David Majnemer 5ca5b0d9f4 [Cloning] Teach CloneModule about personality functions
CloneModule didn't take into account that it needed to remap the value
using values in the module.

This fixes PR23992.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241122 91177308-0d34-0410-b5e6-96231b3b80d8
2015-06-30 22:14:01 +00:00

454 lines
14 KiB
C++

//===- Cloning.cpp - Unit tests for the Cloner ----------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/DIBuilder.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Verifier.h"
#include "gtest/gtest.h"
using namespace llvm;
namespace {
class CloneInstruction : public ::testing::Test {
protected:
void SetUp() override { V = nullptr; }
template <typename T>
T *clone(T *V1) {
Value *V2 = V1->clone();
Orig.insert(V1);
Clones.insert(V2);
return cast<T>(V2);
}
void eraseClones() {
DeleteContainerPointers(Clones);
}
void TearDown() override {
eraseClones();
DeleteContainerPointers(Orig);
delete V;
}
SmallPtrSet<Value *, 4> Orig; // Erase on exit
SmallPtrSet<Value *, 4> Clones; // Erase in eraseClones
LLVMContext context;
Value *V;
};
TEST_F(CloneInstruction, OverflowBits) {
V = new Argument(Type::getInt32Ty(context));
BinaryOperator *Add = BinaryOperator::Create(Instruction::Add, V, V);
BinaryOperator *Sub = BinaryOperator::Create(Instruction::Sub, V, V);
BinaryOperator *Mul = BinaryOperator::Create(Instruction::Mul, V, V);
BinaryOperator *AddClone = this->clone(Add);
BinaryOperator *SubClone = this->clone(Sub);
BinaryOperator *MulClone = this->clone(Mul);
EXPECT_FALSE(AddClone->hasNoUnsignedWrap());
EXPECT_FALSE(AddClone->hasNoSignedWrap());
EXPECT_FALSE(SubClone->hasNoUnsignedWrap());
EXPECT_FALSE(SubClone->hasNoSignedWrap());
EXPECT_FALSE(MulClone->hasNoUnsignedWrap());
EXPECT_FALSE(MulClone->hasNoSignedWrap());
eraseClones();
Add->setHasNoUnsignedWrap();
Sub->setHasNoUnsignedWrap();
Mul->setHasNoUnsignedWrap();
AddClone = this->clone(Add);
SubClone = this->clone(Sub);
MulClone = this->clone(Mul);
EXPECT_TRUE(AddClone->hasNoUnsignedWrap());
EXPECT_FALSE(AddClone->hasNoSignedWrap());
EXPECT_TRUE(SubClone->hasNoUnsignedWrap());
EXPECT_FALSE(SubClone->hasNoSignedWrap());
EXPECT_TRUE(MulClone->hasNoUnsignedWrap());
EXPECT_FALSE(MulClone->hasNoSignedWrap());
eraseClones();
Add->setHasNoSignedWrap();
Sub->setHasNoSignedWrap();
Mul->setHasNoSignedWrap();
AddClone = this->clone(Add);
SubClone = this->clone(Sub);
MulClone = this->clone(Mul);
EXPECT_TRUE(AddClone->hasNoUnsignedWrap());
EXPECT_TRUE(AddClone->hasNoSignedWrap());
EXPECT_TRUE(SubClone->hasNoUnsignedWrap());
EXPECT_TRUE(SubClone->hasNoSignedWrap());
EXPECT_TRUE(MulClone->hasNoUnsignedWrap());
EXPECT_TRUE(MulClone->hasNoSignedWrap());
eraseClones();
Add->setHasNoUnsignedWrap(false);
Sub->setHasNoUnsignedWrap(false);
Mul->setHasNoUnsignedWrap(false);
AddClone = this->clone(Add);
SubClone = this->clone(Sub);
MulClone = this->clone(Mul);
EXPECT_FALSE(AddClone->hasNoUnsignedWrap());
EXPECT_TRUE(AddClone->hasNoSignedWrap());
EXPECT_FALSE(SubClone->hasNoUnsignedWrap());
EXPECT_TRUE(SubClone->hasNoSignedWrap());
EXPECT_FALSE(MulClone->hasNoUnsignedWrap());
EXPECT_TRUE(MulClone->hasNoSignedWrap());
}
TEST_F(CloneInstruction, Inbounds) {
V = new Argument(Type::getInt32PtrTy(context));
Constant *Z = Constant::getNullValue(Type::getInt32Ty(context));
std::vector<Value *> ops;
ops.push_back(Z);
GetElementPtrInst *GEP =
GetElementPtrInst::Create(Type::getInt32Ty(context), V, ops);
EXPECT_FALSE(this->clone(GEP)->isInBounds());
GEP->setIsInBounds();
EXPECT_TRUE(this->clone(GEP)->isInBounds());
}
TEST_F(CloneInstruction, Exact) {
V = new Argument(Type::getInt32Ty(context));
BinaryOperator *SDiv = BinaryOperator::Create(Instruction::SDiv, V, V);
EXPECT_FALSE(this->clone(SDiv)->isExact());
SDiv->setIsExact(true);
EXPECT_TRUE(this->clone(SDiv)->isExact());
}
TEST_F(CloneInstruction, Attributes) {
Type *ArgTy1[] = { Type::getInt32PtrTy(context) };
FunctionType *FT1 = FunctionType::get(Type::getVoidTy(context), ArgTy1, false);
Function *F1 = Function::Create(FT1, Function::ExternalLinkage);
BasicBlock *BB = BasicBlock::Create(context, "", F1);
IRBuilder<> Builder(BB);
Builder.CreateRetVoid();
Function *F2 = Function::Create(FT1, Function::ExternalLinkage);
Attribute::AttrKind AK[] = { Attribute::NoCapture };
AttributeSet AS = AttributeSet::get(context, 0, AK);
Argument *A = F1->arg_begin();
A->addAttr(AS);
SmallVector<ReturnInst*, 4> Returns;
ValueToValueMapTy VMap;
VMap[A] = UndefValue::get(A->getType());
CloneFunctionInto(F2, F1, VMap, false, Returns);
EXPECT_FALSE(F2->arg_begin()->hasNoCaptureAttr());
delete F1;
delete F2;
}
TEST_F(CloneInstruction, CallingConvention) {
Type *ArgTy1[] = { Type::getInt32PtrTy(context) };
FunctionType *FT1 = FunctionType::get(Type::getVoidTy(context), ArgTy1, false);
Function *F1 = Function::Create(FT1, Function::ExternalLinkage);
F1->setCallingConv(CallingConv::Cold);
BasicBlock *BB = BasicBlock::Create(context, "", F1);
IRBuilder<> Builder(BB);
Builder.CreateRetVoid();
Function *F2 = Function::Create(FT1, Function::ExternalLinkage);
SmallVector<ReturnInst*, 4> Returns;
ValueToValueMapTy VMap;
VMap[F1->arg_begin()] = F2->arg_begin();
CloneFunctionInto(F2, F1, VMap, false, Returns);
EXPECT_EQ(CallingConv::Cold, F2->getCallingConv());
delete F1;
delete F2;
}
class CloneFunc : public ::testing::Test {
protected:
void SetUp() override {
SetupModule();
CreateOldFunc();
CreateNewFunc();
SetupFinder();
}
void TearDown() override { delete Finder; }
void SetupModule() {
M = new Module("", C);
}
void CreateOldFunc() {
FunctionType* FuncType = FunctionType::get(Type::getVoidTy(C), false);
OldFunc = Function::Create(FuncType, GlobalValue::PrivateLinkage, "f", M);
CreateOldFunctionBodyAndDI();
}
void CreateOldFunctionBodyAndDI() {
DIBuilder DBuilder(*M);
IRBuilder<> IBuilder(C);
// Function DI
auto *File = DBuilder.createFile("filename.c", "/file/dir/");
DITypeRefArray ParamTypes = DBuilder.getOrCreateTypeArray(None);
DISubroutineType *FuncType =
DBuilder.createSubroutineType(File, ParamTypes);
auto *CU =
DBuilder.createCompileUnit(dwarf::DW_LANG_C99, "filename.c",
"/file/dir", "CloneFunc", false, "", 0);
auto *Subprogram = DBuilder.createFunction(
CU, "f", "f", File, 4, FuncType, true, true, 3, 0, false, OldFunc);
// Function body
BasicBlock* Entry = BasicBlock::Create(C, "", OldFunc);
IBuilder.SetInsertPoint(Entry);
DebugLoc Loc = DebugLoc::get(3, 2, Subprogram);
IBuilder.SetCurrentDebugLocation(Loc);
AllocaInst* Alloca = IBuilder.CreateAlloca(IntegerType::getInt32Ty(C));
IBuilder.SetCurrentDebugLocation(DebugLoc::get(4, 2, Subprogram));
Value* AllocaContent = IBuilder.getInt32(1);
Instruction* Store = IBuilder.CreateStore(AllocaContent, Alloca);
IBuilder.SetCurrentDebugLocation(DebugLoc::get(5, 2, Subprogram));
Instruction* Terminator = IBuilder.CreateRetVoid();
// Create a local variable around the alloca
auto *IntType =
DBuilder.createBasicType("int", 32, 0, dwarf::DW_ATE_signed);
auto *E = DBuilder.createExpression();
auto *Variable = DBuilder.createLocalVariable(
dwarf::DW_TAG_auto_variable, Subprogram, "x", File, 5, IntType, true);
auto *DL = DILocation::get(Subprogram->getContext(), 5, 0, Subprogram);
DBuilder.insertDeclare(Alloca, Variable, E, DL, Store);
DBuilder.insertDbgValueIntrinsic(AllocaContent, 0, Variable, E, DL,
Terminator);
// Finalize the debug info
DBuilder.finalize();
// Create another, empty, compile unit
DIBuilder DBuilder2(*M);
DBuilder2.createCompileUnit(dwarf::DW_LANG_C99,
"extra.c", "/file/dir", "CloneFunc", false, "", 0);
DBuilder2.finalize();
}
void CreateNewFunc() {
ValueToValueMapTy VMap;
NewFunc = CloneFunction(OldFunc, VMap, true, nullptr);
M->getFunctionList().push_back(NewFunc);
}
void SetupFinder() {
Finder = new DebugInfoFinder();
Finder->processModule(*M);
}
LLVMContext C;
Function* OldFunc;
Function* NewFunc;
Module* M;
DebugInfoFinder* Finder;
};
// Test that a new, distinct function was created.
TEST_F(CloneFunc, NewFunctionCreated) {
EXPECT_NE(OldFunc, NewFunc);
}
// Test that a new subprogram entry was added and is pointing to the new
// function, while the original subprogram still points to the old one.
TEST_F(CloneFunc, Subprogram) {
EXPECT_FALSE(verifyModule(*M));
unsigned SubprogramCount = Finder->subprogram_count();
EXPECT_EQ(2U, SubprogramCount);
auto Iter = Finder->subprograms().begin();
auto *Sub1 = cast<DISubprogram>(*Iter);
Iter++;
auto *Sub2 = cast<DISubprogram>(*Iter);
EXPECT_TRUE(
(Sub1->getFunction() == OldFunc && Sub2->getFunction() == NewFunc) ||
(Sub1->getFunction() == NewFunc && Sub2->getFunction() == OldFunc));
}
// Test that the new subprogram entry was not added to the CU which doesn't
// contain the old subprogram entry.
TEST_F(CloneFunc, SubprogramInRightCU) {
EXPECT_FALSE(verifyModule(*M));
EXPECT_EQ(2U, Finder->compile_unit_count());
auto Iter = Finder->compile_units().begin();
auto *CU1 = cast<DICompileUnit>(*Iter);
Iter++;
auto *CU2 = cast<DICompileUnit>(*Iter);
EXPECT_TRUE(CU1->getSubprograms().size() == 0 ||
CU2->getSubprograms().size() == 0);
}
// Test that instructions in the old function still belong to it in the
// metadata, while instruction in the new function belong to the new one.
TEST_F(CloneFunc, InstructionOwnership) {
EXPECT_FALSE(verifyModule(*M));
inst_iterator OldIter = inst_begin(OldFunc);
inst_iterator OldEnd = inst_end(OldFunc);
inst_iterator NewIter = inst_begin(NewFunc);
inst_iterator NewEnd = inst_end(NewFunc);
while (OldIter != OldEnd && NewIter != NewEnd) {
Instruction& OldI = *OldIter;
Instruction& NewI = *NewIter;
EXPECT_NE(&OldI, &NewI);
EXPECT_EQ(OldI.hasMetadata(), NewI.hasMetadata());
if (OldI.hasMetadata()) {
const DebugLoc& OldDL = OldI.getDebugLoc();
const DebugLoc& NewDL = NewI.getDebugLoc();
// Verify that the debug location data is the same
EXPECT_EQ(OldDL.getLine(), NewDL.getLine());
EXPECT_EQ(OldDL.getCol(), NewDL.getCol());
// But that they belong to different functions
auto *OldSubprogram = cast<DISubprogram>(OldDL.getScope());
auto *NewSubprogram = cast<DISubprogram>(NewDL.getScope());
EXPECT_EQ(OldFunc, OldSubprogram->getFunction());
EXPECT_EQ(NewFunc, NewSubprogram->getFunction());
}
++OldIter;
++NewIter;
}
EXPECT_EQ(OldEnd, OldIter);
EXPECT_EQ(NewEnd, NewIter);
}
// Test that the arguments for debug intrinsics in the new function were
// properly cloned
TEST_F(CloneFunc, DebugIntrinsics) {
EXPECT_FALSE(verifyModule(*M));
inst_iterator OldIter = inst_begin(OldFunc);
inst_iterator OldEnd = inst_end(OldFunc);
inst_iterator NewIter = inst_begin(NewFunc);
inst_iterator NewEnd = inst_end(NewFunc);
while (OldIter != OldEnd && NewIter != NewEnd) {
Instruction& OldI = *OldIter;
Instruction& NewI = *NewIter;
if (DbgDeclareInst* OldIntrin = dyn_cast<DbgDeclareInst>(&OldI)) {
DbgDeclareInst* NewIntrin = dyn_cast<DbgDeclareInst>(&NewI);
EXPECT_TRUE(NewIntrin);
// Old address must belong to the old function
EXPECT_EQ(OldFunc, cast<AllocaInst>(OldIntrin->getAddress())->
getParent()->getParent());
// New address must belong to the new function
EXPECT_EQ(NewFunc, cast<AllocaInst>(NewIntrin->getAddress())->
getParent()->getParent());
// Old variable must belong to the old function
EXPECT_EQ(OldFunc,
cast<DISubprogram>(OldIntrin->getVariable()->getScope())
->getFunction());
// New variable must belong to the New function
EXPECT_EQ(NewFunc,
cast<DISubprogram>(NewIntrin->getVariable()->getScope())
->getFunction());
} else if (DbgValueInst* OldIntrin = dyn_cast<DbgValueInst>(&OldI)) {
DbgValueInst* NewIntrin = dyn_cast<DbgValueInst>(&NewI);
EXPECT_TRUE(NewIntrin);
// Old variable must belong to the old function
EXPECT_EQ(OldFunc,
cast<DISubprogram>(OldIntrin->getVariable()->getScope())
->getFunction());
// New variable must belong to the New function
EXPECT_EQ(NewFunc,
cast<DISubprogram>(NewIntrin->getVariable()->getScope())
->getFunction());
}
++OldIter;
++NewIter;
}
}
class CloneModule : public ::testing::Test {
protected:
void SetUp() override {
SetupModule();
CreateOldModule();
CreateNewModule();
}
void SetupModule() { OldM = new Module("", C); }
void CreateOldModule() {
IRBuilder<> IBuilder(C);
auto *FuncType = FunctionType::get(Type::getVoidTy(C), false);
auto *PersFn = Function::Create(FuncType, GlobalValue::ExternalLinkage,
"persfn", OldM);
auto *F =
Function::Create(FuncType, GlobalValue::PrivateLinkage, "f", OldM);
F->setPersonalityFn(PersFn);
auto *Entry = BasicBlock::Create(C, "", F);
IBuilder.SetInsertPoint(Entry);
IBuilder.CreateRetVoid();
}
void CreateNewModule() { NewM = llvm::CloneModule(OldM); }
LLVMContext C;
Module *OldM;
Module *NewM;
};
TEST_F(CloneModule, Verify) {
EXPECT_FALSE(verifyModule(*NewM));
}
}