mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-18 10:31:57 +00:00
d14b83733e
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@12030 91177308-0d34-0410-b5e6-96231b3b80d8
705 lines
21 KiB
C++
705 lines
21 KiB
C++
//===-- ModuloScheduling.cpp - ModuloScheduling ----------------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by the LLVM research group and is distributed under
|
|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
//
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "ModuloSched"
|
|
|
|
#include "ModuloScheduling.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/Passes.h"
|
|
#include "llvm/Support/CFG.h"
|
|
#include "llvm/Target/TargetSchedInfo.h"
|
|
#include "Support/Debug.h"
|
|
#include "Support/GraphWriter.h"
|
|
#include <vector>
|
|
#include <utility>
|
|
#include <iostream>
|
|
#include <fstream>
|
|
#include <sstream>
|
|
|
|
using namespace llvm;
|
|
|
|
/// Create ModuloSchedulingPass
|
|
///
|
|
FunctionPass *llvm::createModuloSchedulingPass(TargetMachine & targ) {
|
|
DEBUG(std::cerr << "Created ModuloSchedulingPass\n");
|
|
return new ModuloSchedulingPass(targ);
|
|
}
|
|
|
|
template<typename GraphType>
|
|
static void WriteGraphToFile(std::ostream &O, const std::string &GraphName,
|
|
const GraphType >) {
|
|
std::string Filename = GraphName + ".dot";
|
|
O << "Writing '" << Filename << "'...";
|
|
std::ofstream F(Filename.c_str());
|
|
|
|
if (F.good())
|
|
WriteGraph(F, GT);
|
|
else
|
|
O << " error opening file for writing!";
|
|
O << "\n";
|
|
};
|
|
|
|
namespace llvm {
|
|
|
|
template<>
|
|
struct DOTGraphTraits<MSchedGraph*> : public DefaultDOTGraphTraits {
|
|
static std::string getGraphName(MSchedGraph *F) {
|
|
return "Dependence Graph";
|
|
}
|
|
|
|
static std::string getNodeLabel(MSchedGraphNode *Node, MSchedGraph *Graph) {
|
|
if (Node->getInst()) {
|
|
std::stringstream ss;
|
|
ss << *(Node->getInst());
|
|
return ss.str(); //((MachineInstr*)Node->getInst());
|
|
}
|
|
else
|
|
return "No Inst";
|
|
}
|
|
static std::string getEdgeSourceLabel(MSchedGraphNode *Node,
|
|
MSchedGraphNode::succ_iterator I) {
|
|
//Label each edge with the type of dependence
|
|
std::string edgelabel = "";
|
|
switch (I.getEdge().getDepOrderType()) {
|
|
|
|
case MSchedGraphEdge::TrueDep:
|
|
edgelabel = "True";
|
|
break;
|
|
|
|
case MSchedGraphEdge::AntiDep:
|
|
edgelabel = "Anti";
|
|
break;
|
|
|
|
case MSchedGraphEdge::OutputDep:
|
|
edgelabel = "Output";
|
|
break;
|
|
|
|
default:
|
|
edgelabel = "Unknown";
|
|
break;
|
|
}
|
|
if(I.getEdge().getIteDiff() > 0)
|
|
edgelabel += I.getEdge().getIteDiff();
|
|
|
|
return edgelabel;
|
|
}
|
|
|
|
|
|
|
|
};
|
|
}
|
|
|
|
/// ModuloScheduling::runOnFunction - main transformation entry point
|
|
bool ModuloSchedulingPass::runOnFunction(Function &F) {
|
|
bool Changed = false;
|
|
|
|
DEBUG(std::cerr << "Creating ModuloSchedGraph for each BasicBlock in" + F.getName() + "\n");
|
|
|
|
//Get MachineFunction
|
|
MachineFunction &MF = MachineFunction::get(&F);
|
|
|
|
//Iterate over BasicBlocks and do ModuloScheduling if they are valid
|
|
for (MachineFunction::const_iterator BI = MF.begin(); BI != MF.end(); ++BI) {
|
|
if(MachineBBisValid(BI)) {
|
|
MSchedGraph *MSG = new MSchedGraph(BI, target);
|
|
|
|
//Write Graph out to file
|
|
DEBUG(WriteGraphToFile(std::cerr, "dependgraph", MSG));
|
|
|
|
//Print out BB for debugging
|
|
DEBUG(BI->print(std::cerr));
|
|
|
|
//Calculate Resource II
|
|
int ResMII = calculateResMII(BI);
|
|
|
|
calculateNodeAttributes(MSG, ResMII);
|
|
|
|
}
|
|
}
|
|
|
|
|
|
return Changed;
|
|
}
|
|
|
|
|
|
bool ModuloSchedulingPass::MachineBBisValid(const MachineBasicBlock *BI) {
|
|
|
|
//Valid basic blocks must be loops and can not have if/else statements or calls.
|
|
bool isLoop = false;
|
|
|
|
//Check first if its a valid loop
|
|
for(succ_const_iterator I = succ_begin(BI->getBasicBlock()),
|
|
E = succ_end(BI->getBasicBlock()); I != E; ++I) {
|
|
if (*I == BI->getBasicBlock()) // has single block loop
|
|
isLoop = true;
|
|
}
|
|
|
|
if(!isLoop) {
|
|
DEBUG(std::cerr << "Basic Block is not a loop\n");
|
|
return false;
|
|
}
|
|
else
|
|
DEBUG(std::cerr << "Basic Block is a loop\n");
|
|
|
|
//Get Target machine instruction info
|
|
/*const TargetInstrInfo& TMI = targ.getInstrInfo();
|
|
|
|
//Check each instruction and look for calls or if/else statements
|
|
unsigned count = 0;
|
|
for(MachineBasicBlock::const_iterator I = BI->begin(), E = BI->end(); I != E; ++I) {
|
|
//Get opcode to check instruction type
|
|
MachineOpCode OC = I->getOpcode();
|
|
if(TMI.isControlFlow(OC) && (count+1 < BI->size()))
|
|
return false;
|
|
count++;
|
|
}*/
|
|
return true;
|
|
|
|
}
|
|
|
|
//ResMII is calculated by determining the usage count for each resource
|
|
//and using the maximum.
|
|
//FIXME: In future there should be a way to get alternative resources
|
|
//for each instruction
|
|
int ModuloSchedulingPass::calculateResMII(const MachineBasicBlock *BI) {
|
|
|
|
const TargetInstrInfo & mii = target.getInstrInfo();
|
|
const TargetSchedInfo & msi = target.getSchedInfo();
|
|
|
|
int ResMII = 0;
|
|
|
|
//Map to keep track of usage count of each resource
|
|
std::map<unsigned, unsigned> resourceUsageCount;
|
|
|
|
for(MachineBasicBlock::const_iterator I = BI->begin(), E = BI->end(); I != E; ++I) {
|
|
|
|
//Get resource usage for this instruction
|
|
InstrRUsage rUsage = msi.getInstrRUsage(I->getOpcode());
|
|
std::vector<std::vector<resourceId_t> > resources = rUsage.resourcesByCycle;
|
|
|
|
//Loop over resources in each cycle and increments their usage count
|
|
for(unsigned i=0; i < resources.size(); ++i)
|
|
for(unsigned j=0; j < resources[i].size(); ++j) {
|
|
if( resourceUsageCount.find(resources[i][j]) == resourceUsageCount.end()) {
|
|
resourceUsageCount[resources[i][j]] = 1;
|
|
}
|
|
else {
|
|
resourceUsageCount[resources[i][j]] = resourceUsageCount[resources[i][j]] + 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
//Find maximum usage count
|
|
|
|
//Get max number of instructions that can be issued at once.
|
|
int issueSlots = msi.maxNumIssueTotal;
|
|
|
|
for(std::map<unsigned,unsigned>::iterator RB = resourceUsageCount.begin(), RE = resourceUsageCount.end(); RB != RE; ++RB) {
|
|
//Get the total number of the resources in our cpu
|
|
//int resourceNum = msi.getCPUResourceNum(RB->first);
|
|
|
|
//Get total usage count for this resources
|
|
unsigned usageCount = RB->second;
|
|
|
|
//Divide the usage count by either the max number we can issue or the number of
|
|
//resources (whichever is its upper bound)
|
|
double finalUsageCount;
|
|
//if( resourceNum <= issueSlots)
|
|
//finalUsageCount = ceil(1.0 * usageCount / resourceNum);
|
|
//else
|
|
finalUsageCount = ceil(1.0 * usageCount / issueSlots);
|
|
|
|
|
|
DEBUG(std::cerr << "Resource ID: " << RB->first << " (usage=" << usageCount << ", resourceNum=X" << ", issueSlots=" << issueSlots << ", finalUsage=" << finalUsageCount << ")\n");
|
|
|
|
//Only keep track of the max
|
|
ResMII = std::max( (int) finalUsageCount, ResMII);
|
|
|
|
}
|
|
|
|
DEBUG(std::cerr << "Final Resource MII: " << ResMII << "\n");
|
|
return ResMII;
|
|
|
|
}
|
|
|
|
void ModuloSchedulingPass::calculateNodeAttributes(MSchedGraph *graph, int MII) {
|
|
|
|
//Loop over the nodes and add them to the map
|
|
for(MSchedGraph::iterator I = graph->begin(), E = graph->end(); I != E; ++I) {
|
|
//Assert if its already in the map
|
|
assert(nodeToAttributesMap.find(I->second) == nodeToAttributesMap.end() && "Node attributes are already in the map");
|
|
|
|
//Put into the map with default attribute values
|
|
nodeToAttributesMap[I->second] = MSNodeAttributes();
|
|
}
|
|
|
|
//Create set to deal with reccurrences
|
|
std::set<MSchedGraphNode*> visitedNodes;
|
|
std::vector<MSchedGraphNode*> vNodes;
|
|
//Now Loop over map and calculate the node attributes
|
|
for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I != E; ++I) {
|
|
// calculateASAP(I->first, (I->second), MII, visitedNodes);
|
|
findAllReccurrences(I->first, vNodes);
|
|
vNodes.clear();
|
|
visitedNodes.clear();
|
|
}
|
|
|
|
//Calculate ALAP which depends on ASAP being totally calculated
|
|
/*for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I != E; ++I) {
|
|
calculateALAP(I->first, (I->second), MII, MII, visitedNodes);
|
|
visitedNodes.clear();
|
|
}*/
|
|
|
|
//Calculate MOB which depends on ASAP being totally calculated, also do depth and height
|
|
/*for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I != E; ++I) {
|
|
(I->second).MOB = (I->second).ALAP - (I->second).ASAP;
|
|
DEBUG(std::cerr << "MOB: " << (I->second).MOB << " (" << *(I->first) << ")\n");
|
|
calculateDepth(I->first, (I->second), visitedNodes);
|
|
visitedNodes.clear();
|
|
calculateHeight(I->first, (I->second), visitedNodes);
|
|
visitedNodes.clear();
|
|
}*/
|
|
|
|
|
|
}
|
|
|
|
void ModuloSchedulingPass::calculateASAP(MSchedGraphNode *node, MSNodeAttributes &attributes,
|
|
int MII, std::set<MSchedGraphNode*> &visitedNodes) {
|
|
|
|
DEBUG(std::cerr << "Calculating ASAP for " << *node << "\n");
|
|
|
|
if(attributes.ASAP != -1 || (visitedNodes.find(node) != visitedNodes.end())) {
|
|
visitedNodes.erase(node);
|
|
return;
|
|
}
|
|
if(node->hasPredecessors()) {
|
|
int maxPredValue = 0;
|
|
|
|
//Iterate over all of the predecessors and fine max
|
|
for(MSchedGraphNode::pred_iterator P = node->pred_begin(), E = node->pred_end(); P != E; ++P) {
|
|
|
|
//Get that nodes ASAP
|
|
MSNodeAttributes predAttributes = nodeToAttributesMap.find(*P)->second;
|
|
if(predAttributes.ASAP == -1) {
|
|
//Put into set before you recurse
|
|
visitedNodes.insert(node);
|
|
calculateASAP(*P, predAttributes, MII, visitedNodes);
|
|
predAttributes = nodeToAttributesMap.find(*P)->second;
|
|
}
|
|
int iteDiff = node->getInEdge(*P).getIteDiff();
|
|
|
|
int currentPredValue = predAttributes.ASAP + node->getLatency() - iteDiff * MII;
|
|
DEBUG(std::cerr << "Current ASAP pred: " << currentPredValue << "\n");
|
|
maxPredValue = std::max(maxPredValue, currentPredValue);
|
|
}
|
|
visitedNodes.erase(node);
|
|
attributes.ASAP = maxPredValue;
|
|
}
|
|
else {
|
|
visitedNodes.erase(node);
|
|
attributes.ASAP = 0;
|
|
}
|
|
|
|
DEBUG(std::cerr << "ASAP: " << attributes.ASAP << " (" << *node << ")\n");
|
|
}
|
|
|
|
|
|
void ModuloSchedulingPass::calculateALAP(MSchedGraphNode *node, MSNodeAttributes &attributes,
|
|
int MII, int maxASAP,
|
|
std::set<MSchedGraphNode*> &visitedNodes) {
|
|
|
|
DEBUG(std::cerr << "Calculating AlAP for " << *node << "\n");
|
|
|
|
if(attributes.ALAP != -1|| (visitedNodes.find(node) != visitedNodes.end())) {
|
|
visitedNodes.erase(node);
|
|
return;
|
|
}
|
|
if(node->hasSuccessors()) {
|
|
int minSuccValue = 0;
|
|
|
|
//Iterate over all of the predecessors and fine max
|
|
for(MSchedGraphNode::succ_iterator P = node->succ_begin(),
|
|
E = node->succ_end(); P != E; ++P) {
|
|
|
|
MSNodeAttributes succAttributes = nodeToAttributesMap.find(*P)->second;
|
|
if(succAttributes.ASAP == -1) {
|
|
|
|
//Put into set before recursing
|
|
visitedNodes.insert(node);
|
|
|
|
calculateALAP(*P, succAttributes, MII, maxASAP, visitedNodes);
|
|
succAttributes = nodeToAttributesMap.find(*P)->second;
|
|
assert(succAttributes.ASAP == -1 && "Successors ALAP should have been caclulated");
|
|
}
|
|
int iteDiff = P.getEdge().getIteDiff();
|
|
int currentSuccValue = succAttributes.ALAP + node->getLatency() + iteDiff * MII;
|
|
minSuccValue = std::min(minSuccValue, currentSuccValue);
|
|
}
|
|
visitedNodes.erase(node);
|
|
attributes.ALAP = minSuccValue;
|
|
}
|
|
else {
|
|
visitedNodes.erase(node);
|
|
attributes.ALAP = maxASAP;
|
|
}
|
|
DEBUG(std::cerr << "ALAP: " << attributes.ALAP << " (" << *node << ")\n");
|
|
}
|
|
|
|
int ModuloSchedulingPass::findMaxASAP() {
|
|
int maxASAP = 0;
|
|
|
|
for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(),
|
|
E = nodeToAttributesMap.end(); I != E; ++I)
|
|
maxASAP = std::max(maxASAP, I->second.ASAP);
|
|
return maxASAP;
|
|
}
|
|
|
|
|
|
void ModuloSchedulingPass::calculateHeight(MSchedGraphNode *node,
|
|
MSNodeAttributes &attributes,
|
|
std::set<MSchedGraphNode*> &visitedNodes) {
|
|
|
|
if(attributes.depth != -1 || (visitedNodes.find(node) != visitedNodes.end())) {
|
|
//Remove from map before returning
|
|
visitedNodes.erase(node);
|
|
return;
|
|
}
|
|
|
|
if(node->hasSuccessors()) {
|
|
int maxHeight = 0;
|
|
|
|
//Iterate over all of the predecessors and fine max
|
|
for(MSchedGraphNode::succ_iterator P = node->succ_begin(),
|
|
E = node->succ_end(); P != E; ++P) {
|
|
|
|
MSNodeAttributes succAttributes = nodeToAttributesMap.find(*P)->second;
|
|
if(succAttributes.height == -1) {
|
|
|
|
//Put into map before recursing
|
|
visitedNodes.insert(node);
|
|
|
|
calculateHeight(*P, succAttributes, visitedNodes);
|
|
succAttributes = nodeToAttributesMap.find(*P)->second;
|
|
assert(succAttributes.height == -1 && "Successors Height should have been caclulated");
|
|
}
|
|
int currentHeight = succAttributes.height + node->getLatency();
|
|
maxHeight = std::max(maxHeight, currentHeight);
|
|
}
|
|
visitedNodes.erase(node);
|
|
attributes.height = maxHeight;
|
|
}
|
|
else {
|
|
visitedNodes.erase(node);
|
|
attributes.height = 0;
|
|
}
|
|
|
|
DEBUG(std::cerr << "Height: " << attributes.height << " (" << *node << ")\n");
|
|
}
|
|
|
|
|
|
void ModuloSchedulingPass::calculateDepth(MSchedGraphNode *node,
|
|
MSNodeAttributes &attributes,
|
|
std::set<MSchedGraphNode*> &visitedNodes) {
|
|
|
|
if(attributes.depth != -1 || (visitedNodes.find(node) != visitedNodes.end())) {
|
|
//Remove from map before returning
|
|
visitedNodes.erase(node);
|
|
return;
|
|
}
|
|
|
|
if(node->hasPredecessors()) {
|
|
int maxDepth = 0;
|
|
|
|
//Iterate over all of the predecessors and fine max
|
|
for(MSchedGraphNode::pred_iterator P = node->pred_begin(), E = node->pred_end(); P != E; ++P) {
|
|
|
|
//Get that nodes depth
|
|
MSNodeAttributes predAttributes = nodeToAttributesMap.find(*P)->second;
|
|
if(predAttributes.depth == -1) {
|
|
|
|
//Put into set before recursing
|
|
visitedNodes.insert(node);
|
|
|
|
calculateDepth(*P, predAttributes, visitedNodes);
|
|
predAttributes = nodeToAttributesMap.find(*P)->second;
|
|
assert(predAttributes.depth == -1 && "Predecessors ASAP should have been caclulated");
|
|
}
|
|
int currentDepth = predAttributes.depth + node->getLatency();
|
|
maxDepth = std::max(maxDepth, currentDepth);
|
|
}
|
|
|
|
//Remove from map before returning
|
|
visitedNodes.erase(node);
|
|
|
|
attributes.height = maxDepth;
|
|
}
|
|
else {
|
|
//Remove from map before returning
|
|
visitedNodes.erase(node);
|
|
attributes.depth = 0;
|
|
}
|
|
|
|
DEBUG(std::cerr << "Depth: " << attributes.depth << " (" << *node << "*)\n");
|
|
|
|
}
|
|
|
|
|
|
void ModuloSchedulingPass::findAllReccurrences(MSchedGraphNode *node,
|
|
std::vector<MSchedGraphNode*> &visitedNodes) {
|
|
|
|
if(find(visitedNodes.begin(), visitedNodes.end(), node) != visitedNodes.end()) {
|
|
//DUMP out recurrence
|
|
DEBUG(std::cerr << "Reccurrence:\n");
|
|
bool first = true;
|
|
for(std::vector<MSchedGraphNode*>::iterator I = visitedNodes.begin(), E = visitedNodes.end();
|
|
I !=E; ++I) {
|
|
if(*I == node)
|
|
first = false;
|
|
if(first)
|
|
continue;
|
|
DEBUG(std::cerr << **I << "\n");
|
|
}
|
|
DEBUG(std::cerr << "End Reccurrence:\n");
|
|
return;
|
|
}
|
|
|
|
for(MSchedGraphNode::succ_iterator I = node->succ_begin(), E = node->succ_end(); I != E; ++I) {
|
|
visitedNodes.push_back(node);
|
|
findAllReccurrences(*I, visitedNodes);
|
|
visitedNodes.pop_back();
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void ModuloSchedulingPass::orderNodes() {
|
|
|
|
int BOTTOM_UP = 0;
|
|
int TOP_DOWN = 1;
|
|
|
|
//FIXME: Group nodes into sets and order all the sets based on RecMII
|
|
typedef std::vector<MSchedGraphNode*> NodeVector;
|
|
typedef std::pair<int, NodeVector> NodeSet;
|
|
|
|
std::vector<NodeSet> NodeSetsToOrder;
|
|
|
|
//Order the resulting sets
|
|
NodeVector FinalNodeOrder;
|
|
|
|
//Loop over all the sets and place them in the final node order
|
|
for(unsigned i=0; i < NodeSetsToOrder.size(); ++i) {
|
|
|
|
//Set default order
|
|
int order = BOTTOM_UP;
|
|
|
|
//Get Nodes in Current set
|
|
NodeVector CurrentSet = NodeSetsToOrder[i].second;
|
|
|
|
//Loop through the predecessors for each node in the final order
|
|
//and only keeps nodes both in the pred_set and currentset
|
|
NodeVector IntersectCurrent;
|
|
|
|
//Sort CurrentSet so we can use lowerbound
|
|
sort(CurrentSet.begin(), CurrentSet.end());
|
|
|
|
for(unsigned j=0; j < FinalNodeOrder.size(); ++j) {
|
|
for(MSchedGraphNode::pred_iterator P = FinalNodeOrder[j]->pred_begin(),
|
|
E = FinalNodeOrder[j]->pred_end(); P != E; ++P) {
|
|
if(lower_bound(CurrentSet.begin(),
|
|
CurrentSet.end(), *P) != CurrentSet.end())
|
|
IntersectCurrent.push_back(*P);
|
|
}
|
|
}
|
|
|
|
//If the intersection of predecessor and current set is not empty
|
|
//sort nodes bottom up
|
|
if(IntersectCurrent.size() != 0)
|
|
order = BOTTOM_UP;
|
|
|
|
//If empty, use successors
|
|
else {
|
|
|
|
for(unsigned j=0; j < FinalNodeOrder.size(); ++j) {
|
|
for(MSchedGraphNode::succ_iterator P = FinalNodeOrder[j]->succ_begin(),
|
|
E = FinalNodeOrder[j]->succ_end(); P != E; ++P) {
|
|
if(lower_bound(CurrentSet.begin(),
|
|
CurrentSet.end(), *P) != CurrentSet.end())
|
|
IntersectCurrent.push_back(*P);
|
|
}
|
|
}
|
|
|
|
//sort top-down
|
|
if(IntersectCurrent.size() != 0)
|
|
order = TOP_DOWN;
|
|
|
|
else {
|
|
//Find node with max ASAP in current Set
|
|
MSchedGraphNode *node;
|
|
int maxASAP = 0;
|
|
for(unsigned j=0; j < CurrentSet.size(); ++j) {
|
|
//Get node attributes
|
|
MSNodeAttributes nodeAttr= nodeToAttributesMap.find(CurrentSet[j])->second;
|
|
//assert(nodeAttr != nodeToAttributesMap.end() && "Node not in attributes map!");
|
|
|
|
if(maxASAP < nodeAttr.ASAP) {
|
|
maxASAP = nodeAttr.ASAP;
|
|
node = CurrentSet[j];
|
|
}
|
|
}
|
|
order = BOTTOM_UP;
|
|
}
|
|
}
|
|
|
|
//Repeat until all nodes are put into the final order from current set
|
|
/*while(IntersectCurrent.size() > 0) {
|
|
|
|
if(order == TOP_DOWN) {
|
|
while(IntersectCurrent.size() > 0) {
|
|
|
|
//FIXME
|
|
//Get node attributes
|
|
MSNodeAttributes nodeAttr= nodeToAttributesMap.find(IntersectCurrent[0])->second;
|
|
assert(nodeAttr != nodeToAttributesMap.end() && "Node not in attributes map!");
|
|
|
|
//Get node with highest height, if a tie, use one with lowest
|
|
//MOB
|
|
int MOB = nodeAttr.MBO;
|
|
int height = nodeAttr.height;
|
|
ModuloSchedGraphNode *V = IntersectCurrent[0];
|
|
|
|
for(unsigned j=0; j < IntersectCurrent.size(); ++j) {
|
|
int temp = IntersectCurrent[j]->getHeight();
|
|
if(height < temp) {
|
|
V = IntersectCurrent[j];
|
|
height = temp;
|
|
MOB = V->getMobility();
|
|
}
|
|
else if(height == temp) {
|
|
if(MOB > IntersectCurrent[j]->getMobility()) {
|
|
V = IntersectCurrent[j];
|
|
height = temp;
|
|
MOB = V->getMobility();
|
|
}
|
|
}
|
|
}
|
|
|
|
//Append V to the NodeOrder
|
|
NodeOrder.push_back(V);
|
|
|
|
//Remove V from IntersectOrder
|
|
IntersectCurrent.erase(find(IntersectCurrent.begin(),
|
|
IntersectCurrent.end(), V));
|
|
|
|
//Intersect V's successors with CurrentSet
|
|
for(mod_succ_iterator P = succ_begin(V),
|
|
E = succ_end(V); P != E; ++P) {
|
|
if(lower_bound(CurrentSet.begin(),
|
|
CurrentSet.end(), *P) != CurrentSet.end()) {
|
|
//If not already in Intersect, add
|
|
if(find(IntersectCurrent.begin(), IntersectCurrent.end(), *P) == IntersectCurrent.end())
|
|
IntersectCurrent.push_back(*P);
|
|
}
|
|
}
|
|
} //End while loop over Intersect Size
|
|
|
|
//Change direction
|
|
order = BOTTOM_UP;
|
|
|
|
//Reset Intersect to reflect changes in OrderNodes
|
|
IntersectCurrent.clear();
|
|
for(unsigned j=0; j < NodeOrder.size(); ++j) {
|
|
for(mod_pred_iterator P = pred_begin(NodeOrder[j]),
|
|
E = pred_end(NodeOrder[j]); P != E; ++P) {
|
|
if(lower_bound(CurrentSet.begin(),
|
|
CurrentSet.end(), *P) != CurrentSet.end())
|
|
IntersectCurrent.push_back(*P);
|
|
}
|
|
}
|
|
} //End If TOP_DOWN
|
|
|
|
//Begin if BOTTOM_UP
|
|
else {
|
|
while(IntersectCurrent.size() > 0) {
|
|
//Get node with highest depth, if a tie, use one with lowest
|
|
//MOB
|
|
int MOB = IntersectCurrent[0]->getMobility();
|
|
int depth = IntersectCurrent[0]->getDepth();
|
|
ModuloSchedGraphNode *V = IntersectCurrent[0];
|
|
|
|
for(unsigned j=0; j < IntersectCurrent.size(); ++j) {
|
|
int temp = IntersectCurrent[j]->getDepth();
|
|
if(depth < temp) {
|
|
V = IntersectCurrent[j];
|
|
depth = temp;
|
|
MOB = V->getMobility();
|
|
}
|
|
else if(depth == temp) {
|
|
if(MOB > IntersectCurrent[j]->getMobility()) {
|
|
V = IntersectCurrent[j];
|
|
depth = temp;
|
|
MOB = V->getMobility();
|
|
}
|
|
}
|
|
}
|
|
|
|
//Append V to the NodeOrder
|
|
NodeOrder.push_back(V);
|
|
|
|
//Remove V from IntersectOrder
|
|
IntersectCurrent.erase(find(IntersectCurrent.begin(),
|
|
IntersectCurrent.end(),V));
|
|
|
|
//Intersect V's pred with CurrentSet
|
|
for(mod_pred_iterator P = pred_begin(V),
|
|
E = pred_end(V); P != E; ++P) {
|
|
if(lower_bound(CurrentSet.begin(),
|
|
CurrentSet.end(), *P) != CurrentSet.end()) {
|
|
//If not already in Intersect, add
|
|
if(find(IntersectCurrent.begin(), IntersectCurrent.end(), *P) == IntersectCurrent.end())
|
|
IntersectCurrent.push_back(*P);
|
|
}
|
|
}
|
|
} //End while loop over Intersect Size
|
|
|
|
//Change order
|
|
order = TOP_DOWN;
|
|
|
|
//Reset IntersectCurrent to reflect changes in OrderNodes
|
|
IntersectCurrent.clear();
|
|
for(unsigned j=0; j < NodeOrder.size(); ++j) {
|
|
for(mod_succ_iterator P = succ_begin(NodeOrder[j]),
|
|
E = succ_end(NodeOrder[j]); P != E; ++P) {
|
|
if(lower_bound(CurrentSet.begin(),
|
|
CurrentSet.end(), *P) != CurrentSet.end())
|
|
IntersectCurrent.push_back(*P);
|
|
}
|
|
|
|
}
|
|
} //End if BOTTOM_DOWN
|
|
|
|
}*/
|
|
//End Wrapping while loop
|
|
|
|
}//End for over all sets of nodes
|
|
|
|
//Return final Order
|
|
//return FinalNodeOrder;
|
|
}
|