mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-12 02:33:33 +00:00
64925c55c6
These heuristics are sufficient for enabling IV chains by default. Performance analysis has been done for i386, x86_64, and thumbv7. The optimization is rarely important, but can significantly speed up certain cases by eliminating spill code within the loop. Unrolled loops are prime candidates for IV chains. In many cases, the final code could still be improved with more target specific optimization following LSR. The goal of this feature is for LSR to make the best choice of induction variables. Instruction selection may not completely take advantage of this feature yet. As a result, there could be cases of slight code size increase. Code size can be worse on x86 because it doesn't support postincrement addressing. In fact, when chains are formed, you may see redundant address plus stride addition in the addressing mode. GenerateIVChains tries to compensate for the common cases. On ARM, code size increase can be mitigated by using postincrement addressing, but downstream codegen currently misses some opportunities. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@147826 91177308-0d34-0410-b5e6-96231b3b80d8
301 lines
9.8 KiB
LLVM
301 lines
9.8 KiB
LLVM
; RUN: llc < %s -O3 -march=x86-64 -mcpu=core2 | FileCheck %s -check-prefix=X64
|
|
; RUN: llc < %s -O3 -march=x86 -mcpu=core2 | FileCheck %s -check-prefix=X32
|
|
|
|
; @simple is the most basic chain of address induction variables. Chaining
|
|
; saves at least one register and avoids complex addressing and setup
|
|
; code.
|
|
;
|
|
; X64: @simple
|
|
; %x * 4
|
|
; X64: shlq $2
|
|
; no other address computation in the preheader
|
|
; X64-NEXT: xorl
|
|
; X64-NEXT: .align
|
|
; X64: %loop
|
|
; no complex address modes
|
|
; X64-NOT: (%{{[^)]+}},%{{[^)]+}},
|
|
;
|
|
; X32: @simple
|
|
; no expensive address computation in the preheader
|
|
; X32-NOT: imul
|
|
; X32: %loop
|
|
; no complex address modes
|
|
; X32-NOT: (%{{[^)]+}},%{{[^)]+}},
|
|
define i32 @simple(i32* %a, i32* %b, i32 %x) nounwind {
|
|
entry:
|
|
br label %loop
|
|
loop:
|
|
%iv = phi i32* [ %a, %entry ], [ %iv4, %loop ]
|
|
%s = phi i32 [ 0, %entry ], [ %s4, %loop ]
|
|
%v = load i32* %iv
|
|
%iv1 = getelementptr inbounds i32* %iv, i32 %x
|
|
%v1 = load i32* %iv1
|
|
%iv2 = getelementptr inbounds i32* %iv1, i32 %x
|
|
%v2 = load i32* %iv2
|
|
%iv3 = getelementptr inbounds i32* %iv2, i32 %x
|
|
%v3 = load i32* %iv3
|
|
%s1 = add i32 %s, %v
|
|
%s2 = add i32 %s1, %v1
|
|
%s3 = add i32 %s2, %v2
|
|
%s4 = add i32 %s3, %v3
|
|
%iv4 = getelementptr inbounds i32* %iv3, i32 %x
|
|
%cmp = icmp eq i32* %iv4, %b
|
|
br i1 %cmp, label %exit, label %loop
|
|
exit:
|
|
ret i32 %s4
|
|
}
|
|
|
|
; @user is not currently chained because the IV is live across memory ops.
|
|
;
|
|
; X64: @user
|
|
; X64: shlq $4
|
|
; X64: lea
|
|
; X64: lea
|
|
; X64: %loop
|
|
; complex address modes
|
|
; X64: (%{{[^)]+}},%{{[^)]+}},
|
|
;
|
|
; X32: @user
|
|
; expensive address computation in the preheader
|
|
; X32: imul
|
|
; X32: %loop
|
|
; complex address modes
|
|
; X32: (%{{[^)]+}},%{{[^)]+}},
|
|
define i32 @user(i32* %a, i32* %b, i32 %x) nounwind {
|
|
entry:
|
|
br label %loop
|
|
loop:
|
|
%iv = phi i32* [ %a, %entry ], [ %iv4, %loop ]
|
|
%s = phi i32 [ 0, %entry ], [ %s4, %loop ]
|
|
%v = load i32* %iv
|
|
%iv1 = getelementptr inbounds i32* %iv, i32 %x
|
|
%v1 = load i32* %iv1
|
|
%iv2 = getelementptr inbounds i32* %iv1, i32 %x
|
|
%v2 = load i32* %iv2
|
|
%iv3 = getelementptr inbounds i32* %iv2, i32 %x
|
|
%v3 = load i32* %iv3
|
|
%s1 = add i32 %s, %v
|
|
%s2 = add i32 %s1, %v1
|
|
%s3 = add i32 %s2, %v2
|
|
%s4 = add i32 %s3, %v3
|
|
%iv4 = getelementptr inbounds i32* %iv3, i32 %x
|
|
store i32 %s4, i32* %iv
|
|
%cmp = icmp eq i32* %iv4, %b
|
|
br i1 %cmp, label %exit, label %loop
|
|
exit:
|
|
ret i32 %s4
|
|
}
|
|
|
|
; @extrastride is a slightly more interesting case of a single
|
|
; complete chain with multiple strides. The test case IR is what LSR
|
|
; used to do, and exactly what we don't want to do. LSR's new IV
|
|
; chaining feature should now undo the damage.
|
|
;
|
|
; X64: extrastride:
|
|
; We currently don't handle this on X64 because the sexts cause
|
|
; strange increment expressions like this:
|
|
; IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64)))
|
|
;
|
|
; X32: extrastride:
|
|
; no spills in the preheader
|
|
; X32-NOT: mov{{.*}}(%esp){{$}}
|
|
; X32: %for.body{{$}}
|
|
; no complex address modes
|
|
; X32-NOT: (%{{[^)]+}},%{{[^)]+}},
|
|
; no reloads
|
|
; X32-NOT: (%esp)
|
|
define void @extrastride(i8* nocapture %main, i32 %main_stride, i32* nocapture %res, i32 %x, i32 %y, i32 %z) nounwind {
|
|
entry:
|
|
%cmp8 = icmp eq i32 %z, 0
|
|
br i1 %cmp8, label %for.end, label %for.body.lr.ph
|
|
|
|
for.body.lr.ph: ; preds = %entry
|
|
%add.ptr.sum = shl i32 %main_stride, 1 ; s*2
|
|
%add.ptr1.sum = add i32 %add.ptr.sum, %main_stride ; s*3
|
|
%add.ptr2.sum = add i32 %x, %main_stride ; s + x
|
|
%add.ptr4.sum = shl i32 %main_stride, 2 ; s*4
|
|
%add.ptr3.sum = add i32 %add.ptr2.sum, %add.ptr4.sum ; total IV stride = s*5+x
|
|
br label %for.body
|
|
|
|
for.body: ; preds = %for.body.lr.ph, %for.body
|
|
%main.addr.011 = phi i8* [ %main, %for.body.lr.ph ], [ %add.ptr6, %for.body ]
|
|
%i.010 = phi i32 [ 0, %for.body.lr.ph ], [ %inc, %for.body ]
|
|
%res.addr.09 = phi i32* [ %res, %for.body.lr.ph ], [ %add.ptr7, %for.body ]
|
|
%0 = bitcast i8* %main.addr.011 to i32*
|
|
%1 = load i32* %0, align 4
|
|
%add.ptr = getelementptr inbounds i8* %main.addr.011, i32 %main_stride
|
|
%2 = bitcast i8* %add.ptr to i32*
|
|
%3 = load i32* %2, align 4
|
|
%add.ptr1 = getelementptr inbounds i8* %main.addr.011, i32 %add.ptr.sum
|
|
%4 = bitcast i8* %add.ptr1 to i32*
|
|
%5 = load i32* %4, align 4
|
|
%add.ptr2 = getelementptr inbounds i8* %main.addr.011, i32 %add.ptr1.sum
|
|
%6 = bitcast i8* %add.ptr2 to i32*
|
|
%7 = load i32* %6, align 4
|
|
%add.ptr3 = getelementptr inbounds i8* %main.addr.011, i32 %add.ptr4.sum
|
|
%8 = bitcast i8* %add.ptr3 to i32*
|
|
%9 = load i32* %8, align 4
|
|
%add = add i32 %3, %1
|
|
%add4 = add i32 %add, %5
|
|
%add5 = add i32 %add4, %7
|
|
%add6 = add i32 %add5, %9
|
|
store i32 %add6, i32* %res.addr.09, align 4
|
|
%add.ptr6 = getelementptr inbounds i8* %main.addr.011, i32 %add.ptr3.sum
|
|
%add.ptr7 = getelementptr inbounds i32* %res.addr.09, i32 %y
|
|
%inc = add i32 %i.010, 1
|
|
%cmp = icmp eq i32 %inc, %z
|
|
br i1 %cmp, label %for.end, label %for.body
|
|
|
|
for.end: ; preds = %for.body, %entry
|
|
ret void
|
|
}
|
|
|
|
; @foldedidx is an unrolled variant of this loop:
|
|
; for (unsigned long i = 0; i < len; i += s) {
|
|
; c[i] = a[i] + b[i];
|
|
; }
|
|
; where 's' can be folded into the addressing mode.
|
|
; Consequently, we should *not* form any chains.
|
|
;
|
|
; X64: foldedidx:
|
|
; X64: movzbl -3(
|
|
;
|
|
; X32: foldedidx:
|
|
; X32: movzbl -3(
|
|
define void @foldedidx(i8* nocapture %a, i8* nocapture %b, i8* nocapture %c) nounwind ssp {
|
|
entry:
|
|
br label %for.body
|
|
|
|
for.body: ; preds = %for.body, %entry
|
|
%i.07 = phi i32 [ 0, %entry ], [ %inc.3, %for.body ]
|
|
%arrayidx = getelementptr inbounds i8* %a, i32 %i.07
|
|
%0 = load i8* %arrayidx, align 1
|
|
%conv5 = zext i8 %0 to i32
|
|
%arrayidx1 = getelementptr inbounds i8* %b, i32 %i.07
|
|
%1 = load i8* %arrayidx1, align 1
|
|
%conv26 = zext i8 %1 to i32
|
|
%add = add nsw i32 %conv26, %conv5
|
|
%conv3 = trunc i32 %add to i8
|
|
%arrayidx4 = getelementptr inbounds i8* %c, i32 %i.07
|
|
store i8 %conv3, i8* %arrayidx4, align 1
|
|
%inc1 = or i32 %i.07, 1
|
|
%arrayidx.1 = getelementptr inbounds i8* %a, i32 %inc1
|
|
%2 = load i8* %arrayidx.1, align 1
|
|
%conv5.1 = zext i8 %2 to i32
|
|
%arrayidx1.1 = getelementptr inbounds i8* %b, i32 %inc1
|
|
%3 = load i8* %arrayidx1.1, align 1
|
|
%conv26.1 = zext i8 %3 to i32
|
|
%add.1 = add nsw i32 %conv26.1, %conv5.1
|
|
%conv3.1 = trunc i32 %add.1 to i8
|
|
%arrayidx4.1 = getelementptr inbounds i8* %c, i32 %inc1
|
|
store i8 %conv3.1, i8* %arrayidx4.1, align 1
|
|
%inc.12 = or i32 %i.07, 2
|
|
%arrayidx.2 = getelementptr inbounds i8* %a, i32 %inc.12
|
|
%4 = load i8* %arrayidx.2, align 1
|
|
%conv5.2 = zext i8 %4 to i32
|
|
%arrayidx1.2 = getelementptr inbounds i8* %b, i32 %inc.12
|
|
%5 = load i8* %arrayidx1.2, align 1
|
|
%conv26.2 = zext i8 %5 to i32
|
|
%add.2 = add nsw i32 %conv26.2, %conv5.2
|
|
%conv3.2 = trunc i32 %add.2 to i8
|
|
%arrayidx4.2 = getelementptr inbounds i8* %c, i32 %inc.12
|
|
store i8 %conv3.2, i8* %arrayidx4.2, align 1
|
|
%inc.23 = or i32 %i.07, 3
|
|
%arrayidx.3 = getelementptr inbounds i8* %a, i32 %inc.23
|
|
%6 = load i8* %arrayidx.3, align 1
|
|
%conv5.3 = zext i8 %6 to i32
|
|
%arrayidx1.3 = getelementptr inbounds i8* %b, i32 %inc.23
|
|
%7 = load i8* %arrayidx1.3, align 1
|
|
%conv26.3 = zext i8 %7 to i32
|
|
%add.3 = add nsw i32 %conv26.3, %conv5.3
|
|
%conv3.3 = trunc i32 %add.3 to i8
|
|
%arrayidx4.3 = getelementptr inbounds i8* %c, i32 %inc.23
|
|
store i8 %conv3.3, i8* %arrayidx4.3, align 1
|
|
%inc.3 = add nsw i32 %i.07, 4
|
|
%exitcond.3 = icmp eq i32 %inc.3, 400
|
|
br i1 %exitcond.3, label %for.end, label %for.body
|
|
|
|
for.end: ; preds = %for.body
|
|
ret void
|
|
}
|
|
|
|
; @multioper tests instructions with multiple IV user operands. We
|
|
; should be able to chain them independent of each other.
|
|
;
|
|
; X64: @multioper
|
|
; X64: %for.body
|
|
; X64: movl %{{.*}},4)
|
|
; X64-NEXT: leal 1(
|
|
; X64-NEXT: movl %{{.*}},4)
|
|
; X64-NEXT: leal 2(
|
|
; X64-NEXT: movl %{{.*}},4)
|
|
; X64-NEXT: leal 3(
|
|
; X64-NEXT: movl %{{.*}},4)
|
|
;
|
|
; X32: @multioper
|
|
; X32: %for.body
|
|
; X32: movl %{{.*}},4)
|
|
; X32-NEXT: leal 1(
|
|
; X32-NEXT: movl %{{.*}},4)
|
|
; X32-NEXT: leal 2(
|
|
; X32-NEXT: movl %{{.*}},4)
|
|
; X32-NEXT: leal 3(
|
|
; X32-NEXT: movl %{{.*}},4)
|
|
define void @multioper(i32* %a, i32 %n) nounwind {
|
|
entry:
|
|
br label %for.body
|
|
|
|
for.body:
|
|
%p = phi i32* [ %p.next, %for.body ], [ %a, %entry ]
|
|
%i = phi i32 [ %inc4, %for.body ], [ 0, %entry ]
|
|
store i32 %i, i32* %p, align 4
|
|
%inc1 = or i32 %i, 1
|
|
%add.ptr.i1 = getelementptr inbounds i32* %p, i32 1
|
|
store i32 %inc1, i32* %add.ptr.i1, align 4
|
|
%inc2 = add nsw i32 %i, 2
|
|
%add.ptr.i2 = getelementptr inbounds i32* %p, i32 2
|
|
store i32 %inc2, i32* %add.ptr.i2, align 4
|
|
%inc3 = add nsw i32 %i, 3
|
|
%add.ptr.i3 = getelementptr inbounds i32* %p, i32 3
|
|
store i32 %inc3, i32* %add.ptr.i3, align 4
|
|
%p.next = getelementptr inbounds i32* %p, i32 4
|
|
%inc4 = add nsw i32 %i, 4
|
|
%cmp = icmp slt i32 %inc4, %n
|
|
br i1 %cmp, label %for.body, label %exit
|
|
|
|
exit:
|
|
ret void
|
|
}
|
|
|
|
; @testCmpZero has a ICmpZero LSR use that should not be hidden from
|
|
; LSR. Profitable chains should have more than one nonzero increment
|
|
; anyway.
|
|
;
|
|
; X32: @testCmpZero
|
|
; X32: %for.body82.us
|
|
; X32: dec
|
|
; X32: jne
|
|
define void @testCmpZero(i8* %src, i8* %dst, i32 %srcidx, i32 %dstidx, i32 %len) nounwind ssp {
|
|
entry:
|
|
%dest0 = getelementptr inbounds i8* %src, i32 %srcidx
|
|
%source0 = getelementptr inbounds i8* %dst, i32 %dstidx
|
|
%add.ptr79.us.sum = add i32 %srcidx, %len
|
|
%lftr.limit = getelementptr i8* %src, i32 %add.ptr79.us.sum
|
|
br label %for.body82.us
|
|
|
|
for.body82.us:
|
|
%dest = phi i8* [ %dest0, %entry ], [ %incdec.ptr91.us, %for.body82.us ]
|
|
%source = phi i8* [ %source0, %entry ], [ %add.ptr83.us, %for.body82.us ]
|
|
%0 = bitcast i8* %source to i32*
|
|
%1 = load i32* %0, align 4
|
|
%trunc = trunc i32 %1 to i8
|
|
%add.ptr83.us = getelementptr inbounds i8* %source, i32 4
|
|
%incdec.ptr91.us = getelementptr inbounds i8* %dest, i32 1
|
|
store i8 %trunc, i8* %dest, align 1
|
|
%exitcond = icmp eq i8* %incdec.ptr91.us, %lftr.limit
|
|
br i1 %exitcond, label %return, label %for.body82.us
|
|
|
|
return:
|
|
ret void
|
|
}
|