mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-11-15 20:06:46 +00:00
461076f052
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@31221 91177308-0d34-0410-b5e6-96231b3b80d8
1789 lines
59 KiB
C++
1789 lines
59 KiB
C++
//===-- AsmWriter.cpp - Printing LLVM as an assembly file -----------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by the LLVM research group and is distributed under
|
|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This library implements the functionality defined in llvm/Assembly/Writer.h
|
|
//
|
|
// Note that these routines must be extremely tolerant of various errors in the
|
|
// LLVM code, because it can be used for debugging transformations.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Assembly/CachedWriter.h"
|
|
#include "llvm/Assembly/Writer.h"
|
|
#include "llvm/Assembly/PrintModulePass.h"
|
|
#include "llvm/Assembly/AsmAnnotationWriter.h"
|
|
#include "llvm/CallingConv.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/InlineAsm.h"
|
|
#include "llvm/Instruction.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/Module.h"
|
|
#include "llvm/SymbolTable.h"
|
|
#include "llvm/Support/CFG.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include <algorithm>
|
|
using namespace llvm;
|
|
|
|
namespace llvm {
|
|
|
|
// Make virtual table appear in this compilation unit.
|
|
AssemblyAnnotationWriter::~AssemblyAnnotationWriter() {}
|
|
|
|
/// This class provides computation of slot numbers for LLVM Assembly writing.
|
|
/// @brief LLVM Assembly Writing Slot Computation.
|
|
class SlotMachine {
|
|
|
|
/// @name Types
|
|
/// @{
|
|
public:
|
|
|
|
/// @brief A mapping of Values to slot numbers
|
|
typedef std::map<const Value*, unsigned> ValueMap;
|
|
typedef std::map<const Type*, unsigned> TypeMap;
|
|
|
|
/// @brief A plane with next slot number and ValueMap
|
|
struct ValuePlane {
|
|
unsigned next_slot; ///< The next slot number to use
|
|
ValueMap map; ///< The map of Value* -> unsigned
|
|
ValuePlane() { next_slot = 0; } ///< Make sure we start at 0
|
|
};
|
|
|
|
struct TypePlane {
|
|
unsigned next_slot;
|
|
TypeMap map;
|
|
TypePlane() { next_slot = 0; }
|
|
void clear() { map.clear(); next_slot = 0; }
|
|
};
|
|
|
|
/// @brief The map of planes by Type
|
|
typedef std::map<const Type*, ValuePlane> TypedPlanes;
|
|
|
|
/// @}
|
|
/// @name Constructors
|
|
/// @{
|
|
public:
|
|
/// @brief Construct from a module
|
|
SlotMachine(const Module *M );
|
|
|
|
/// @brief Construct from a function, starting out in incorp state.
|
|
SlotMachine(const Function *F );
|
|
|
|
/// @}
|
|
/// @name Accessors
|
|
/// @{
|
|
public:
|
|
/// Return the slot number of the specified value in it's type
|
|
/// plane. Its an error to ask for something not in the SlotMachine.
|
|
/// Its an error to ask for a Type*
|
|
int getSlot(const Value *V);
|
|
int getSlot(const Type*Ty);
|
|
|
|
/// Determine if a Value has a slot or not
|
|
bool hasSlot(const Value* V);
|
|
bool hasSlot(const Type* Ty);
|
|
|
|
/// @}
|
|
/// @name Mutators
|
|
/// @{
|
|
public:
|
|
/// If you'd like to deal with a function instead of just a module, use
|
|
/// this method to get its data into the SlotMachine.
|
|
void incorporateFunction(const Function *F) {
|
|
TheFunction = F;
|
|
FunctionProcessed = false;
|
|
}
|
|
|
|
/// After calling incorporateFunction, use this method to remove the
|
|
/// most recently incorporated function from the SlotMachine. This
|
|
/// will reset the state of the machine back to just the module contents.
|
|
void purgeFunction();
|
|
|
|
/// @}
|
|
/// @name Implementation Details
|
|
/// @{
|
|
private:
|
|
/// This function does the actual initialization.
|
|
inline void initialize();
|
|
|
|
/// Values can be crammed into here at will. If they haven't
|
|
/// been inserted already, they get inserted, otherwise they are ignored.
|
|
/// Either way, the slot number for the Value* is returned.
|
|
unsigned createSlot(const Value *V);
|
|
unsigned createSlot(const Type* Ty);
|
|
|
|
/// Insert a value into the value table. Return the slot number
|
|
/// that it now occupies. BadThings(TM) will happen if you insert a
|
|
/// Value that's already been inserted.
|
|
unsigned insertValue( const Value *V );
|
|
unsigned insertValue( const Type* Ty);
|
|
|
|
/// Add all of the module level global variables (and their initializers)
|
|
/// and function declarations, but not the contents of those functions.
|
|
void processModule();
|
|
|
|
/// Add all of the functions arguments, basic blocks, and instructions
|
|
void processFunction();
|
|
|
|
SlotMachine(const SlotMachine &); // DO NOT IMPLEMENT
|
|
void operator=(const SlotMachine &); // DO NOT IMPLEMENT
|
|
|
|
/// @}
|
|
/// @name Data
|
|
/// @{
|
|
public:
|
|
|
|
/// @brief The module for which we are holding slot numbers
|
|
const Module* TheModule;
|
|
|
|
/// @brief The function for which we are holding slot numbers
|
|
const Function* TheFunction;
|
|
bool FunctionProcessed;
|
|
|
|
/// @brief The TypePlanes map for the module level data
|
|
TypedPlanes mMap;
|
|
TypePlane mTypes;
|
|
|
|
/// @brief The TypePlanes map for the function level data
|
|
TypedPlanes fMap;
|
|
TypePlane fTypes;
|
|
|
|
/// @}
|
|
|
|
};
|
|
|
|
} // end namespace llvm
|
|
|
|
static RegisterPass<PrintModulePass>
|
|
X("printm", "Print module to stderr");
|
|
static RegisterPass<PrintFunctionPass>
|
|
Y("print","Print function to stderr");
|
|
|
|
static void WriteAsOperandInternal(std::ostream &Out, const Value *V,
|
|
bool PrintName,
|
|
std::map<const Type *, std::string> &TypeTable,
|
|
SlotMachine *Machine);
|
|
|
|
static void WriteAsOperandInternal(std::ostream &Out, const Type *T,
|
|
bool PrintName,
|
|
std::map<const Type *, std::string> &TypeTable,
|
|
SlotMachine *Machine);
|
|
|
|
static const Module *getModuleFromVal(const Value *V) {
|
|
if (const Argument *MA = dyn_cast<Argument>(V))
|
|
return MA->getParent() ? MA->getParent()->getParent() : 0;
|
|
else if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
|
|
return BB->getParent() ? BB->getParent()->getParent() : 0;
|
|
else if (const Instruction *I = dyn_cast<Instruction>(V)) {
|
|
const Function *M = I->getParent() ? I->getParent()->getParent() : 0;
|
|
return M ? M->getParent() : 0;
|
|
} else if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
|
|
return GV->getParent();
|
|
return 0;
|
|
}
|
|
|
|
static SlotMachine *createSlotMachine(const Value *V) {
|
|
if (const Argument *FA = dyn_cast<Argument>(V)) {
|
|
return new SlotMachine(FA->getParent());
|
|
} else if (const Instruction *I = dyn_cast<Instruction>(V)) {
|
|
return new SlotMachine(I->getParent()->getParent());
|
|
} else if (const BasicBlock *BB = dyn_cast<BasicBlock>(V)) {
|
|
return new SlotMachine(BB->getParent());
|
|
} else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)){
|
|
return new SlotMachine(GV->getParent());
|
|
} else if (const Function *Func = dyn_cast<Function>(V)) {
|
|
return new SlotMachine(Func);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// getLLVMName - Turn the specified string into an 'LLVM name', which is either
|
|
// prefixed with % (if the string only contains simple characters) or is
|
|
// surrounded with ""'s (if it has special chars in it).
|
|
static std::string getLLVMName(const std::string &Name,
|
|
bool prefixName = true) {
|
|
assert(!Name.empty() && "Cannot get empty name!");
|
|
|
|
// First character cannot start with a number...
|
|
if (Name[0] >= '0' && Name[0] <= '9')
|
|
return "\"" + Name + "\"";
|
|
|
|
// Scan to see if we have any characters that are not on the "white list"
|
|
for (unsigned i = 0, e = Name.size(); i != e; ++i) {
|
|
char C = Name[i];
|
|
assert(C != '"' && "Illegal character in LLVM value name!");
|
|
if ((C < 'a' || C > 'z') && (C < 'A' || C > 'Z') && (C < '0' || C > '9') &&
|
|
C != '-' && C != '.' && C != '_')
|
|
return "\"" + Name + "\"";
|
|
}
|
|
|
|
// If we get here, then the identifier is legal to use as a "VarID".
|
|
if (prefixName)
|
|
return "%"+Name;
|
|
else
|
|
return Name;
|
|
}
|
|
|
|
|
|
/// fillTypeNameTable - If the module has a symbol table, take all global types
|
|
/// and stuff their names into the TypeNames map.
|
|
///
|
|
static void fillTypeNameTable(const Module *M,
|
|
std::map<const Type *, std::string> &TypeNames) {
|
|
if (!M) return;
|
|
const SymbolTable &ST = M->getSymbolTable();
|
|
SymbolTable::type_const_iterator TI = ST.type_begin();
|
|
for (; TI != ST.type_end(); ++TI ) {
|
|
// As a heuristic, don't insert pointer to primitive types, because
|
|
// they are used too often to have a single useful name.
|
|
//
|
|
const Type *Ty = cast<Type>(TI->second);
|
|
if (!isa<PointerType>(Ty) ||
|
|
!cast<PointerType>(Ty)->getElementType()->isPrimitiveType() ||
|
|
isa<OpaqueType>(cast<PointerType>(Ty)->getElementType()))
|
|
TypeNames.insert(std::make_pair(Ty, getLLVMName(TI->first)));
|
|
}
|
|
}
|
|
|
|
|
|
|
|
static void calcTypeName(const Type *Ty,
|
|
std::vector<const Type *> &TypeStack,
|
|
std::map<const Type *, std::string> &TypeNames,
|
|
std::string & Result){
|
|
if (Ty->isPrimitiveType() && !isa<OpaqueType>(Ty)) {
|
|
Result += Ty->getDescription(); // Base case
|
|
return;
|
|
}
|
|
|
|
// Check to see if the type is named.
|
|
std::map<const Type *, std::string>::iterator I = TypeNames.find(Ty);
|
|
if (I != TypeNames.end()) {
|
|
Result += I->second;
|
|
return;
|
|
}
|
|
|
|
if (isa<OpaqueType>(Ty)) {
|
|
Result += "opaque";
|
|
return;
|
|
}
|
|
|
|
// Check to see if the Type is already on the stack...
|
|
unsigned Slot = 0, CurSize = TypeStack.size();
|
|
while (Slot < CurSize && TypeStack[Slot] != Ty) ++Slot; // Scan for type
|
|
|
|
// This is another base case for the recursion. In this case, we know
|
|
// that we have looped back to a type that we have previously visited.
|
|
// Generate the appropriate upreference to handle this.
|
|
if (Slot < CurSize) {
|
|
Result += "\\" + utostr(CurSize-Slot); // Here's the upreference
|
|
return;
|
|
}
|
|
|
|
TypeStack.push_back(Ty); // Recursive case: Add us to the stack..
|
|
|
|
switch (Ty->getTypeID()) {
|
|
case Type::FunctionTyID: {
|
|
const FunctionType *FTy = cast<FunctionType>(Ty);
|
|
calcTypeName(FTy->getReturnType(), TypeStack, TypeNames, Result);
|
|
Result += " (";
|
|
for (FunctionType::param_iterator I = FTy->param_begin(),
|
|
E = FTy->param_end(); I != E; ++I) {
|
|
if (I != FTy->param_begin())
|
|
Result += ", ";
|
|
calcTypeName(*I, TypeStack, TypeNames, Result);
|
|
}
|
|
if (FTy->isVarArg()) {
|
|
if (FTy->getNumParams()) Result += ", ";
|
|
Result += "...";
|
|
}
|
|
Result += ")";
|
|
break;
|
|
}
|
|
case Type::StructTyID: {
|
|
const StructType *STy = cast<StructType>(Ty);
|
|
Result += "{ ";
|
|
for (StructType::element_iterator I = STy->element_begin(),
|
|
E = STy->element_end(); I != E; ++I) {
|
|
if (I != STy->element_begin())
|
|
Result += ", ";
|
|
calcTypeName(*I, TypeStack, TypeNames, Result);
|
|
}
|
|
Result += " }";
|
|
break;
|
|
}
|
|
case Type::PointerTyID:
|
|
calcTypeName(cast<PointerType>(Ty)->getElementType(),
|
|
TypeStack, TypeNames, Result);
|
|
Result += "*";
|
|
break;
|
|
case Type::ArrayTyID: {
|
|
const ArrayType *ATy = cast<ArrayType>(Ty);
|
|
Result += "[" + utostr(ATy->getNumElements()) + " x ";
|
|
calcTypeName(ATy->getElementType(), TypeStack, TypeNames, Result);
|
|
Result += "]";
|
|
break;
|
|
}
|
|
case Type::PackedTyID: {
|
|
const PackedType *PTy = cast<PackedType>(Ty);
|
|
Result += "<" + utostr(PTy->getNumElements()) + " x ";
|
|
calcTypeName(PTy->getElementType(), TypeStack, TypeNames, Result);
|
|
Result += ">";
|
|
break;
|
|
}
|
|
case Type::OpaqueTyID:
|
|
Result += "opaque";
|
|
break;
|
|
default:
|
|
Result += "<unrecognized-type>";
|
|
}
|
|
|
|
TypeStack.pop_back(); // Remove self from stack...
|
|
return;
|
|
}
|
|
|
|
|
|
/// printTypeInt - The internal guts of printing out a type that has a
|
|
/// potentially named portion.
|
|
///
|
|
static std::ostream &printTypeInt(std::ostream &Out, const Type *Ty,
|
|
std::map<const Type *, std::string> &TypeNames) {
|
|
// Primitive types always print out their description, regardless of whether
|
|
// they have been named or not.
|
|
//
|
|
if (Ty->isPrimitiveType() && !isa<OpaqueType>(Ty))
|
|
return Out << Ty->getDescription();
|
|
|
|
// Check to see if the type is named.
|
|
std::map<const Type *, std::string>::iterator I = TypeNames.find(Ty);
|
|
if (I != TypeNames.end()) return Out << I->second;
|
|
|
|
// Otherwise we have a type that has not been named but is a derived type.
|
|
// Carefully recurse the type hierarchy to print out any contained symbolic
|
|
// names.
|
|
//
|
|
std::vector<const Type *> TypeStack;
|
|
std::string TypeName;
|
|
calcTypeName(Ty, TypeStack, TypeNames, TypeName);
|
|
TypeNames.insert(std::make_pair(Ty, TypeName));//Cache type name for later use
|
|
return (Out << TypeName);
|
|
}
|
|
|
|
|
|
/// WriteTypeSymbolic - This attempts to write the specified type as a symbolic
|
|
/// type, iff there is an entry in the modules symbol table for the specified
|
|
/// type or one of it's component types. This is slower than a simple x << Type
|
|
///
|
|
std::ostream &llvm::WriteTypeSymbolic(std::ostream &Out, const Type *Ty,
|
|
const Module *M) {
|
|
Out << ' ';
|
|
|
|
// If they want us to print out a type, attempt to make it symbolic if there
|
|
// is a symbol table in the module...
|
|
if (M) {
|
|
std::map<const Type *, std::string> TypeNames;
|
|
fillTypeNameTable(M, TypeNames);
|
|
|
|
return printTypeInt(Out, Ty, TypeNames);
|
|
} else {
|
|
return Out << Ty->getDescription();
|
|
}
|
|
}
|
|
|
|
// PrintEscapedString - Print each character of the specified string, escaping
|
|
// it if it is not printable or if it is an escape char.
|
|
static void PrintEscapedString(const std::string &Str, std::ostream &Out) {
|
|
for (unsigned i = 0, e = Str.size(); i != e; ++i) {
|
|
unsigned char C = Str[i];
|
|
if (isprint(C) && C != '"' && C != '\\') {
|
|
Out << C;
|
|
} else {
|
|
Out << '\\'
|
|
<< (char) ((C/16 < 10) ? ( C/16 +'0') : ( C/16 -10+'A'))
|
|
<< (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'));
|
|
}
|
|
}
|
|
}
|
|
|
|
/// @brief Internal constant writer.
|
|
static void WriteConstantInt(std::ostream &Out, const Constant *CV,
|
|
bool PrintName,
|
|
std::map<const Type *, std::string> &TypeTable,
|
|
SlotMachine *Machine) {
|
|
const int IndentSize = 4;
|
|
static std::string Indent = "\n";
|
|
if (const ConstantBool *CB = dyn_cast<ConstantBool>(CV)) {
|
|
Out << (CB->getValue() ? "true" : "false");
|
|
} else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
|
|
if (CI->getType()->isSigned())
|
|
Out << CI->getSExtValue();
|
|
else
|
|
Out << CI->getZExtValue();
|
|
} else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
|
|
// We would like to output the FP constant value in exponential notation,
|
|
// but we cannot do this if doing so will lose precision. Check here to
|
|
// make sure that we only output it in exponential format if we can parse
|
|
// the value back and get the same value.
|
|
//
|
|
std::string StrVal = ftostr(CFP->getValue());
|
|
|
|
// Check to make sure that the stringized number is not some string like
|
|
// "Inf" or NaN, that atof will accept, but the lexer will not. Check that
|
|
// the string matches the "[-+]?[0-9]" regex.
|
|
//
|
|
if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
|
|
((StrVal[0] == '-' || StrVal[0] == '+') &&
|
|
(StrVal[1] >= '0' && StrVal[1] <= '9')))
|
|
// Reparse stringized version!
|
|
if (atof(StrVal.c_str()) == CFP->getValue()) {
|
|
Out << StrVal;
|
|
return;
|
|
}
|
|
|
|
// Otherwise we could not reparse it to exactly the same value, so we must
|
|
// output the string in hexadecimal format!
|
|
assert(sizeof(double) == sizeof(uint64_t) &&
|
|
"assuming that double is 64 bits!");
|
|
Out << "0x" << utohexstr(DoubleToBits(CFP->getValue()));
|
|
|
|
} else if (isa<ConstantAggregateZero>(CV)) {
|
|
Out << "zeroinitializer";
|
|
} else if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
|
|
// As a special case, print the array as a string if it is an array of
|
|
// ubytes or an array of sbytes with positive values.
|
|
//
|
|
const Type *ETy = CA->getType()->getElementType();
|
|
if (CA->isString()) {
|
|
Out << "c\"";
|
|
PrintEscapedString(CA->getAsString(), Out);
|
|
Out << "\"";
|
|
|
|
} else { // Cannot output in string format...
|
|
Out << '[';
|
|
if (CA->getNumOperands()) {
|
|
Out << ' ';
|
|
printTypeInt(Out, ETy, TypeTable);
|
|
WriteAsOperandInternal(Out, CA->getOperand(0),
|
|
PrintName, TypeTable, Machine);
|
|
for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
|
|
Out << ", ";
|
|
printTypeInt(Out, ETy, TypeTable);
|
|
WriteAsOperandInternal(Out, CA->getOperand(i), PrintName,
|
|
TypeTable, Machine);
|
|
}
|
|
}
|
|
Out << " ]";
|
|
}
|
|
} else if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
|
|
Out << '{';
|
|
unsigned N = CS->getNumOperands();
|
|
if (N) {
|
|
if (N > 2) {
|
|
Indent += std::string(IndentSize, ' ');
|
|
Out << Indent;
|
|
} else {
|
|
Out << ' ';
|
|
}
|
|
printTypeInt(Out, CS->getOperand(0)->getType(), TypeTable);
|
|
|
|
WriteAsOperandInternal(Out, CS->getOperand(0),
|
|
PrintName, TypeTable, Machine);
|
|
|
|
for (unsigned i = 1; i < N; i++) {
|
|
Out << ", ";
|
|
if (N > 2) Out << Indent;
|
|
printTypeInt(Out, CS->getOperand(i)->getType(), TypeTable);
|
|
|
|
WriteAsOperandInternal(Out, CS->getOperand(i),
|
|
PrintName, TypeTable, Machine);
|
|
}
|
|
if (N > 2) Indent.resize(Indent.size() - IndentSize);
|
|
}
|
|
|
|
Out << " }";
|
|
} else if (const ConstantPacked *CP = dyn_cast<ConstantPacked>(CV)) {
|
|
const Type *ETy = CP->getType()->getElementType();
|
|
assert(CP->getNumOperands() > 0 &&
|
|
"Number of operands for a PackedConst must be > 0");
|
|
Out << '<';
|
|
Out << ' ';
|
|
printTypeInt(Out, ETy, TypeTable);
|
|
WriteAsOperandInternal(Out, CP->getOperand(0),
|
|
PrintName, TypeTable, Machine);
|
|
for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) {
|
|
Out << ", ";
|
|
printTypeInt(Out, ETy, TypeTable);
|
|
WriteAsOperandInternal(Out, CP->getOperand(i), PrintName,
|
|
TypeTable, Machine);
|
|
}
|
|
Out << " >";
|
|
} else if (isa<ConstantPointerNull>(CV)) {
|
|
Out << "null";
|
|
|
|
} else if (isa<UndefValue>(CV)) {
|
|
Out << "undef";
|
|
|
|
} else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
|
|
Out << CE->getOpcodeName() << " (";
|
|
|
|
for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
|
|
printTypeInt(Out, (*OI)->getType(), TypeTable);
|
|
WriteAsOperandInternal(Out, *OI, PrintName, TypeTable, Machine);
|
|
if (OI+1 != CE->op_end())
|
|
Out << ", ";
|
|
}
|
|
|
|
if (CE->getOpcode() == Instruction::Cast) {
|
|
Out << " to ";
|
|
printTypeInt(Out, CE->getType(), TypeTable);
|
|
}
|
|
Out << ')';
|
|
|
|
} else {
|
|
Out << "<placeholder or erroneous Constant>";
|
|
}
|
|
}
|
|
|
|
|
|
/// WriteAsOperand - Write the name of the specified value out to the specified
|
|
/// ostream. This can be useful when you just want to print int %reg126, not
|
|
/// the whole instruction that generated it.
|
|
///
|
|
static void WriteAsOperandInternal(std::ostream &Out, const Value *V,
|
|
bool PrintName,
|
|
std::map<const Type*, std::string> &TypeTable,
|
|
SlotMachine *Machine) {
|
|
Out << ' ';
|
|
if ((PrintName || isa<GlobalValue>(V)) && V->hasName())
|
|
Out << getLLVMName(V->getName());
|
|
else {
|
|
const Constant *CV = dyn_cast<Constant>(V);
|
|
if (CV && !isa<GlobalValue>(CV)) {
|
|
WriteConstantInt(Out, CV, PrintName, TypeTable, Machine);
|
|
} else if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
|
|
Out << "asm ";
|
|
if (IA->hasSideEffects())
|
|
Out << "sideeffect ";
|
|
Out << '"';
|
|
PrintEscapedString(IA->getAsmString(), Out);
|
|
Out << "\", \"";
|
|
PrintEscapedString(IA->getConstraintString(), Out);
|
|
Out << '"';
|
|
} else {
|
|
int Slot;
|
|
if (Machine) {
|
|
Slot = Machine->getSlot(V);
|
|
} else {
|
|
Machine = createSlotMachine(V);
|
|
if (Machine)
|
|
Slot = Machine->getSlot(V);
|
|
else
|
|
Slot = -1;
|
|
delete Machine;
|
|
}
|
|
if (Slot != -1)
|
|
Out << '%' << Slot;
|
|
else
|
|
Out << "<badref>";
|
|
}
|
|
}
|
|
}
|
|
|
|
/// WriteAsOperand - Write the name of the specified value out to the specified
|
|
/// ostream. This can be useful when you just want to print int %reg126, not
|
|
/// the whole instruction that generated it.
|
|
///
|
|
std::ostream &llvm::WriteAsOperand(std::ostream &Out, const Value *V,
|
|
bool PrintType, bool PrintName,
|
|
const Module *Context) {
|
|
std::map<const Type *, std::string> TypeNames;
|
|
if (Context == 0) Context = getModuleFromVal(V);
|
|
|
|
if (Context)
|
|
fillTypeNameTable(Context, TypeNames);
|
|
|
|
if (PrintType)
|
|
printTypeInt(Out, V->getType(), TypeNames);
|
|
|
|
WriteAsOperandInternal(Out, V, PrintName, TypeNames, 0);
|
|
return Out;
|
|
}
|
|
|
|
/// WriteAsOperandInternal - Write the name of the specified value out to
|
|
/// the specified ostream. This can be useful when you just want to print
|
|
/// int %reg126, not the whole instruction that generated it.
|
|
///
|
|
static void WriteAsOperandInternal(std::ostream &Out, const Type *T,
|
|
bool PrintName,
|
|
std::map<const Type*, std::string> &TypeTable,
|
|
SlotMachine *Machine) {
|
|
Out << ' ';
|
|
int Slot;
|
|
if (Machine) {
|
|
Slot = Machine->getSlot(T);
|
|
if (Slot != -1)
|
|
Out << '%' << Slot;
|
|
else
|
|
Out << "<badref>";
|
|
} else {
|
|
Out << T->getDescription();
|
|
}
|
|
}
|
|
|
|
/// WriteAsOperand - Write the name of the specified value out to the specified
|
|
/// ostream. This can be useful when you just want to print int %reg126, not
|
|
/// the whole instruction that generated it.
|
|
///
|
|
std::ostream &llvm::WriteAsOperand(std::ostream &Out, const Type *Ty,
|
|
bool PrintType, bool PrintName,
|
|
const Module *Context) {
|
|
std::map<const Type *, std::string> TypeNames;
|
|
assert(Context != 0 && "Can't write types as operand without module context");
|
|
|
|
fillTypeNameTable(Context, TypeNames);
|
|
|
|
// if (PrintType)
|
|
// printTypeInt(Out, V->getType(), TypeNames);
|
|
|
|
printTypeInt(Out, Ty, TypeNames);
|
|
|
|
WriteAsOperandInternal(Out, Ty, PrintName, TypeNames, 0);
|
|
return Out;
|
|
}
|
|
|
|
namespace llvm {
|
|
|
|
class AssemblyWriter {
|
|
std::ostream &Out;
|
|
SlotMachine &Machine;
|
|
const Module *TheModule;
|
|
std::map<const Type *, std::string> TypeNames;
|
|
AssemblyAnnotationWriter *AnnotationWriter;
|
|
public:
|
|
inline AssemblyWriter(std::ostream &o, SlotMachine &Mac, const Module *M,
|
|
AssemblyAnnotationWriter *AAW)
|
|
: Out(o), Machine(Mac), TheModule(M), AnnotationWriter(AAW) {
|
|
|
|
// If the module has a symbol table, take all global types and stuff their
|
|
// names into the TypeNames map.
|
|
//
|
|
fillTypeNameTable(M, TypeNames);
|
|
}
|
|
|
|
inline void write(const Module *M) { printModule(M); }
|
|
inline void write(const GlobalVariable *G) { printGlobal(G); }
|
|
inline void write(const Function *F) { printFunction(F); }
|
|
inline void write(const BasicBlock *BB) { printBasicBlock(BB); }
|
|
inline void write(const Instruction *I) { printInstruction(*I); }
|
|
inline void write(const Constant *CPV) { printConstant(CPV); }
|
|
inline void write(const Type *Ty) { printType(Ty); }
|
|
|
|
void writeOperand(const Value *Op, bool PrintType, bool PrintName = true);
|
|
|
|
const Module* getModule() { return TheModule; }
|
|
|
|
private:
|
|
void printModule(const Module *M);
|
|
void printSymbolTable(const SymbolTable &ST);
|
|
void printConstant(const Constant *CPV);
|
|
void printGlobal(const GlobalVariable *GV);
|
|
void printFunction(const Function *F);
|
|
void printArgument(const Argument *FA);
|
|
void printBasicBlock(const BasicBlock *BB);
|
|
void printInstruction(const Instruction &I);
|
|
|
|
// printType - Go to extreme measures to attempt to print out a short,
|
|
// symbolic version of a type name.
|
|
//
|
|
std::ostream &printType(const Type *Ty) {
|
|
return printTypeInt(Out, Ty, TypeNames);
|
|
}
|
|
|
|
// printTypeAtLeastOneLevel - Print out one level of the possibly complex type
|
|
// without considering any symbolic types that we may have equal to it.
|
|
//
|
|
std::ostream &printTypeAtLeastOneLevel(const Type *Ty);
|
|
|
|
// printInfoComment - Print a little comment after the instruction indicating
|
|
// which slot it occupies.
|
|
void printInfoComment(const Value &V);
|
|
};
|
|
} // end of llvm namespace
|
|
|
|
/// printTypeAtLeastOneLevel - Print out one level of the possibly complex type
|
|
/// without considering any symbolic types that we may have equal to it.
|
|
///
|
|
std::ostream &AssemblyWriter::printTypeAtLeastOneLevel(const Type *Ty) {
|
|
if (const FunctionType *FTy = dyn_cast<FunctionType>(Ty)) {
|
|
printType(FTy->getReturnType()) << " (";
|
|
for (FunctionType::param_iterator I = FTy->param_begin(),
|
|
E = FTy->param_end(); I != E; ++I) {
|
|
if (I != FTy->param_begin())
|
|
Out << ", ";
|
|
printType(*I);
|
|
}
|
|
if (FTy->isVarArg()) {
|
|
if (FTy->getNumParams()) Out << ", ";
|
|
Out << "...";
|
|
}
|
|
Out << ')';
|
|
} else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
|
|
Out << "{ ";
|
|
for (StructType::element_iterator I = STy->element_begin(),
|
|
E = STy->element_end(); I != E; ++I) {
|
|
if (I != STy->element_begin())
|
|
Out << ", ";
|
|
printType(*I);
|
|
}
|
|
Out << " }";
|
|
} else if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) {
|
|
printType(PTy->getElementType()) << '*';
|
|
} else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
|
|
Out << '[' << ATy->getNumElements() << " x ";
|
|
printType(ATy->getElementType()) << ']';
|
|
} else if (const PackedType *PTy = dyn_cast<PackedType>(Ty)) {
|
|
Out << '<' << PTy->getNumElements() << " x ";
|
|
printType(PTy->getElementType()) << '>';
|
|
}
|
|
else if (const OpaqueType *OTy = dyn_cast<OpaqueType>(Ty)) {
|
|
Out << "opaque";
|
|
} else {
|
|
if (!Ty->isPrimitiveType())
|
|
Out << "<unknown derived type>";
|
|
printType(Ty);
|
|
}
|
|
return Out;
|
|
}
|
|
|
|
|
|
void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType,
|
|
bool PrintName) {
|
|
if (Operand != 0) {
|
|
if (PrintType) { Out << ' '; printType(Operand->getType()); }
|
|
WriteAsOperandInternal(Out, Operand, PrintName, TypeNames, &Machine);
|
|
} else {
|
|
Out << "<null operand!>";
|
|
}
|
|
}
|
|
|
|
|
|
void AssemblyWriter::printModule(const Module *M) {
|
|
if (!M->getModuleIdentifier().empty() &&
|
|
// Don't print the ID if it will start a new line (which would
|
|
// require a comment char before it).
|
|
M->getModuleIdentifier().find('\n') == std::string::npos)
|
|
Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
|
|
|
|
if (!M->getDataLayout().empty())
|
|
Out << "target datalayout = \"" << M->getDataLayout() << "\"\n";
|
|
|
|
switch (M->getEndianness()) {
|
|
case Module::LittleEndian: Out << "target endian = little\n"; break;
|
|
case Module::BigEndian: Out << "target endian = big\n"; break;
|
|
case Module::AnyEndianness: break;
|
|
}
|
|
switch (M->getPointerSize()) {
|
|
case Module::Pointer32: Out << "target pointersize = 32\n"; break;
|
|
case Module::Pointer64: Out << "target pointersize = 64\n"; break;
|
|
case Module::AnyPointerSize: break;
|
|
}
|
|
if (!M->getTargetTriple().empty())
|
|
Out << "target triple = \"" << M->getTargetTriple() << "\"\n";
|
|
|
|
if (!M->getModuleInlineAsm().empty()) {
|
|
// Split the string into lines, to make it easier to read the .ll file.
|
|
std::string Asm = M->getModuleInlineAsm();
|
|
size_t CurPos = 0;
|
|
size_t NewLine = Asm.find_first_of('\n', CurPos);
|
|
while (NewLine != std::string::npos) {
|
|
// We found a newline, print the portion of the asm string from the
|
|
// last newline up to this newline.
|
|
Out << "module asm \"";
|
|
PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.begin()+NewLine),
|
|
Out);
|
|
Out << "\"\n";
|
|
CurPos = NewLine+1;
|
|
NewLine = Asm.find_first_of('\n', CurPos);
|
|
}
|
|
Out << "module asm \"";
|
|
PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.end()), Out);
|
|
Out << "\"\n";
|
|
}
|
|
|
|
// Loop over the dependent libraries and emit them.
|
|
Module::lib_iterator LI = M->lib_begin();
|
|
Module::lib_iterator LE = M->lib_end();
|
|
if (LI != LE) {
|
|
Out << "deplibs = [ ";
|
|
while (LI != LE) {
|
|
Out << '"' << *LI << '"';
|
|
++LI;
|
|
if (LI != LE)
|
|
Out << ", ";
|
|
}
|
|
Out << " ]\n";
|
|
}
|
|
|
|
// Loop over the symbol table, emitting all named constants.
|
|
printSymbolTable(M->getSymbolTable());
|
|
|
|
for (Module::const_global_iterator I = M->global_begin(), E = M->global_end(); I != E; ++I)
|
|
printGlobal(I);
|
|
|
|
Out << "\nimplementation ; Functions:\n";
|
|
|
|
// Output all of the functions.
|
|
for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
|
|
printFunction(I);
|
|
}
|
|
|
|
void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
|
|
if (GV->hasName()) Out << getLLVMName(GV->getName()) << " = ";
|
|
|
|
if (!GV->hasInitializer())
|
|
switch (GV->getLinkage()) {
|
|
case GlobalValue::DLLImportLinkage: Out << "dllimport "; break;
|
|
case GlobalValue::ExternalWeakLinkage: Out << "extern_weak "; break;
|
|
default: Out << "external "; break;
|
|
}
|
|
else
|
|
switch (GV->getLinkage()) {
|
|
case GlobalValue::InternalLinkage: Out << "internal "; break;
|
|
case GlobalValue::LinkOnceLinkage: Out << "linkonce "; break;
|
|
case GlobalValue::WeakLinkage: Out << "weak "; break;
|
|
case GlobalValue::AppendingLinkage: Out << "appending "; break;
|
|
case GlobalValue::DLLImportLinkage: Out << "dllimport "; break;
|
|
case GlobalValue::DLLExportLinkage: Out << "dllexport "; break;
|
|
case GlobalValue::ExternalWeakLinkage: Out << "extern_weak "; break;
|
|
case GlobalValue::ExternalLinkage: break;
|
|
case GlobalValue::GhostLinkage:
|
|
std::cerr << "GhostLinkage not allowed in AsmWriter!\n";
|
|
abort();
|
|
}
|
|
|
|
Out << (GV->isConstant() ? "constant " : "global ");
|
|
printType(GV->getType()->getElementType());
|
|
|
|
if (GV->hasInitializer()) {
|
|
Constant* C = cast<Constant>(GV->getInitializer());
|
|
assert(C && "GlobalVar initializer isn't constant?");
|
|
writeOperand(GV->getInitializer(), false, isa<GlobalValue>(C));
|
|
}
|
|
|
|
if (GV->hasSection())
|
|
Out << ", section \"" << GV->getSection() << '"';
|
|
if (GV->getAlignment())
|
|
Out << ", align " << GV->getAlignment();
|
|
|
|
printInfoComment(*GV);
|
|
Out << "\n";
|
|
}
|
|
|
|
|
|
// printSymbolTable - Run through symbol table looking for constants
|
|
// and types. Emit their declarations.
|
|
void AssemblyWriter::printSymbolTable(const SymbolTable &ST) {
|
|
|
|
// Print the types.
|
|
for (SymbolTable::type_const_iterator TI = ST.type_begin();
|
|
TI != ST.type_end(); ++TI ) {
|
|
Out << "\t" << getLLVMName(TI->first) << " = type ";
|
|
|
|
// Make sure we print out at least one level of the type structure, so
|
|
// that we do not get %FILE = type %FILE
|
|
//
|
|
printTypeAtLeastOneLevel(TI->second) << "\n";
|
|
}
|
|
|
|
// Print the constants, in type plane order.
|
|
for (SymbolTable::plane_const_iterator PI = ST.plane_begin();
|
|
PI != ST.plane_end(); ++PI ) {
|
|
SymbolTable::value_const_iterator VI = ST.value_begin(PI->first);
|
|
SymbolTable::value_const_iterator VE = ST.value_end(PI->first);
|
|
|
|
for (; VI != VE; ++VI) {
|
|
const Value* V = VI->second;
|
|
const Constant *CPV = dyn_cast<Constant>(V) ;
|
|
if (CPV && !isa<GlobalValue>(V)) {
|
|
printConstant(CPV);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/// printConstant - Print out a constant pool entry...
|
|
///
|
|
void AssemblyWriter::printConstant(const Constant *CPV) {
|
|
// Don't print out unnamed constants, they will be inlined
|
|
if (!CPV->hasName()) return;
|
|
|
|
// Print out name...
|
|
Out << "\t" << getLLVMName(CPV->getName()) << " =";
|
|
|
|
// Write the value out now...
|
|
writeOperand(CPV, true, false);
|
|
|
|
printInfoComment(*CPV);
|
|
Out << "\n";
|
|
}
|
|
|
|
/// printFunction - Print all aspects of a function.
|
|
///
|
|
void AssemblyWriter::printFunction(const Function *F) {
|
|
// Print out the return type and name...
|
|
Out << "\n";
|
|
|
|
// Ensure that no local symbols conflict with global symbols.
|
|
const_cast<Function*>(F)->renameLocalSymbols();
|
|
|
|
if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out);
|
|
|
|
if (F->isExternal())
|
|
switch (F->getLinkage()) {
|
|
case GlobalValue::DLLImportLinkage: Out << "declare dllimport "; break;
|
|
case GlobalValue::ExternalWeakLinkage: Out << "declare extern_weak "; break;
|
|
default: Out << "declare ";
|
|
}
|
|
else
|
|
switch (F->getLinkage()) {
|
|
case GlobalValue::InternalLinkage: Out << "internal "; break;
|
|
case GlobalValue::LinkOnceLinkage: Out << "linkonce "; break;
|
|
case GlobalValue::WeakLinkage: Out << "weak "; break;
|
|
case GlobalValue::AppendingLinkage: Out << "appending "; break;
|
|
case GlobalValue::DLLImportLinkage: Out << "dllimport "; break;
|
|
case GlobalValue::DLLExportLinkage: Out << "dllexport "; break;
|
|
case GlobalValue::ExternalWeakLinkage: Out << "extern_weak "; break;
|
|
case GlobalValue::ExternalLinkage: break;
|
|
case GlobalValue::GhostLinkage:
|
|
std::cerr << "GhostLinkage not allowed in AsmWriter!\n";
|
|
abort();
|
|
}
|
|
|
|
// Print the calling convention.
|
|
switch (F->getCallingConv()) {
|
|
case CallingConv::C: break; // default
|
|
case CallingConv::CSRet: Out << "csretcc "; break;
|
|
case CallingConv::Fast: Out << "fastcc "; break;
|
|
case CallingConv::Cold: Out << "coldcc "; break;
|
|
case CallingConv::X86_StdCall: Out << "x86_stdcallcc "; break;
|
|
case CallingConv::X86_FastCall: Out << "x86_fastcallcc "; break;
|
|
default: Out << "cc" << F->getCallingConv() << " "; break;
|
|
}
|
|
|
|
printType(F->getReturnType()) << ' ';
|
|
if (!F->getName().empty())
|
|
Out << getLLVMName(F->getName());
|
|
else
|
|
Out << "\"\"";
|
|
Out << '(';
|
|
Machine.incorporateFunction(F);
|
|
|
|
// Loop over the arguments, printing them...
|
|
const FunctionType *FT = F->getFunctionType();
|
|
|
|
for(Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
|
|
printArgument(I);
|
|
|
|
// Finish printing arguments...
|
|
if (FT->isVarArg()) {
|
|
if (FT->getNumParams()) Out << ", ";
|
|
Out << "..."; // Output varargs portion of signature!
|
|
}
|
|
Out << ')';
|
|
|
|
if (F->hasSection())
|
|
Out << " section \"" << F->getSection() << '"';
|
|
if (F->getAlignment())
|
|
Out << " align " << F->getAlignment();
|
|
|
|
if (F->isExternal()) {
|
|
Out << "\n";
|
|
} else {
|
|
Out << " {";
|
|
|
|
// Output all of its basic blocks... for the function
|
|
for (Function::const_iterator I = F->begin(), E = F->end(); I != E; ++I)
|
|
printBasicBlock(I);
|
|
|
|
Out << "}\n";
|
|
}
|
|
|
|
Machine.purgeFunction();
|
|
}
|
|
|
|
/// printArgument - This member is called for every argument that is passed into
|
|
/// the function. Simply print it out
|
|
///
|
|
void AssemblyWriter::printArgument(const Argument *Arg) {
|
|
// Insert commas as we go... the first arg doesn't get a comma
|
|
if (Arg != Arg->getParent()->arg_begin()) Out << ", ";
|
|
|
|
// Output type...
|
|
printType(Arg->getType());
|
|
|
|
// Output name, if available...
|
|
if (Arg->hasName())
|
|
Out << ' ' << getLLVMName(Arg->getName());
|
|
}
|
|
|
|
/// printBasicBlock - This member is called for each basic block in a method.
|
|
///
|
|
void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
|
|
if (BB->hasName()) { // Print out the label if it exists...
|
|
Out << "\n" << getLLVMName(BB->getName(), false) << ':';
|
|
} else if (!BB->use_empty()) { // Don't print block # of no uses...
|
|
Out << "\n; <label>:";
|
|
int Slot = Machine.getSlot(BB);
|
|
if (Slot != -1)
|
|
Out << Slot;
|
|
else
|
|
Out << "<badref>";
|
|
}
|
|
|
|
if (BB->getParent() == 0)
|
|
Out << "\t\t; Error: Block without parent!";
|
|
else {
|
|
if (BB != &BB->getParent()->front()) { // Not the entry block?
|
|
// Output predecessors for the block...
|
|
Out << "\t\t;";
|
|
pred_const_iterator PI = pred_begin(BB), PE = pred_end(BB);
|
|
|
|
if (PI == PE) {
|
|
Out << " No predecessors!";
|
|
} else {
|
|
Out << " preds =";
|
|
writeOperand(*PI, false, true);
|
|
for (++PI; PI != PE; ++PI) {
|
|
Out << ',';
|
|
writeOperand(*PI, false, true);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
Out << "\n";
|
|
|
|
if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out);
|
|
|
|
// Output all of the instructions in the basic block...
|
|
for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I)
|
|
printInstruction(*I);
|
|
|
|
if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out);
|
|
}
|
|
|
|
|
|
/// printInfoComment - Print a little comment after the instruction indicating
|
|
/// which slot it occupies.
|
|
///
|
|
void AssemblyWriter::printInfoComment(const Value &V) {
|
|
if (V.getType() != Type::VoidTy) {
|
|
Out << "\t\t; <";
|
|
printType(V.getType()) << '>';
|
|
|
|
if (!V.hasName()) {
|
|
int SlotNum = Machine.getSlot(&V);
|
|
if (SlotNum == -1)
|
|
Out << ":<badref>";
|
|
else
|
|
Out << ':' << SlotNum; // Print out the def slot taken.
|
|
}
|
|
Out << " [#uses=" << V.getNumUses() << ']'; // Output # uses
|
|
}
|
|
}
|
|
|
|
// This member is called for each Instruction in a function..
|
|
void AssemblyWriter::printInstruction(const Instruction &I) {
|
|
if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out);
|
|
|
|
Out << "\t";
|
|
|
|
// Print out name if it exists...
|
|
if (I.hasName())
|
|
Out << getLLVMName(I.getName()) << " = ";
|
|
|
|
// If this is a volatile load or store, print out the volatile marker.
|
|
if ((isa<LoadInst>(I) && cast<LoadInst>(I).isVolatile()) ||
|
|
(isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile())) {
|
|
Out << "volatile ";
|
|
} else if (isa<CallInst>(I) && cast<CallInst>(I).isTailCall()) {
|
|
// If this is a call, check if it's a tail call.
|
|
Out << "tail ";
|
|
}
|
|
|
|
// Print out the opcode...
|
|
Out << I.getOpcodeName();
|
|
|
|
// Print out the type of the operands...
|
|
const Value *Operand = I.getNumOperands() ? I.getOperand(0) : 0;
|
|
|
|
// Special case conditional branches to swizzle the condition out to the front
|
|
if (isa<BranchInst>(I) && I.getNumOperands() > 1) {
|
|
writeOperand(I.getOperand(2), true);
|
|
Out << ',';
|
|
writeOperand(Operand, true);
|
|
Out << ',';
|
|
writeOperand(I.getOperand(1), true);
|
|
|
|
} else if (isa<SwitchInst>(I)) {
|
|
// Special case switch statement to get formatting nice and correct...
|
|
writeOperand(Operand , true); Out << ',';
|
|
writeOperand(I.getOperand(1), true); Out << " [";
|
|
|
|
for (unsigned op = 2, Eop = I.getNumOperands(); op < Eop; op += 2) {
|
|
Out << "\n\t\t";
|
|
writeOperand(I.getOperand(op ), true); Out << ',';
|
|
writeOperand(I.getOperand(op+1), true);
|
|
}
|
|
Out << "\n\t]";
|
|
} else if (isa<PHINode>(I)) {
|
|
Out << ' ';
|
|
printType(I.getType());
|
|
Out << ' ';
|
|
|
|
for (unsigned op = 0, Eop = I.getNumOperands(); op < Eop; op += 2) {
|
|
if (op) Out << ", ";
|
|
Out << '[';
|
|
writeOperand(I.getOperand(op ), false); Out << ',';
|
|
writeOperand(I.getOperand(op+1), false); Out << " ]";
|
|
}
|
|
} else if (isa<ReturnInst>(I) && !Operand) {
|
|
Out << " void";
|
|
} else if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
|
|
// Print the calling convention being used.
|
|
switch (CI->getCallingConv()) {
|
|
case CallingConv::C: break; // default
|
|
case CallingConv::CSRet: Out << " csretcc"; break;
|
|
case CallingConv::Fast: Out << " fastcc"; break;
|
|
case CallingConv::Cold: Out << " coldcc"; break;
|
|
case CallingConv::X86_StdCall: Out << "x86_stdcallcc "; break;
|
|
case CallingConv::X86_FastCall: Out << "x86_fastcallcc "; break;
|
|
default: Out << " cc" << CI->getCallingConv(); break;
|
|
}
|
|
|
|
const PointerType *PTy = cast<PointerType>(Operand->getType());
|
|
const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
|
|
const Type *RetTy = FTy->getReturnType();
|
|
|
|
// If possible, print out the short form of the call instruction. We can
|
|
// only do this if the first argument is a pointer to a nonvararg function,
|
|
// and if the return type is not a pointer to a function.
|
|
//
|
|
if (!FTy->isVarArg() &&
|
|
(!isa<PointerType>(RetTy) ||
|
|
!isa<FunctionType>(cast<PointerType>(RetTy)->getElementType()))) {
|
|
Out << ' '; printType(RetTy);
|
|
writeOperand(Operand, false);
|
|
} else {
|
|
writeOperand(Operand, true);
|
|
}
|
|
Out << '(';
|
|
if (CI->getNumOperands() > 1) writeOperand(CI->getOperand(1), true);
|
|
for (unsigned op = 2, Eop = I.getNumOperands(); op < Eop; ++op) {
|
|
Out << ',';
|
|
writeOperand(I.getOperand(op), true);
|
|
}
|
|
|
|
Out << " )";
|
|
} else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
|
|
const PointerType *PTy = cast<PointerType>(Operand->getType());
|
|
const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
|
|
const Type *RetTy = FTy->getReturnType();
|
|
|
|
// Print the calling convention being used.
|
|
switch (II->getCallingConv()) {
|
|
case CallingConv::C: break; // default
|
|
case CallingConv::CSRet: Out << " csretcc"; break;
|
|
case CallingConv::Fast: Out << " fastcc"; break;
|
|
case CallingConv::Cold: Out << " coldcc"; break;
|
|
case CallingConv::X86_StdCall: Out << "x86_stdcallcc "; break;
|
|
case CallingConv::X86_FastCall: Out << "x86_fastcallcc "; break;
|
|
default: Out << " cc" << II->getCallingConv(); break;
|
|
}
|
|
|
|
// If possible, print out the short form of the invoke instruction. We can
|
|
// only do this if the first argument is a pointer to a nonvararg function,
|
|
// and if the return type is not a pointer to a function.
|
|
//
|
|
if (!FTy->isVarArg() &&
|
|
(!isa<PointerType>(RetTy) ||
|
|
!isa<FunctionType>(cast<PointerType>(RetTy)->getElementType()))) {
|
|
Out << ' '; printType(RetTy);
|
|
writeOperand(Operand, false);
|
|
} else {
|
|
writeOperand(Operand, true);
|
|
}
|
|
|
|
Out << '(';
|
|
if (I.getNumOperands() > 3) writeOperand(I.getOperand(3), true);
|
|
for (unsigned op = 4, Eop = I.getNumOperands(); op < Eop; ++op) {
|
|
Out << ',';
|
|
writeOperand(I.getOperand(op), true);
|
|
}
|
|
|
|
Out << " )\n\t\t\tto";
|
|
writeOperand(II->getNormalDest(), true);
|
|
Out << " unwind";
|
|
writeOperand(II->getUnwindDest(), true);
|
|
|
|
} else if (const AllocationInst *AI = dyn_cast<AllocationInst>(&I)) {
|
|
Out << ' ';
|
|
printType(AI->getType()->getElementType());
|
|
if (AI->isArrayAllocation()) {
|
|
Out << ',';
|
|
writeOperand(AI->getArraySize(), true);
|
|
}
|
|
if (AI->getAlignment()) {
|
|
Out << ", align " << AI->getAlignment();
|
|
}
|
|
} else if (isa<CastInst>(I)) {
|
|
if (Operand) writeOperand(Operand, true); // Work with broken code
|
|
Out << " to ";
|
|
printType(I.getType());
|
|
} else if (isa<VAArgInst>(I)) {
|
|
if (Operand) writeOperand(Operand, true); // Work with broken code
|
|
Out << ", ";
|
|
printType(I.getType());
|
|
} else if (Operand) { // Print the normal way...
|
|
|
|
// PrintAllTypes - Instructions who have operands of all the same type
|
|
// omit the type from all but the first operand. If the instruction has
|
|
// different type operands (for example br), then they are all printed.
|
|
bool PrintAllTypes = false;
|
|
const Type *TheType = Operand->getType();
|
|
|
|
// Shift Left & Right print both types even for Ubyte LHS, and select prints
|
|
// types even if all operands are bools.
|
|
if (isa<ShiftInst>(I) || isa<SelectInst>(I) || isa<StoreInst>(I) ||
|
|
isa<ShuffleVectorInst>(I)) {
|
|
PrintAllTypes = true;
|
|
} else {
|
|
for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
|
|
Operand = I.getOperand(i);
|
|
if (Operand->getType() != TheType) {
|
|
PrintAllTypes = true; // We have differing types! Print them all!
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!PrintAllTypes) {
|
|
Out << ' ';
|
|
printType(TheType);
|
|
}
|
|
|
|
for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
|
|
if (i) Out << ',';
|
|
writeOperand(I.getOperand(i), PrintAllTypes);
|
|
}
|
|
}
|
|
|
|
printInfoComment(I);
|
|
Out << "\n";
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// External Interface declarations
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void Module::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
|
|
SlotMachine SlotTable(this);
|
|
AssemblyWriter W(o, SlotTable, this, AAW);
|
|
W.write(this);
|
|
}
|
|
|
|
void GlobalVariable::print(std::ostream &o) const {
|
|
SlotMachine SlotTable(getParent());
|
|
AssemblyWriter W(o, SlotTable, getParent(), 0);
|
|
W.write(this);
|
|
}
|
|
|
|
void Function::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
|
|
SlotMachine SlotTable(getParent());
|
|
AssemblyWriter W(o, SlotTable, getParent(), AAW);
|
|
|
|
W.write(this);
|
|
}
|
|
|
|
void InlineAsm::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
|
|
WriteAsOperand(o, this, true, true, 0);
|
|
}
|
|
|
|
void BasicBlock::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
|
|
SlotMachine SlotTable(getParent());
|
|
AssemblyWriter W(o, SlotTable,
|
|
getParent() ? getParent()->getParent() : 0, AAW);
|
|
W.write(this);
|
|
}
|
|
|
|
void Instruction::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
|
|
const Function *F = getParent() ? getParent()->getParent() : 0;
|
|
SlotMachine SlotTable(F);
|
|
AssemblyWriter W(o, SlotTable, F ? F->getParent() : 0, AAW);
|
|
|
|
W.write(this);
|
|
}
|
|
|
|
void Constant::print(std::ostream &o) const {
|
|
if (this == 0) { o << "<null> constant value\n"; return; }
|
|
|
|
o << ' ' << getType()->getDescription() << ' ';
|
|
|
|
std::map<const Type *, std::string> TypeTable;
|
|
WriteConstantInt(o, this, false, TypeTable, 0);
|
|
}
|
|
|
|
void Type::print(std::ostream &o) const {
|
|
if (this == 0)
|
|
o << "<null Type>";
|
|
else
|
|
o << getDescription();
|
|
}
|
|
|
|
void Argument::print(std::ostream &o) const {
|
|
WriteAsOperand(o, this, true, true,
|
|
getParent() ? getParent()->getParent() : 0);
|
|
}
|
|
|
|
// Value::dump - allow easy printing of Values from the debugger.
|
|
// Located here because so much of the needed functionality is here.
|
|
void Value::dump() const { print(std::cerr); std::cerr << '\n'; }
|
|
|
|
// Type::dump - allow easy printing of Values from the debugger.
|
|
// Located here because so much of the needed functionality is here.
|
|
void Type::dump() const { print(std::cerr); std::cerr << '\n'; }
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// CachedWriter Class Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void CachedWriter::setModule(const Module *M) {
|
|
delete SC; delete AW;
|
|
if (M) {
|
|
SC = new SlotMachine(M );
|
|
AW = new AssemblyWriter(Out, *SC, M, 0);
|
|
} else {
|
|
SC = 0; AW = 0;
|
|
}
|
|
}
|
|
|
|
CachedWriter::~CachedWriter() {
|
|
delete AW;
|
|
delete SC;
|
|
}
|
|
|
|
CachedWriter &CachedWriter::operator<<(const Value &V) {
|
|
assert(AW && SC && "CachedWriter does not have a current module!");
|
|
if (const Instruction *I = dyn_cast<Instruction>(&V))
|
|
AW->write(I);
|
|
else if (const BasicBlock *BB = dyn_cast<BasicBlock>(&V))
|
|
AW->write(BB);
|
|
else if (const Function *F = dyn_cast<Function>(&V))
|
|
AW->write(F);
|
|
else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(&V))
|
|
AW->write(GV);
|
|
else
|
|
AW->writeOperand(&V, true, true);
|
|
return *this;
|
|
}
|
|
|
|
CachedWriter& CachedWriter::operator<<(const Type &Ty) {
|
|
if (SymbolicTypes) {
|
|
const Module *M = AW->getModule();
|
|
if (M) WriteTypeSymbolic(Out, &Ty, M);
|
|
} else {
|
|
AW->write(&Ty);
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
//===-- SlotMachine Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#if 0
|
|
#define SC_DEBUG(X) std::cerr << X
|
|
#else
|
|
#define SC_DEBUG(X)
|
|
#endif
|
|
|
|
// Module level constructor. Causes the contents of the Module (sans functions)
|
|
// to be added to the slot table.
|
|
SlotMachine::SlotMachine(const Module *M)
|
|
: TheModule(M) ///< Saved for lazy initialization.
|
|
, TheFunction(0)
|
|
, FunctionProcessed(false)
|
|
, mMap()
|
|
, mTypes()
|
|
, fMap()
|
|
, fTypes()
|
|
{
|
|
}
|
|
|
|
// Function level constructor. Causes the contents of the Module and the one
|
|
// function provided to be added to the slot table.
|
|
SlotMachine::SlotMachine(const Function *F )
|
|
: TheModule( F ? F->getParent() : 0 ) ///< Saved for lazy initialization
|
|
, TheFunction(F) ///< Saved for lazy initialization
|
|
, FunctionProcessed(false)
|
|
, mMap()
|
|
, mTypes()
|
|
, fMap()
|
|
, fTypes()
|
|
{
|
|
}
|
|
|
|
inline void SlotMachine::initialize(void) {
|
|
if ( TheModule) {
|
|
processModule();
|
|
TheModule = 0; ///< Prevent re-processing next time we're called.
|
|
}
|
|
if ( TheFunction && ! FunctionProcessed) {
|
|
processFunction();
|
|
}
|
|
}
|
|
|
|
// Iterate through all the global variables, functions, and global
|
|
// variable initializers and create slots for them.
|
|
void SlotMachine::processModule() {
|
|
SC_DEBUG("begin processModule!\n");
|
|
|
|
// Add all of the global variables to the value table...
|
|
for (Module::const_global_iterator I = TheModule->global_begin(), E = TheModule->global_end();
|
|
I != E; ++I)
|
|
createSlot(I);
|
|
|
|
// Add all the functions to the table
|
|
for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
|
|
I != E; ++I)
|
|
createSlot(I);
|
|
|
|
SC_DEBUG("end processModule!\n");
|
|
}
|
|
|
|
|
|
// Process the arguments, basic blocks, and instructions of a function.
|
|
void SlotMachine::processFunction() {
|
|
SC_DEBUG("begin processFunction!\n");
|
|
|
|
// Add all the function arguments
|
|
for(Function::const_arg_iterator AI = TheFunction->arg_begin(),
|
|
AE = TheFunction->arg_end(); AI != AE; ++AI)
|
|
createSlot(AI);
|
|
|
|
SC_DEBUG("Inserting Instructions:\n");
|
|
|
|
// Add all of the basic blocks and instructions
|
|
for (Function::const_iterator BB = TheFunction->begin(),
|
|
E = TheFunction->end(); BB != E; ++BB) {
|
|
createSlot(BB);
|
|
for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I) {
|
|
createSlot(I);
|
|
}
|
|
}
|
|
|
|
FunctionProcessed = true;
|
|
|
|
SC_DEBUG("end processFunction!\n");
|
|
}
|
|
|
|
// Clean up after incorporating a function. This is the only way
|
|
// to get out of the function incorporation state that affects the
|
|
// getSlot/createSlot lock. Function incorporation state is indicated
|
|
// by TheFunction != 0.
|
|
void SlotMachine::purgeFunction() {
|
|
SC_DEBUG("begin purgeFunction!\n");
|
|
fMap.clear(); // Simply discard the function level map
|
|
fTypes.clear();
|
|
TheFunction = 0;
|
|
FunctionProcessed = false;
|
|
SC_DEBUG("end purgeFunction!\n");
|
|
}
|
|
|
|
/// Get the slot number for a value. This function will assert if you
|
|
/// ask for a Value that hasn't previously been inserted with createSlot.
|
|
/// Types are forbidden because Type does not inherit from Value (any more).
|
|
int SlotMachine::getSlot(const Value *V) {
|
|
assert( V && "Can't get slot for null Value" );
|
|
assert(!isa<Constant>(V) || isa<GlobalValue>(V) &&
|
|
"Can't insert a non-GlobalValue Constant into SlotMachine");
|
|
|
|
// Check for uninitialized state and do lazy initialization
|
|
this->initialize();
|
|
|
|
// Get the type of the value
|
|
const Type* VTy = V->getType();
|
|
|
|
// Find the type plane in the module map
|
|
TypedPlanes::const_iterator MI = mMap.find(VTy);
|
|
|
|
if ( TheFunction ) {
|
|
// Lookup the type in the function map too
|
|
TypedPlanes::const_iterator FI = fMap.find(VTy);
|
|
// If there is a corresponding type plane in the function map
|
|
if ( FI != fMap.end() ) {
|
|
// Lookup the Value in the function map
|
|
ValueMap::const_iterator FVI = FI->second.map.find(V);
|
|
// If the value doesn't exist in the function map
|
|
if ( FVI == FI->second.map.end() ) {
|
|
// Look up the value in the module map.
|
|
if (MI == mMap.end()) return -1;
|
|
ValueMap::const_iterator MVI = MI->second.map.find(V);
|
|
// If we didn't find it, it wasn't inserted
|
|
if (MVI == MI->second.map.end()) return -1;
|
|
assert( MVI != MI->second.map.end() && "Value not found");
|
|
// We found it only at the module level
|
|
return MVI->second;
|
|
|
|
// else the value exists in the function map
|
|
} else {
|
|
// Return the slot number as the module's contribution to
|
|
// the type plane plus the index in the function's contribution
|
|
// to the type plane.
|
|
if (MI != mMap.end())
|
|
return MI->second.next_slot + FVI->second;
|
|
else
|
|
return FVI->second;
|
|
}
|
|
}
|
|
}
|
|
|
|
// N.B. Can get here only if either !TheFunction or the function doesn't
|
|
// have a corresponding type plane for the Value
|
|
|
|
// Make sure the type plane exists
|
|
if (MI == mMap.end()) return -1;
|
|
// Lookup the value in the module's map
|
|
ValueMap::const_iterator MVI = MI->second.map.find(V);
|
|
// Make sure we found it.
|
|
if (MVI == MI->second.map.end()) return -1;
|
|
// Return it.
|
|
return MVI->second;
|
|
}
|
|
|
|
/// Get the slot number for a value. This function will assert if you
|
|
/// ask for a Value that hasn't previously been inserted with createSlot.
|
|
/// Types are forbidden because Type does not inherit from Value (any more).
|
|
int SlotMachine::getSlot(const Type *Ty) {
|
|
assert( Ty && "Can't get slot for null Type" );
|
|
|
|
// Check for uninitialized state and do lazy initialization
|
|
this->initialize();
|
|
|
|
if ( TheFunction ) {
|
|
// Lookup the Type in the function map
|
|
TypeMap::const_iterator FTI = fTypes.map.find(Ty);
|
|
// If the Type doesn't exist in the function map
|
|
if ( FTI == fTypes.map.end() ) {
|
|
TypeMap::const_iterator MTI = mTypes.map.find(Ty);
|
|
// If we didn't find it, it wasn't inserted
|
|
if (MTI == mTypes.map.end())
|
|
return -1;
|
|
// We found it only at the module level
|
|
return MTI->second;
|
|
|
|
// else the value exists in the function map
|
|
} else {
|
|
// Return the slot number as the module's contribution to
|
|
// the type plane plus the index in the function's contribution
|
|
// to the type plane.
|
|
return mTypes.next_slot + FTI->second;
|
|
}
|
|
}
|
|
|
|
// N.B. Can get here only if either !TheFunction
|
|
|
|
// Lookup the value in the module's map
|
|
TypeMap::const_iterator MTI = mTypes.map.find(Ty);
|
|
// Make sure we found it.
|
|
if (MTI == mTypes.map.end()) return -1;
|
|
// Return it.
|
|
return MTI->second;
|
|
}
|
|
|
|
// Create a new slot, or return the existing slot if it is already
|
|
// inserted. Note that the logic here parallels getSlot but instead
|
|
// of asserting when the Value* isn't found, it inserts the value.
|
|
unsigned SlotMachine::createSlot(const Value *V) {
|
|
assert( V && "Can't insert a null Value to SlotMachine");
|
|
assert(!isa<Constant>(V) || isa<GlobalValue>(V) &&
|
|
"Can't insert a non-GlobalValue Constant into SlotMachine");
|
|
|
|
const Type* VTy = V->getType();
|
|
|
|
// Just ignore void typed things
|
|
if (VTy == Type::VoidTy) return 0; // FIXME: Wrong return value!
|
|
|
|
// Look up the type plane for the Value's type from the module map
|
|
TypedPlanes::const_iterator MI = mMap.find(VTy);
|
|
|
|
if ( TheFunction ) {
|
|
// Get the type plane for the Value's type from the function map
|
|
TypedPlanes::const_iterator FI = fMap.find(VTy);
|
|
// If there is a corresponding type plane in the function map
|
|
if ( FI != fMap.end() ) {
|
|
// Lookup the Value in the function map
|
|
ValueMap::const_iterator FVI = FI->second.map.find(V);
|
|
// If the value doesn't exist in the function map
|
|
if ( FVI == FI->second.map.end() ) {
|
|
// If there is no corresponding type plane in the module map
|
|
if ( MI == mMap.end() )
|
|
return insertValue(V);
|
|
// Look up the value in the module map
|
|
ValueMap::const_iterator MVI = MI->second.map.find(V);
|
|
// If we didn't find it, it wasn't inserted
|
|
if ( MVI == MI->second.map.end() )
|
|
return insertValue(V);
|
|
else
|
|
// We found it only at the module level
|
|
return MVI->second;
|
|
|
|
// else the value exists in the function map
|
|
} else {
|
|
if ( MI == mMap.end() )
|
|
return FVI->second;
|
|
else
|
|
// Return the slot number as the module's contribution to
|
|
// the type plane plus the index in the function's contribution
|
|
// to the type plane.
|
|
return MI->second.next_slot + FVI->second;
|
|
}
|
|
|
|
// else there is not a corresponding type plane in the function map
|
|
} else {
|
|
// If the type plane doesn't exists at the module level
|
|
if ( MI == mMap.end() ) {
|
|
return insertValue(V);
|
|
// else type plane exists at the module level, examine it
|
|
} else {
|
|
// Look up the value in the module's map
|
|
ValueMap::const_iterator MVI = MI->second.map.find(V);
|
|
// If we didn't find it there either
|
|
if ( MVI == MI->second.map.end() )
|
|
// Return the slot number as the module's contribution to
|
|
// the type plane plus the index of the function map insertion.
|
|
return MI->second.next_slot + insertValue(V);
|
|
else
|
|
return MVI->second;
|
|
}
|
|
}
|
|
}
|
|
|
|
// N.B. Can only get here if !TheFunction
|
|
|
|
// If the module map's type plane is not for the Value's type
|
|
if ( MI != mMap.end() ) {
|
|
// Lookup the value in the module's map
|
|
ValueMap::const_iterator MVI = MI->second.map.find(V);
|
|
if ( MVI != MI->second.map.end() )
|
|
return MVI->second;
|
|
}
|
|
|
|
return insertValue(V);
|
|
}
|
|
|
|
// Create a new slot, or return the existing slot if it is already
|
|
// inserted. Note that the logic here parallels getSlot but instead
|
|
// of asserting when the Value* isn't found, it inserts the value.
|
|
unsigned SlotMachine::createSlot(const Type *Ty) {
|
|
assert( Ty && "Can't insert a null Type to SlotMachine");
|
|
|
|
if ( TheFunction ) {
|
|
// Lookup the Type in the function map
|
|
TypeMap::const_iterator FTI = fTypes.map.find(Ty);
|
|
// If the type doesn't exist in the function map
|
|
if ( FTI == fTypes.map.end() ) {
|
|
// Look up the type in the module map
|
|
TypeMap::const_iterator MTI = mTypes.map.find(Ty);
|
|
// If we didn't find it, it wasn't inserted
|
|
if ( MTI == mTypes.map.end() )
|
|
return insertValue(Ty);
|
|
else
|
|
// We found it only at the module level
|
|
return MTI->second;
|
|
|
|
// else the value exists in the function map
|
|
} else {
|
|
// Return the slot number as the module's contribution to
|
|
// the type plane plus the index in the function's contribution
|
|
// to the type plane.
|
|
return mTypes.next_slot + FTI->second;
|
|
}
|
|
}
|
|
|
|
// N.B. Can only get here if !TheFunction
|
|
|
|
// Lookup the type in the module's map
|
|
TypeMap::const_iterator MTI = mTypes.map.find(Ty);
|
|
if ( MTI != mTypes.map.end() )
|
|
return MTI->second;
|
|
|
|
return insertValue(Ty);
|
|
}
|
|
|
|
// Low level insert function. Minimal checking is done. This
|
|
// function is just for the convenience of createSlot (above).
|
|
unsigned SlotMachine::insertValue(const Value *V ) {
|
|
assert(V && "Can't insert a null Value into SlotMachine!");
|
|
assert(!isa<Constant>(V) || isa<GlobalValue>(V) &&
|
|
"Can't insert a non-GlobalValue Constant into SlotMachine");
|
|
|
|
// If this value does not contribute to a plane (is void)
|
|
// or if the value already has a name then ignore it.
|
|
if (V->getType() == Type::VoidTy || V->hasName() ) {
|
|
SC_DEBUG("ignored value " << *V << "\n");
|
|
return 0; // FIXME: Wrong return value
|
|
}
|
|
|
|
const Type *VTy = V->getType();
|
|
unsigned DestSlot = 0;
|
|
|
|
if ( TheFunction ) {
|
|
TypedPlanes::iterator I = fMap.find( VTy );
|
|
if ( I == fMap.end() )
|
|
I = fMap.insert(std::make_pair(VTy,ValuePlane())).first;
|
|
DestSlot = I->second.map[V] = I->second.next_slot++;
|
|
} else {
|
|
TypedPlanes::iterator I = mMap.find( VTy );
|
|
if ( I == mMap.end() )
|
|
I = mMap.insert(std::make_pair(VTy,ValuePlane())).first;
|
|
DestSlot = I->second.map[V] = I->second.next_slot++;
|
|
}
|
|
|
|
SC_DEBUG(" Inserting value [" << VTy << "] = " << V << " slot=" <<
|
|
DestSlot << " [");
|
|
// G = Global, C = Constant, T = Type, F = Function, o = other
|
|
SC_DEBUG((isa<GlobalVariable>(V) ? 'G' : (isa<Function>(V) ? 'F' :
|
|
(isa<Constant>(V) ? 'C' : 'o'))));
|
|
SC_DEBUG("]\n");
|
|
return DestSlot;
|
|
}
|
|
|
|
// Low level insert function. Minimal checking is done. This
|
|
// function is just for the convenience of createSlot (above).
|
|
unsigned SlotMachine::insertValue(const Type *Ty ) {
|
|
assert(Ty && "Can't insert a null Type into SlotMachine!");
|
|
|
|
unsigned DestSlot = 0;
|
|
|
|
if ( TheFunction ) {
|
|
DestSlot = fTypes.map[Ty] = fTypes.next_slot++;
|
|
} else {
|
|
DestSlot = fTypes.map[Ty] = fTypes.next_slot++;
|
|
}
|
|
SC_DEBUG(" Inserting type [" << DestSlot << "] = " << Ty << "\n");
|
|
return DestSlot;
|
|
}
|
|
|
|
// vim: sw=2
|