;
|
|
}
|
|
unsigned EltNo = I-Begin;
|
|
grow();
|
|
I = Begin+EltNo;
|
|
goto Retry;
|
|
}
|
|
|
|
const SmallVectorImpl &operator=(const SmallVectorImpl &RHS);
|
|
|
|
private:
|
|
/// isSmall - Return true if this is a smallvector which has not had dynamic
|
|
/// memory allocated for it.
|
|
bool isSmall() const {
|
|
return (void*)Begin == (void*)&FirstEl;
|
|
}
|
|
|
|
/// grow - double the size of the allocated memory, guaranteeing space for at
|
|
/// least one more element or MinSize if specified.
|
|
void grow(unsigned MinSize = 0);
|
|
|
|
void construct_range(T *S, T *E, const T &Elt) {
|
|
for (; S != E; ++S)
|
|
new (S) T(Elt);
|
|
}
|
|
|
|
|
|
void destroy_range(T *S, T *E) {
|
|
while (S != E) {
|
|
E->~T();
|
|
--E;
|
|
}
|
|
}
|
|
};
|
|
|
|
// Define this out-of-line to dissuade the C++ compiler from inlining it.
|
|
template <typename T>
|
|
void SmallVectorImpl<T>::grow(unsigned MinSize) {
|
|
unsigned CurCapacity = Capacity-Begin;
|
|
unsigned CurSize = size();
|
|
unsigned NewCapacity = 2*CurCapacity;
|
|
if (NewCapacity < MinSize)
|
|
NewCapacity = MinSize;
|
|
T *NewElts = reinterpret_cast<T*>(new char[NewCapacity*sizeof(T)]);
|
|
|
|
// Copy the elements over.
|
|
std::uninitialized_copy(Begin, End, NewElts);
|
|
|
|
// Destroy the original elements.
|
|
destroy_range(Begin, End);
|
|
|
|
// If this wasn't grown from the inline copy, deallocate the old space.
|
|
if (!isSmall())
|
|
delete[] (char*)Begin;
|
|
|
|
Begin = NewElts;
|
|
End = NewElts+CurSize;
|
|
Capacity = Begin+NewCapacity;
|
|
}
|
|
|
|
template <typename T>
|
|
void SmallVectorImpl<T>::swap(SmallVectorImpl<T> &RHS) {
|
|
if (this == &RHS) return;
|
|
|
|
// We can only avoid copying elements if neither vector is small.
|
|
if (!isSmall() && !RHS.isSmall()) {
|
|
std::swap(Begin, RHS.Begin);
|
|
std::swap(End, RHS.End);
|
|
std::swap(Capacity, RHS.Capacity);
|
|
return;
|
|
}
|
|
if (Begin+RHS.size() > Capacity)
|
|
grow(RHS.size());
|
|
if (RHS.begin()+size() > RHS.Capacity)
|
|
RHS.grow(size());
|
|
|
|
// Swap the shared elements.
|
|
unsigned NumShared = size();
|
|
if (NumShared > RHS.size()) NumShared = RHS.size();
|
|
for (unsigned i = 0; i != NumShared; ++i)
|
|
std::swap(Begin[i], RHS[i]);
|
|
|
|
// Copy over the extra elts.
|
|
if (size() > RHS.size()) {
|
|
unsigned EltDiff = size() - RHS.size();
|
|
std::uninitialized_copy(Begin+NumShared, End, RHS.End);
|
|
RHS.End += EltDiff;
|
|
destroy_range(Begin+NumShared, End);
|
|
End = Begin+NumShared;
|
|
} else if (RHS.size() > size()) {
|
|
unsigned EltDiff = RHS.size() - size();
|
|
std::uninitialized_copy(RHS.Begin+NumShared, RHS.End, End);
|
|
End += EltDiff;
|
|
destroy_range(RHS.Begin+NumShared, RHS.End);
|
|
RHS.End = RHS.Begin+NumShared;
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
const SmallVectorImpl<T> &
|
|
SmallVectorImpl<T>::operator=(const SmallVectorImpl<T> &RHS) {
|
|
// Avoid self-assignment.
|
|
if (this == &RHS) return *this;
|
|
|
|
// If we already have sufficient space, assign the common elements, then
|
|
// destroy any excess.
|
|
unsigned RHSSize = RHS.size();
|
|
unsigned CurSize = size();
|
|
if (CurSize >= RHSSize) {
|
|
// Assign common elements.
|
|
iterator NewEnd = std::copy(RHS.Begin, RHS.Begin+RHSSize, Begin);
|
|
|
|
// Destroy excess elements.
|
|
destroy_range(NewEnd, End);
|
|
|
|
// Trim.
|
|
End = NewEnd;
|
|
return *this;
|
|
}
|
|
|
|
// If we have to grow to have enough elements, destroy the current elements.
|
|
// This allows us to avoid copying them during the grow.
|
|
if (unsigned(Capacity-Begin) < RHSSize) {
|
|
// Destroy current elements.
|
|
destroy_range(Begin, End);
|
|
End = Begin;
|
|
CurSize = 0;
|
|
grow(RHSSize);
|
|
} else if (CurSize) {
|
|
// Otherwise, use assignment for the already-constructed elements.
|
|
std::copy(RHS.Begin, RHS.Begin+CurSize, Begin);
|
|
}
|
|
|
|
// Copy construct the new elements in place.
|
|
std::uninitialized_copy(RHS.Begin+CurSize, RHS.End, Begin+CurSize);
|
|
|
|
// Set end.
|
|
End = Begin+RHSSize;
|
|
return *this;
|
|
}
|
|
|
|
/// SmallVector - This is a 'vector' (really, a variable-sized array), optimized
|
|
/// for the case when the array is small. It contains some number of elements
|
|
/// in-place, which allows it to avoid heap allocation when the actual number of
|
|
/// elements is below that threshold. This allows normal "small" cases to be
|
|
/// fast without losing generality for large inputs.
|
|
///
|
|
/// Note that this does not attempt to be exception safe.
|
|
///
|
|
template <typename T, unsigned N>
|
|
class SmallVector : public SmallVectorImpl<T> {
|
|
/// InlineElts - These are 'N-1' elements that are stored inline in the body
|
|
/// of the vector. The extra '1' element is stored in SmallVectorImpl.
|
|
typedef typename SmallVectorImpl<T>::U U;
|
|
enum {
|
|
// MinUs - The number of U's require to cover N T's.
|
|
MinUs = (sizeof(T)*N+sizeof(U)-1)/sizeof(U),
|
|
|
|
// NumInlineEltsElts - The number of elements actually in this array. There
|
|
// is already one in the parent class, and we have to round up to avoid
|
|
// having a zero-element array.
|
|
NumInlineEltsElts = (MinUs - 1) > 0 ? (MinUs - 1) : 1,
|
|
|
|
// NumTsAvailable - The number of T's we actually have space for, which may
|
|
// be more than N due to rounding.
|
|
NumTsAvailable = (NumInlineEltsElts+1)*sizeof(U) / sizeof(T)
|
|
};
|
|
U InlineElts[NumInlineEltsElts];
|
|
public:
|
|
SmallVector() : SmallVectorImpl<T>(NumTsAvailable) {
|
|
}
|
|
|
|
template<typename ItTy>
|
|
SmallVector(ItTy S, ItTy E) : SmallVectorImpl<T>(NumTsAvailable) {
|
|
append(S, E);
|
|
}
|
|
|
|
SmallVector(const SmallVector &RHS) : SmallVectorImpl<T>(NumTsAvailable) {
|
|
operator=(RHS);
|
|
}
|
|
|
|
const SmallVector &operator=(const SmallVector &RHS) {
|
|
SmallVectorImpl<T>::operator=(RHS);
|
|
return *this;
|
|
}
|
|
};
|
|
|
|
} // End llvm namespace
|
|
|
|
namespace std {
|
|
/// Implement std::swap in terms of SmallVector swap.
|
|
template<typename T>
|
|
inline void
|
|
swap(llvm::SmallVectorImpl<T> &LHS, llvm::SmallVectorImpl<T> &RHS) {
|
|
LHS.swap(RHS);
|
|
}
|
|
|
|
/// Implement std::swap in terms of SmallVector swap.
|
|
template<typename T, unsigned N>
|
|
inline void
|
|
swap(llvm::SmallVector<T, N> &LHS, llvm::SmallVector<T, N> &RHS) {
|
|
LHS.swap(RHS);
|
|
}
|
|
}
|
|
|
|
#endif
|