llvm-6502/lib/Bitcode/Writer/BitcodeWriter.cpp
Devang Patel 7ad033c9e7 Read and write function notes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@55657 91177308-0d34-0410-b5e6-96231b3b80d8
2008-09-02 21:47:13 +00:00

1356 lines
52 KiB
C++

//===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Bitcode writer implementation.
//
//===----------------------------------------------------------------------===//
#include "llvm/Bitcode/ReaderWriter.h"
#include "llvm/Bitcode/BitstreamWriter.h"
#include "llvm/Bitcode/LLVMBitCodes.h"
#include "ValueEnumerator.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/InlineAsm.h"
#include "llvm/Instructions.h"
#include "llvm/Module.h"
#include "llvm/TypeSymbolTable.h"
#include "llvm/ValueSymbolTable.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/Streams.h"
#include "llvm/System/Program.h"
using namespace llvm;
/// These are manifest constants used by the bitcode writer. They do not need to
/// be kept in sync with the reader, but need to be consistent within this file.
enum {
CurVersion = 0,
// VALUE_SYMTAB_BLOCK abbrev id's.
VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
VST_ENTRY_7_ABBREV,
VST_ENTRY_6_ABBREV,
VST_BBENTRY_6_ABBREV,
// CONSTANTS_BLOCK abbrev id's.
CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
CONSTANTS_INTEGER_ABBREV,
CONSTANTS_CE_CAST_Abbrev,
CONSTANTS_NULL_Abbrev,
// FUNCTION_BLOCK abbrev id's.
FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
FUNCTION_INST_BINOP_ABBREV,
FUNCTION_INST_CAST_ABBREV,
FUNCTION_INST_RET_VOID_ABBREV,
FUNCTION_INST_RET_VAL_ABBREV,
FUNCTION_INST_UNREACHABLE_ABBREV
};
static unsigned GetEncodedCastOpcode(unsigned Opcode) {
switch (Opcode) {
default: assert(0 && "Unknown cast instruction!");
case Instruction::Trunc : return bitc::CAST_TRUNC;
case Instruction::ZExt : return bitc::CAST_ZEXT;
case Instruction::SExt : return bitc::CAST_SEXT;
case Instruction::FPToUI : return bitc::CAST_FPTOUI;
case Instruction::FPToSI : return bitc::CAST_FPTOSI;
case Instruction::UIToFP : return bitc::CAST_UITOFP;
case Instruction::SIToFP : return bitc::CAST_SITOFP;
case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
case Instruction::FPExt : return bitc::CAST_FPEXT;
case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
case Instruction::BitCast : return bitc::CAST_BITCAST;
}
}
static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
switch (Opcode) {
default: assert(0 && "Unknown binary instruction!");
case Instruction::Add: return bitc::BINOP_ADD;
case Instruction::Sub: return bitc::BINOP_SUB;
case Instruction::Mul: return bitc::BINOP_MUL;
case Instruction::UDiv: return bitc::BINOP_UDIV;
case Instruction::FDiv:
case Instruction::SDiv: return bitc::BINOP_SDIV;
case Instruction::URem: return bitc::BINOP_UREM;
case Instruction::FRem:
case Instruction::SRem: return bitc::BINOP_SREM;
case Instruction::Shl: return bitc::BINOP_SHL;
case Instruction::LShr: return bitc::BINOP_LSHR;
case Instruction::AShr: return bitc::BINOP_ASHR;
case Instruction::And: return bitc::BINOP_AND;
case Instruction::Or: return bitc::BINOP_OR;
case Instruction::Xor: return bitc::BINOP_XOR;
}
}
static void WriteStringRecord(unsigned Code, const std::string &Str,
unsigned AbbrevToUse, BitstreamWriter &Stream) {
SmallVector<unsigned, 64> Vals;
// Code: [strchar x N]
for (unsigned i = 0, e = Str.size(); i != e; ++i)
Vals.push_back(Str[i]);
// Emit the finished record.
Stream.EmitRecord(Code, Vals, AbbrevToUse);
}
// Emit information about parameter attributes.
static void WriteParamAttrTable(const ValueEnumerator &VE,
BitstreamWriter &Stream) {
const std::vector<PAListPtr> &Attrs = VE.getParamAttrs();
if (Attrs.empty()) return;
Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
SmallVector<uint64_t, 64> Record;
for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
const PAListPtr &A = Attrs[i];
for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) {
const ParamAttrsWithIndex &PAWI = A.getSlot(i);
Record.push_back(PAWI.Index);
Record.push_back(PAWI.Attrs);
}
Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
Record.clear();
}
Stream.ExitBlock();
}
/// WriteTypeTable - Write out the type table for a module.
static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
const ValueEnumerator::TypeList &TypeList = VE.getTypes();
Stream.EnterSubblock(bitc::TYPE_BLOCK_ID, 4 /*count from # abbrevs */);
SmallVector<uint64_t, 64> TypeVals;
// Abbrev for TYPE_CODE_POINTER.
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
Log2_32_Ceil(VE.getTypes().size()+1)));
Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0
unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
// Abbrev for TYPE_CODE_FUNCTION.
Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg
Abbv->Add(BitCodeAbbrevOp(0)); // FIXME: DEAD value, remove in LLVM 3.0
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
Log2_32_Ceil(VE.getTypes().size()+1)));
unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
// Abbrev for TYPE_CODE_STRUCT.
Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
Log2_32_Ceil(VE.getTypes().size()+1)));
unsigned StructAbbrev = Stream.EmitAbbrev(Abbv);
// Abbrev for TYPE_CODE_ARRAY.
Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
Log2_32_Ceil(VE.getTypes().size()+1)));
unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
// Emit an entry count so the reader can reserve space.
TypeVals.push_back(TypeList.size());
Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
TypeVals.clear();
// Loop over all of the types, emitting each in turn.
for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
const Type *T = TypeList[i].first;
int AbbrevToUse = 0;
unsigned Code = 0;
switch (T->getTypeID()) {
default: assert(0 && "Unknown type!");
case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break;
case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break;
case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break;
case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break;
case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break;
case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break;
case Type::OpaqueTyID: Code = bitc::TYPE_CODE_OPAQUE; break;
case Type::IntegerTyID:
// INTEGER: [width]
Code = bitc::TYPE_CODE_INTEGER;
TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
break;
case Type::PointerTyID: {
const PointerType *PTy = cast<PointerType>(T);
// POINTER: [pointee type, address space]
Code = bitc::TYPE_CODE_POINTER;
TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
unsigned AddressSpace = PTy->getAddressSpace();
TypeVals.push_back(AddressSpace);
if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
break;
}
case Type::FunctionTyID: {
const FunctionType *FT = cast<FunctionType>(T);
// FUNCTION: [isvararg, attrid, retty, paramty x N]
Code = bitc::TYPE_CODE_FUNCTION;
TypeVals.push_back(FT->isVarArg());
TypeVals.push_back(0); // FIXME: DEAD: remove in llvm 3.0
TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
AbbrevToUse = FunctionAbbrev;
break;
}
case Type::StructTyID: {
const StructType *ST = cast<StructType>(T);
// STRUCT: [ispacked, eltty x N]
Code = bitc::TYPE_CODE_STRUCT;
TypeVals.push_back(ST->isPacked());
// Output all of the element types.
for (StructType::element_iterator I = ST->element_begin(),
E = ST->element_end(); I != E; ++I)
TypeVals.push_back(VE.getTypeID(*I));
AbbrevToUse = StructAbbrev;
break;
}
case Type::ArrayTyID: {
const ArrayType *AT = cast<ArrayType>(T);
// ARRAY: [numelts, eltty]
Code = bitc::TYPE_CODE_ARRAY;
TypeVals.push_back(AT->getNumElements());
TypeVals.push_back(VE.getTypeID(AT->getElementType()));
AbbrevToUse = ArrayAbbrev;
break;
}
case Type::VectorTyID: {
const VectorType *VT = cast<VectorType>(T);
// VECTOR [numelts, eltty]
Code = bitc::TYPE_CODE_VECTOR;
TypeVals.push_back(VT->getNumElements());
TypeVals.push_back(VE.getTypeID(VT->getElementType()));
break;
}
}
// Emit the finished record.
Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
TypeVals.clear();
}
Stream.ExitBlock();
}
static unsigned getEncodedLinkage(const GlobalValue *GV) {
switch (GV->getLinkage()) {
default: assert(0 && "Invalid linkage!");
case GlobalValue::GhostLinkage: // Map ghost linkage onto external.
case GlobalValue::ExternalLinkage: return 0;
case GlobalValue::WeakLinkage: return 1;
case GlobalValue::AppendingLinkage: return 2;
case GlobalValue::InternalLinkage: return 3;
case GlobalValue::LinkOnceLinkage: return 4;
case GlobalValue::DLLImportLinkage: return 5;
case GlobalValue::DLLExportLinkage: return 6;
case GlobalValue::ExternalWeakLinkage: return 7;
case GlobalValue::CommonLinkage: return 8;
}
}
static unsigned getEncodedVisibility(const GlobalValue *GV) {
switch (GV->getVisibility()) {
default: assert(0 && "Invalid visibility!");
case GlobalValue::DefaultVisibility: return 0;
case GlobalValue::HiddenVisibility: return 1;
case GlobalValue::ProtectedVisibility: return 2;
}
}
// Emit top-level description of module, including target triple, inline asm,
// descriptors for global variables, and function prototype info.
static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
BitstreamWriter &Stream) {
// Emit the list of dependent libraries for the Module.
for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I)
WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream);
// Emit various pieces of data attached to a module.
if (!M->getTargetTriple().empty())
WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
0/*TODO*/, Stream);
if (!M->getDataLayout().empty())
WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(),
0/*TODO*/, Stream);
if (!M->getModuleInlineAsm().empty())
WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
0/*TODO*/, Stream);
// Emit information about sections and GC, computing how many there are. Also
// compute the maximum alignment value.
std::map<std::string, unsigned> SectionMap;
std::map<std::string, unsigned> GCMap;
unsigned MaxAlignment = 0;
unsigned MaxGlobalType = 0;
for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
GV != E; ++GV) {
MaxAlignment = std::max(MaxAlignment, GV->getAlignment());
MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType()));
if (!GV->hasSection()) continue;
// Give section names unique ID's.
unsigned &Entry = SectionMap[GV->getSection()];
if (Entry != 0) continue;
WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(),
0/*TODO*/, Stream);
Entry = SectionMap.size();
}
for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
MaxAlignment = std::max(MaxAlignment, F->getAlignment());
if (F->hasSection()) {
// Give section names unique ID's.
unsigned &Entry = SectionMap[F->getSection()];
if (!Entry) {
WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(),
0/*TODO*/, Stream);
Entry = SectionMap.size();
}
}
if (F->hasGC()) {
// Same for GC names.
unsigned &Entry = GCMap[F->getGC()];
if (!Entry) {
WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(),
0/*TODO*/, Stream);
Entry = GCMap.size();
}
}
}
// Emit abbrev for globals, now that we know # sections and max alignment.
unsigned SimpleGVarAbbrev = 0;
if (!M->global_empty()) {
// Add an abbrev for common globals with no visibility or thread localness.
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
Log2_32_Ceil(MaxGlobalType+1)));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant.
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer.
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // Linkage.
if (MaxAlignment == 0) // Alignment.
Abbv->Add(BitCodeAbbrevOp(0));
else {
unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
Log2_32_Ceil(MaxEncAlignment+1)));
}
if (SectionMap.empty()) // Section.
Abbv->Add(BitCodeAbbrevOp(0));
else
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
Log2_32_Ceil(SectionMap.size()+1)));
// Don't bother emitting vis + thread local.
SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
}
// Emit the global variable information.
SmallVector<unsigned, 64> Vals;
for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
GV != E; ++GV) {
unsigned AbbrevToUse = 0;
// GLOBALVAR: [type, isconst, initid,
// linkage, alignment, section, visibility, threadlocal]
Vals.push_back(VE.getTypeID(GV->getType()));
Vals.push_back(GV->isConstant());
Vals.push_back(GV->isDeclaration() ? 0 :
(VE.getValueID(GV->getInitializer()) + 1));
Vals.push_back(getEncodedLinkage(GV));
Vals.push_back(Log2_32(GV->getAlignment())+1);
Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0);
if (GV->isThreadLocal() ||
GV->getVisibility() != GlobalValue::DefaultVisibility) {
Vals.push_back(getEncodedVisibility(GV));
Vals.push_back(GV->isThreadLocal());
} else {
AbbrevToUse = SimpleGVarAbbrev;
}
Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
Vals.clear();
}
// Emit the function proto information.
for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
// FUNCTION: [type, callingconv, isproto, paramattr,
// linkage, alignment, section, visibility, gc]
Vals.push_back(VE.getTypeID(F->getType()));
Vals.push_back(F->getCallingConv());
Vals.push_back(F->isDeclaration());
Vals.push_back(getEncodedLinkage(F));
Vals.push_back(VE.getParamAttrID(F->getParamAttrs()));
Vals.push_back(Log2_32(F->getAlignment())+1);
Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0);
Vals.push_back(getEncodedVisibility(F));
Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0);
Vals.push_back(F->getNotes());
unsigned AbbrevToUse = 0;
Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
Vals.clear();
}
// Emit the alias information.
for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end();
AI != E; ++AI) {
Vals.push_back(VE.getTypeID(AI->getType()));
Vals.push_back(VE.getValueID(AI->getAliasee()));
Vals.push_back(getEncodedLinkage(AI));
Vals.push_back(getEncodedVisibility(AI));
unsigned AbbrevToUse = 0;
Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
Vals.clear();
}
}
static void WriteConstants(unsigned FirstVal, unsigned LastVal,
const ValueEnumerator &VE,
BitstreamWriter &Stream, bool isGlobal) {
if (FirstVal == LastVal) return;
Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
unsigned AggregateAbbrev = 0;
unsigned String8Abbrev = 0;
unsigned CString7Abbrev = 0;
unsigned CString6Abbrev = 0;
// If this is a constant pool for the module, emit module-specific abbrevs.
if (isGlobal) {
// Abbrev for CST_CODE_AGGREGATE.
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
AggregateAbbrev = Stream.EmitAbbrev(Abbv);
// Abbrev for CST_CODE_STRING.
Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
String8Abbrev = Stream.EmitAbbrev(Abbv);
// Abbrev for CST_CODE_CSTRING.
Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
CString7Abbrev = Stream.EmitAbbrev(Abbv);
// Abbrev for CST_CODE_CSTRING.
Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
CString6Abbrev = Stream.EmitAbbrev(Abbv);
}
SmallVector<uint64_t, 64> Record;
const ValueEnumerator::ValueList &Vals = VE.getValues();
const Type *LastTy = 0;
for (unsigned i = FirstVal; i != LastVal; ++i) {
const Value *V = Vals[i].first;
// If we need to switch types, do so now.
if (V->getType() != LastTy) {
LastTy = V->getType();
Record.push_back(VE.getTypeID(LastTy));
Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
CONSTANTS_SETTYPE_ABBREV);
Record.clear();
}
if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
Record.push_back(unsigned(IA->hasSideEffects()));
// Add the asm string.
const std::string &AsmStr = IA->getAsmString();
Record.push_back(AsmStr.size());
for (unsigned i = 0, e = AsmStr.size(); i != e; ++i)
Record.push_back(AsmStr[i]);
// Add the constraint string.
const std::string &ConstraintStr = IA->getConstraintString();
Record.push_back(ConstraintStr.size());
for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i)
Record.push_back(ConstraintStr[i]);
Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
Record.clear();
continue;
}
const Constant *C = cast<Constant>(V);
unsigned Code = -1U;
unsigned AbbrevToUse = 0;
if (C->isNullValue()) {
Code = bitc::CST_CODE_NULL;
} else if (isa<UndefValue>(C)) {
Code = bitc::CST_CODE_UNDEF;
} else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
if (IV->getBitWidth() <= 64) {
int64_t V = IV->getSExtValue();
if (V >= 0)
Record.push_back(V << 1);
else
Record.push_back((-V << 1) | 1);
Code = bitc::CST_CODE_INTEGER;
AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
} else { // Wide integers, > 64 bits in size.
// We have an arbitrary precision integer value to write whose
// bit width is > 64. However, in canonical unsigned integer
// format it is likely that the high bits are going to be zero.
// So, we only write the number of active words.
unsigned NWords = IV->getValue().getActiveWords();
const uint64_t *RawWords = IV->getValue().getRawData();
for (unsigned i = 0; i != NWords; ++i) {
int64_t V = RawWords[i];
if (V >= 0)
Record.push_back(V << 1);
else
Record.push_back((-V << 1) | 1);
}
Code = bitc::CST_CODE_WIDE_INTEGER;
}
} else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
Code = bitc::CST_CODE_FLOAT;
const Type *Ty = CFP->getType();
if (Ty == Type::FloatTy || Ty == Type::DoubleTy) {
Record.push_back(CFP->getValueAPF().convertToAPInt().getZExtValue());
} else if (Ty == Type::X86_FP80Ty) {
// api needed to prevent premature destruction
APInt api = CFP->getValueAPF().convertToAPInt();
const uint64_t *p = api.getRawData();
Record.push_back(p[0]);
Record.push_back((uint16_t)p[1]);
} else if (Ty == Type::FP128Ty || Ty == Type::PPC_FP128Ty) {
APInt api = CFP->getValueAPF().convertToAPInt();
const uint64_t *p = api.getRawData();
Record.push_back(p[0]);
Record.push_back(p[1]);
} else {
assert (0 && "Unknown FP type!");
}
} else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) {
// Emit constant strings specially.
unsigned NumOps = C->getNumOperands();
// If this is a null-terminated string, use the denser CSTRING encoding.
if (C->getOperand(NumOps-1)->isNullValue()) {
Code = bitc::CST_CODE_CSTRING;
--NumOps; // Don't encode the null, which isn't allowed by char6.
} else {
Code = bitc::CST_CODE_STRING;
AbbrevToUse = String8Abbrev;
}
bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
for (unsigned i = 0; i != NumOps; ++i) {
unsigned char V = cast<ConstantInt>(C->getOperand(i))->getZExtValue();
Record.push_back(V);
isCStr7 &= (V & 128) == 0;
if (isCStrChar6)
isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
}
if (isCStrChar6)
AbbrevToUse = CString6Abbrev;
else if (isCStr7)
AbbrevToUse = CString7Abbrev;
} else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) ||
isa<ConstantVector>(V)) {
Code = bitc::CST_CODE_AGGREGATE;
for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
Record.push_back(VE.getValueID(C->getOperand(i)));
AbbrevToUse = AggregateAbbrev;
} else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
switch (CE->getOpcode()) {
default:
if (Instruction::isCast(CE->getOpcode())) {
Code = bitc::CST_CODE_CE_CAST;
Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
Record.push_back(VE.getValueID(C->getOperand(0)));
AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
} else {
assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
Code = bitc::CST_CODE_CE_BINOP;
Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
Record.push_back(VE.getValueID(C->getOperand(0)));
Record.push_back(VE.getValueID(C->getOperand(1)));
}
break;
case Instruction::GetElementPtr:
Code = bitc::CST_CODE_CE_GEP;
for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
Record.push_back(VE.getValueID(C->getOperand(i)));
}
break;
case Instruction::Select:
Code = bitc::CST_CODE_CE_SELECT;
Record.push_back(VE.getValueID(C->getOperand(0)));
Record.push_back(VE.getValueID(C->getOperand(1)));
Record.push_back(VE.getValueID(C->getOperand(2)));
break;
case Instruction::ExtractElement:
Code = bitc::CST_CODE_CE_EXTRACTELT;
Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
Record.push_back(VE.getValueID(C->getOperand(0)));
Record.push_back(VE.getValueID(C->getOperand(1)));
break;
case Instruction::InsertElement:
Code = bitc::CST_CODE_CE_INSERTELT;
Record.push_back(VE.getValueID(C->getOperand(0)));
Record.push_back(VE.getValueID(C->getOperand(1)));
Record.push_back(VE.getValueID(C->getOperand(2)));
break;
case Instruction::ShuffleVector:
Code = bitc::CST_CODE_CE_SHUFFLEVEC;
Record.push_back(VE.getValueID(C->getOperand(0)));
Record.push_back(VE.getValueID(C->getOperand(1)));
Record.push_back(VE.getValueID(C->getOperand(2)));
break;
case Instruction::ICmp:
case Instruction::FCmp:
case Instruction::VICmp:
case Instruction::VFCmp:
Code = bitc::CST_CODE_CE_CMP;
Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
Record.push_back(VE.getValueID(C->getOperand(0)));
Record.push_back(VE.getValueID(C->getOperand(1)));
Record.push_back(CE->getPredicate());
break;
}
} else {
assert(0 && "Unknown constant!");
}
Stream.EmitRecord(Code, Record, AbbrevToUse);
Record.clear();
}
Stream.ExitBlock();
}
static void WriteModuleConstants(const ValueEnumerator &VE,
BitstreamWriter &Stream) {
const ValueEnumerator::ValueList &Vals = VE.getValues();
// Find the first constant to emit, which is the first non-globalvalue value.
// We know globalvalues have been emitted by WriteModuleInfo.
for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
if (!isa<GlobalValue>(Vals[i].first)) {
WriteConstants(i, Vals.size(), VE, Stream, true);
return;
}
}
}
/// PushValueAndType - The file has to encode both the value and type id for
/// many values, because we need to know what type to create for forward
/// references. However, most operands are not forward references, so this type
/// field is not needed.
///
/// This function adds V's value ID to Vals. If the value ID is higher than the
/// instruction ID, then it is a forward reference, and it also includes the
/// type ID.
static bool PushValueAndType(Value *V, unsigned InstID,
SmallVector<unsigned, 64> &Vals,
ValueEnumerator &VE) {
unsigned ValID = VE.getValueID(V);
Vals.push_back(ValID);
if (ValID >= InstID) {
Vals.push_back(VE.getTypeID(V->getType()));
return true;
}
return false;
}
/// WriteInstruction - Emit an instruction to the specified stream.
static void WriteInstruction(const Instruction &I, unsigned InstID,
ValueEnumerator &VE, BitstreamWriter &Stream,
SmallVector<unsigned, 64> &Vals) {
unsigned Code = 0;
unsigned AbbrevToUse = 0;
switch (I.getOpcode()) {
default:
if (Instruction::isCast(I.getOpcode())) {
Code = bitc::FUNC_CODE_INST_CAST;
if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
Vals.push_back(VE.getTypeID(I.getType()));
Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
} else {
assert(isa<BinaryOperator>(I) && "Unknown instruction!");
Code = bitc::FUNC_CODE_INST_BINOP;
if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
Vals.push_back(VE.getValueID(I.getOperand(1)));
Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
}
break;
case Instruction::GetElementPtr:
Code = bitc::FUNC_CODE_INST_GEP;
for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
PushValueAndType(I.getOperand(i), InstID, Vals, VE);
break;
case Instruction::ExtractValue: {
Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
PushValueAndType(I.getOperand(0), InstID, Vals, VE);
const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
Vals.push_back(*i);
break;
}
case Instruction::InsertValue: {
Code = bitc::FUNC_CODE_INST_INSERTVAL;
PushValueAndType(I.getOperand(0), InstID, Vals, VE);
PushValueAndType(I.getOperand(1), InstID, Vals, VE);
const InsertValueInst *IVI = cast<InsertValueInst>(&I);
for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
Vals.push_back(*i);
break;
}
case Instruction::Select:
Code = bitc::FUNC_CODE_INST_SELECT;
PushValueAndType(I.getOperand(1), InstID, Vals, VE);
Vals.push_back(VE.getValueID(I.getOperand(2)));
Vals.push_back(VE.getValueID(I.getOperand(0)));
break;
case Instruction::ExtractElement:
Code = bitc::FUNC_CODE_INST_EXTRACTELT;
PushValueAndType(I.getOperand(0), InstID, Vals, VE);
Vals.push_back(VE.getValueID(I.getOperand(1)));
break;
case Instruction::InsertElement:
Code = bitc::FUNC_CODE_INST_INSERTELT;
PushValueAndType(I.getOperand(0), InstID, Vals, VE);
Vals.push_back(VE.getValueID(I.getOperand(1)));
Vals.push_back(VE.getValueID(I.getOperand(2)));
break;
case Instruction::ShuffleVector:
Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
PushValueAndType(I.getOperand(0), InstID, Vals, VE);
Vals.push_back(VE.getValueID(I.getOperand(1)));
Vals.push_back(VE.getValueID(I.getOperand(2)));
break;
case Instruction::ICmp:
case Instruction::FCmp:
case Instruction::VICmp:
case Instruction::VFCmp:
Code = bitc::FUNC_CODE_INST_CMP;
PushValueAndType(I.getOperand(0), InstID, Vals, VE);
Vals.push_back(VE.getValueID(I.getOperand(1)));
Vals.push_back(cast<CmpInst>(I).getPredicate());
break;
case Instruction::Ret:
{
Code = bitc::FUNC_CODE_INST_RET;
unsigned NumOperands = I.getNumOperands();
if (NumOperands == 0)
AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
else if (NumOperands == 1) {
if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
} else {
for (unsigned i = 0, e = NumOperands; i != e; ++i)
PushValueAndType(I.getOperand(i), InstID, Vals, VE);
}
}
break;
case Instruction::Br:
Code = bitc::FUNC_CODE_INST_BR;
Vals.push_back(VE.getValueID(I.getOperand(0)));
if (cast<BranchInst>(I).isConditional()) {
Vals.push_back(VE.getValueID(I.getOperand(1)));
Vals.push_back(VE.getValueID(I.getOperand(2)));
}
break;
case Instruction::Switch:
Code = bitc::FUNC_CODE_INST_SWITCH;
Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
Vals.push_back(VE.getValueID(I.getOperand(i)));
break;
case Instruction::Invoke: {
const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType());
const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
Code = bitc::FUNC_CODE_INST_INVOKE;
const InvokeInst *II = cast<InvokeInst>(&I);
Vals.push_back(VE.getParamAttrID(II->getParamAttrs()));
Vals.push_back(II->getCallingConv());
Vals.push_back(VE.getValueID(I.getOperand(1))); // normal dest
Vals.push_back(VE.getValueID(I.getOperand(2))); // unwind dest
PushValueAndType(I.getOperand(0), InstID, Vals, VE); // callee
// Emit value #'s for the fixed parameters.
for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
Vals.push_back(VE.getValueID(I.getOperand(i+3))); // fixed param.
// Emit type/value pairs for varargs params.
if (FTy->isVarArg()) {
for (unsigned i = 3+FTy->getNumParams(), e = I.getNumOperands();
i != e; ++i)
PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
}
break;
}
case Instruction::Unwind:
Code = bitc::FUNC_CODE_INST_UNWIND;
break;
case Instruction::Unreachable:
Code = bitc::FUNC_CODE_INST_UNREACHABLE;
AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
break;
case Instruction::PHI:
Code = bitc::FUNC_CODE_INST_PHI;
Vals.push_back(VE.getTypeID(I.getType()));
for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
Vals.push_back(VE.getValueID(I.getOperand(i)));
break;
case Instruction::Malloc:
Code = bitc::FUNC_CODE_INST_MALLOC;
Vals.push_back(VE.getTypeID(I.getType()));
Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
Vals.push_back(Log2_32(cast<MallocInst>(I).getAlignment())+1);
break;
case Instruction::Free:
Code = bitc::FUNC_CODE_INST_FREE;
PushValueAndType(I.getOperand(0), InstID, Vals, VE);
break;
case Instruction::Alloca:
Code = bitc::FUNC_CODE_INST_ALLOCA;
Vals.push_back(VE.getTypeID(I.getType()));
Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1);
break;
case Instruction::Load:
Code = bitc::FUNC_CODE_INST_LOAD;
if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr
AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
Vals.push_back(cast<LoadInst>(I).isVolatile());
break;
case Instruction::Store:
Code = bitc::FUNC_CODE_INST_STORE2;
PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr
Vals.push_back(VE.getValueID(I.getOperand(0))); // val.
Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
Vals.push_back(cast<StoreInst>(I).isVolatile());
break;
case Instruction::Call: {
const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType());
const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
Code = bitc::FUNC_CODE_INST_CALL;
const CallInst *CI = cast<CallInst>(&I);
Vals.push_back(VE.getParamAttrID(CI->getParamAttrs()));
Vals.push_back((CI->getCallingConv() << 1) | unsigned(CI->isTailCall()));
PushValueAndType(CI->getOperand(0), InstID, Vals, VE); // Callee
// Emit value #'s for the fixed parameters.
for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
Vals.push_back(VE.getValueID(I.getOperand(i+1))); // fixed param.
// Emit type/value pairs for varargs params.
if (FTy->isVarArg()) {
unsigned NumVarargs = I.getNumOperands()-1-FTy->getNumParams();
for (unsigned i = I.getNumOperands()-NumVarargs, e = I.getNumOperands();
i != e; ++i)
PushValueAndType(I.getOperand(i), InstID, Vals, VE); // varargs
}
break;
}
case Instruction::VAArg:
Code = bitc::FUNC_CODE_INST_VAARG;
Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty
Vals.push_back(VE.getValueID(I.getOperand(0))); // valist.
Vals.push_back(VE.getTypeID(I.getType())); // restype.
break;
}
Stream.EmitRecord(Code, Vals, AbbrevToUse);
Vals.clear();
}
// Emit names for globals/functions etc.
static void WriteValueSymbolTable(const ValueSymbolTable &VST,
const ValueEnumerator &VE,
BitstreamWriter &Stream) {
if (VST.empty()) return;
Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
// FIXME: Set up the abbrev, we know how many values there are!
// FIXME: We know if the type names can use 7-bit ascii.
SmallVector<unsigned, 64> NameVals;
for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
SI != SE; ++SI) {
const ValueName &Name = *SI;
// Figure out the encoding to use for the name.
bool is7Bit = true;
bool isChar6 = true;
for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
C != E; ++C) {
if (isChar6)
isChar6 = BitCodeAbbrevOp::isChar6(*C);
if ((unsigned char)*C & 128) {
is7Bit = false;
break; // don't bother scanning the rest.
}
}
unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
// VST_ENTRY: [valueid, namechar x N]
// VST_BBENTRY: [bbid, namechar x N]
unsigned Code;
if (isa<BasicBlock>(SI->getValue())) {
Code = bitc::VST_CODE_BBENTRY;
if (isChar6)
AbbrevToUse = VST_BBENTRY_6_ABBREV;
} else {
Code = bitc::VST_CODE_ENTRY;
if (isChar6)
AbbrevToUse = VST_ENTRY_6_ABBREV;
else if (is7Bit)
AbbrevToUse = VST_ENTRY_7_ABBREV;
}
NameVals.push_back(VE.getValueID(SI->getValue()));
for (const char *P = Name.getKeyData(),
*E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
NameVals.push_back((unsigned char)*P);
// Emit the finished record.
Stream.EmitRecord(Code, NameVals, AbbrevToUse);
NameVals.clear();
}
Stream.ExitBlock();
}
/// WriteFunction - Emit a function body to the module stream.
static void WriteFunction(const Function &F, ValueEnumerator &VE,
BitstreamWriter &Stream) {
Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
VE.incorporateFunction(F);
SmallVector<unsigned, 64> Vals;
// Emit the number of basic blocks, so the reader can create them ahead of
// time.
Vals.push_back(VE.getBasicBlocks().size());
Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
Vals.clear();
// If there are function-local constants, emit them now.
unsigned CstStart, CstEnd;
VE.getFunctionConstantRange(CstStart, CstEnd);
WriteConstants(CstStart, CstEnd, VE, Stream, false);
// Keep a running idea of what the instruction ID is.
unsigned InstID = CstEnd;
// Finally, emit all the instructions, in order.
for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
I != E; ++I) {
WriteInstruction(*I, InstID, VE, Stream, Vals);
if (I->getType() != Type::VoidTy)
++InstID;
}
// Emit names for all the instructions etc.
WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
VE.purgeFunction();
Stream.ExitBlock();
}
/// WriteTypeSymbolTable - Emit a block for the specified type symtab.
static void WriteTypeSymbolTable(const TypeSymbolTable &TST,
const ValueEnumerator &VE,
BitstreamWriter &Stream) {
if (TST.empty()) return;
Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID, 3);
// 7-bit fixed width VST_CODE_ENTRY strings.
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
Log2_32_Ceil(VE.getTypes().size()+1)));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
unsigned V7Abbrev = Stream.EmitAbbrev(Abbv);
SmallVector<unsigned, 64> NameVals;
for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end();
TI != TE; ++TI) {
// TST_ENTRY: [typeid, namechar x N]
NameVals.push_back(VE.getTypeID(TI->second));
const std::string &Str = TI->first;
bool is7Bit = true;
for (unsigned i = 0, e = Str.size(); i != e; ++i) {
NameVals.push_back((unsigned char)Str[i]);
if (Str[i] & 128)
is7Bit = false;
}
// Emit the finished record.
Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0);
NameVals.clear();
}
Stream.ExitBlock();
}
// Emit blockinfo, which defines the standard abbreviations etc.
static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
// We only want to emit block info records for blocks that have multiple
// instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. Other
// blocks can defined their abbrevs inline.
Stream.EnterBlockInfoBlock(2);
{ // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
Abbv) != VST_ENTRY_8_ABBREV)
assert(0 && "Unexpected abbrev ordering!");
}
{ // 7-bit fixed width VST_ENTRY strings.
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
Abbv) != VST_ENTRY_7_ABBREV)
assert(0 && "Unexpected abbrev ordering!");
}
{ // 6-bit char6 VST_ENTRY strings.
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
Abbv) != VST_ENTRY_6_ABBREV)
assert(0 && "Unexpected abbrev ordering!");
}
{ // 6-bit char6 VST_BBENTRY strings.
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
Abbv) != VST_BBENTRY_6_ABBREV)
assert(0 && "Unexpected abbrev ordering!");
}
{ // SETTYPE abbrev for CONSTANTS_BLOCK.
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
Log2_32_Ceil(VE.getTypes().size()+1)));
if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
Abbv) != CONSTANTS_SETTYPE_ABBREV)
assert(0 && "Unexpected abbrev ordering!");
}
{ // INTEGER abbrev for CONSTANTS_BLOCK.
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
Abbv) != CONSTANTS_INTEGER_ABBREV)
assert(0 && "Unexpected abbrev ordering!");
}
{ // CE_CAST abbrev for CONSTANTS_BLOCK.
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid
Log2_32_Ceil(VE.getTypes().size()+1)));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
Abbv) != CONSTANTS_CE_CAST_Abbrev)
assert(0 && "Unexpected abbrev ordering!");
}
{ // NULL abbrev for CONSTANTS_BLOCK.
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
Abbv) != CONSTANTS_NULL_Abbrev)
assert(0 && "Unexpected abbrev ordering!");
}
// FIXME: This should only use space for first class types!
{ // INST_LOAD abbrev for FUNCTION_BLOCK.
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
Abbv) != FUNCTION_INST_LOAD_ABBREV)
assert(0 && "Unexpected abbrev ordering!");
}
{ // INST_BINOP abbrev for FUNCTION_BLOCK.
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
Abbv) != FUNCTION_INST_BINOP_ABBREV)
assert(0 && "Unexpected abbrev ordering!");
}
{ // INST_CAST abbrev for FUNCTION_BLOCK.
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
Log2_32_Ceil(VE.getTypes().size()+1)));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
Abbv) != FUNCTION_INST_CAST_ABBREV)
assert(0 && "Unexpected abbrev ordering!");
}
{ // INST_RET abbrev for FUNCTION_BLOCK.
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
assert(0 && "Unexpected abbrev ordering!");
}
{ // INST_RET abbrev for FUNCTION_BLOCK.
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
assert(0 && "Unexpected abbrev ordering!");
}
{ // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
assert(0 && "Unexpected abbrev ordering!");
}
Stream.ExitBlock();
}
/// WriteModule - Emit the specified module to the bitstream.
static void WriteModule(const Module *M, BitstreamWriter &Stream) {
Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
// Emit the version number if it is non-zero.
if (CurVersion) {
SmallVector<unsigned, 1> Vals;
Vals.push_back(CurVersion);
Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
}
// Analyze the module, enumerating globals, functions, etc.
ValueEnumerator VE(M);
// Emit blockinfo, which defines the standard abbreviations etc.
WriteBlockInfo(VE, Stream);
// Emit information about parameter attributes.
WriteParamAttrTable(VE, Stream);
// Emit information describing all of the types in the module.
WriteTypeTable(VE, Stream);
// Emit top-level description of module, including target triple, inline asm,
// descriptors for global variables, and function prototype info.
WriteModuleInfo(M, VE, Stream);
// Emit constants.
WriteModuleConstants(VE, Stream);
// If we have any aggregate values in the value table, purge them - these can
// only be used to initialize global variables. Doing so makes the value
// namespace smaller for code in functions.
int NumNonAggregates = VE.PurgeAggregateValues();
if (NumNonAggregates != -1) {
SmallVector<unsigned, 1> Vals;
Vals.push_back(NumNonAggregates);
Stream.EmitRecord(bitc::MODULE_CODE_PURGEVALS, Vals);
}
// Emit function bodies.
for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
if (!I->isDeclaration())
WriteFunction(*I, VE, Stream);
// Emit the type symbol table information.
WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream);
// Emit names for globals/functions etc.
WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
Stream.ExitBlock();
}
/// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a
/// header and trailer to make it compatible with the system archiver. To do
/// this we emit the following header, and then emit a trailer that pads the
/// file out to be a multiple of 16 bytes.
///
/// struct bc_header {
/// uint32_t Magic; // 0x0B17C0DE
/// uint32_t Version; // Version, currently always 0.
/// uint32_t BitcodeOffset; // Offset to traditional bitcode file.
/// uint32_t BitcodeSize; // Size of traditional bitcode file.
/// uint32_t CPUType; // CPU specifier.
/// ... potentially more later ...
/// };
enum {
DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size.
DarwinBCHeaderSize = 5*4
};
static void EmitDarwinBCHeader(BitstreamWriter &Stream,
const std::string &TT) {
unsigned CPUType = ~0U;
// Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*. The CPUType is a
// magic number from /usr/include/mach/machine.h. It is ok to reproduce the
// specific constants here because they are implicitly part of the Darwin ABI.
enum {
DARWIN_CPU_ARCH_ABI64 = 0x01000000,
DARWIN_CPU_TYPE_X86 = 7,
DARWIN_CPU_TYPE_POWERPC = 18
};
if (TT.find("x86_64-") == 0)
CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
else if (TT.size() >= 5 && TT[0] == 'i' && TT[2] == '8' && TT[3] == '6' &&
TT[4] == '-' && TT[1] - '3' < 6)
CPUType = DARWIN_CPU_TYPE_X86;
else if (TT.find("powerpc-") == 0)
CPUType = DARWIN_CPU_TYPE_POWERPC;
else if (TT.find("powerpc64-") == 0)
CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
// Traditional Bitcode starts after header.
unsigned BCOffset = DarwinBCHeaderSize;
Stream.Emit(0x0B17C0DE, 32);
Stream.Emit(0 , 32); // Version.
Stream.Emit(BCOffset , 32);
Stream.Emit(0 , 32); // Filled in later.
Stream.Emit(CPUType , 32);
}
/// EmitDarwinBCTrailer - Emit the darwin epilog after the bitcode file and
/// finalize the header.
static void EmitDarwinBCTrailer(BitstreamWriter &Stream, unsigned BufferSize) {
// Update the size field in the header.
Stream.BackpatchWord(DarwinBCSizeFieldOffset, BufferSize-DarwinBCHeaderSize);
// If the file is not a multiple of 16 bytes, insert dummy padding.
while (BufferSize & 15) {
Stream.Emit(0, 8);
++BufferSize;
}
}
/// WriteBitcodeToFile - Write the specified module to the specified output
/// stream.
void llvm::WriteBitcodeToFile(const Module *M, std::ostream &Out) {
std::vector<unsigned char> Buffer;
BitstreamWriter Stream(Buffer);
Buffer.reserve(256*1024);
// If this is darwin, emit a file header and trailer if needed.
bool isDarwin = M->getTargetTriple().find("-darwin") != std::string::npos;
if (isDarwin)
EmitDarwinBCHeader(Stream, M->getTargetTriple());
// Emit the file header.
Stream.Emit((unsigned)'B', 8);
Stream.Emit((unsigned)'C', 8);
Stream.Emit(0x0, 4);
Stream.Emit(0xC, 4);
Stream.Emit(0xE, 4);
Stream.Emit(0xD, 4);
// Emit the module.
WriteModule(M, Stream);
if (isDarwin)
EmitDarwinBCTrailer(Stream, Buffer.size());
// If writing to stdout, set binary mode.
if (llvm::cout == Out)
sys::Program::ChangeStdoutToBinary();
// Write the generated bitstream to "Out".
Out.write((char*)&Buffer.front(), Buffer.size());
// Make sure it hits disk now.
Out.flush();
}