llvm-6502/lib/CodeGen
Bill Wendling 95b3955034 Assertion when using a 1-element vector for an add operation. Get the
real vector type in this case.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@36402 91177308-0d34-0410-b5e6-96231b3b80d8
2007-04-24 21:13:23 +00:00
..
SelectionDAG Assertion when using a 1-element vector for an add operation. Get the 2007-04-24 21:13:23 +00:00
AsmPrinter.cpp modify per review commentary 2007-04-23 23:33:31 +00:00
BranchFolding.cpp
DwarfWriter.cpp
ELFWriter.cpp
ELFWriter.h
IntrinsicLowering.cpp Fix problems in the PartSet lowering having to do with incorrect bit width. 2007-04-16 22:21:14 +00:00
LiveInterval.cpp Add a register allocation preference field; add a method to compute size of a live interval. 2007-04-17 20:25:11 +00:00
LiveIntervalAnalysis.cpp VarInfo::UsedBlocks is no longer used. Remove. 2007-04-18 05:04:38 +00:00
LiveVariables.cpp VarInfo::UsedBlocks is no longer used. Remove. 2007-04-18 05:04:38 +00:00
LLVMTargetMachine.cpp
MachineBasicBlock.cpp
MachineFunction.cpp
MachineInstr.cpp
MachineModuleInfo.cpp
MachinePassRegistry.cpp
MachOWriter.cpp
MachOWriter.h Removed tabs everywhere except autogenerated & external files. Add make 2007-04-16 18:10:23 +00:00
Makefile
Passes.cpp
PHIElimination.cpp VarInfo::UsedBlocks is no longer used. Remove. 2007-04-18 05:04:38 +00:00
PhysRegTracker.h
PrologEpilogInserter.cpp
README.txt Removed tabs everywhere except autogenerated & external files. Add make 2007-04-16 18:10:23 +00:00
RegAllocLinearScan.cpp Copy coalescing change to prevent a physical register from being pin to a 2007-04-17 20:32:26 +00:00
RegAllocLocal.cpp
RegAllocSimple.cpp
RegisterScavenging.cpp
TwoAddressInstructionPass.cpp VarInfo::UsedBlocks is no longer used. Remove. 2007-04-18 05:04:38 +00:00
UnreachableBlockElim.cpp
VirtRegMap.cpp
VirtRegMap.h

//===---------------------------------------------------------------------===//

Common register allocation / spilling problem:

        mul lr, r4, lr
        str lr, [sp, #+52]
        ldr lr, [r1, #+32]
        sxth r3, r3
        ldr r4, [sp, #+52]
        mla r4, r3, lr, r4

can be:

        mul lr, r4, lr
        mov r4, lr
        str lr, [sp, #+52]
        ldr lr, [r1, #+32]
        sxth r3, r3
        mla r4, r3, lr, r4

and then "merge" mul and mov:

        mul r4, r4, lr
        str lr, [sp, #+52]
        ldr lr, [r1, #+32]
        sxth r3, r3
        mla r4, r3, lr, r4

It also increase the likelyhood the store may become dead.

//===---------------------------------------------------------------------===//

I think we should have a "hasSideEffects" flag (which is automatically set for
stuff that "isLoad" "isCall" etc), and the remat pass should eventually be able
to remat any instruction that has no side effects, if it can handle it and if
profitable.

For now, I'd suggest having the remat stuff work like this:

1. I need to spill/reload this thing.
2. Check to see if it has side effects.
3. Check to see if it is simple enough: e.g. it only has one register
destination and no register input.
4. If so, clone the instruction, do the xform, etc.

Advantages of this are:

1. the .td file describes the behavior of the instructions, not the way the
   algorithm should work.
2. as remat gets smarter in the future, we shouldn't have to be changing the .td
   files.
3. it is easier to explain what the flag means in the .td file, because you
   don't have to pull in the explanation of how the current remat algo works.

Some potential added complexities:

1. Some instructions have to be glued to it's predecessor or successor. All of
   the PC relative instructions and condition code setting instruction. We could
   mark them as hasSideEffects, but that's not quite right. PC relative loads
   from constantpools can be remat'ed, for example. But it requires more than
   just cloning the instruction. Some instructions can be remat'ed but it
   expands to more than one instruction. But allocator will have to make a
   decision.

4. As stated in 3, not as simple as cloning in some cases. The target will have
   to decide how to remat it. For example, an ARM 2-piece constant generation
   instruction is remat'ed as a load from constantpool.

//===---------------------------------------------------------------------===//

bb27 ...
        ...
        %reg1037 = ADDri %reg1039, 1
        %reg1038 = ADDrs %reg1032, %reg1039, %NOREG, 10
    Successors according to CFG: 0x8b03bf0 (#5)

bb76 (0x8b03bf0, LLVM BB @0x8b032d0, ID#5):
    Predecessors according to CFG: 0x8b0c5f0 (#3) 0x8b0a7c0 (#4)
        %reg1039 = PHI %reg1070, mbb<bb76.outer,0x8b0c5f0>, %reg1037, mbb<bb27,0x8b0a7c0>

Note ADDri is not a two-address instruction. However, its result %reg1037 is an
operand of the PHI node in bb76 and its operand %reg1039 is the result of the
PHI node. We should treat it as a two-address code and make sure the ADDri is
scheduled after any node that reads %reg1039.

//===---------------------------------------------------------------------===//

Re-Materialize load from frame index.