llvm-6502/lib/CodeGen/SplitKit.cpp
Jakob Stoklund Olesen 87360f73ae Reapply r134047 now that the world is ready for it.
This patch will sometimes choose live range split points next to
interference instead of always splitting next to a register point. That
means spill code can now appear almost anywhere, and it was necessary
to fix code that didn't expect that.

The difficult places were:

- Between a CALL returning a value on the x87 stack and the
  corresponding FpPOP_RETVAL (was FpGET_ST0). Probably also near x87
  inline assembly, but that didn't actually show up in testing.

- Between a CALL popping arguments off the stack and the corresponding
  ADJCALLSTACKUP.

Both are fixed now. The only place spill code can't appear is after
terminators, see SplitAnalysis::getLastSplitPoint.

Original commit message:

Rewrite RAGreedy::splitAroundRegion, now with cool ASCII art.

This function has to deal with a lot of special cases, and the old
version got it wrong sometimes. In particular, it would sometimes leave
multiple uses in the stack interval in a single block. That causes bad
code with multiple reloads in the same basic block.

The new version handles block entry and exit in a single pass. It first
eliminates all the easy cases, and then goes on to create a local
interval for the blocks with difficult interference. Previously, we
would only create the local interval for completely isolated blocks.

It can happen that the stack interval becomes completely empty because
we could allocate a register in all edge bundles, and the new local
intervals deal with the interference. The empty stack interval is
harmless, but we need to remove a SplitKit assertion that checks for
empty intervals.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@134125 91177308-0d34-0410-b5e6-96231b3b80d8
2011-06-30 01:30:39 +00:00

1127 lines
39 KiB
C++

//===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the SplitAnalysis class as well as mutator functions for
// live range splitting.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "regalloc"
#include "SplitKit.h"
#include "LiveRangeEdit.h"
#include "VirtRegMap.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
using namespace llvm;
STATISTIC(NumFinished, "Number of splits finished");
STATISTIC(NumSimple, "Number of splits that were simple");
STATISTIC(NumCopies, "Number of copies inserted for splitting");
STATISTIC(NumRemats, "Number of rematerialized defs for splitting");
STATISTIC(NumRepairs, "Number of invalid live ranges repaired");
//===----------------------------------------------------------------------===//
// Split Analysis
//===----------------------------------------------------------------------===//
SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm,
const LiveIntervals &lis,
const MachineLoopInfo &mli)
: MF(vrm.getMachineFunction()),
VRM(vrm),
LIS(lis),
Loops(mli),
TII(*MF.getTarget().getInstrInfo()),
CurLI(0),
LastSplitPoint(MF.getNumBlockIDs()) {}
void SplitAnalysis::clear() {
UseSlots.clear();
UseBlocks.clear();
ThroughBlocks.clear();
CurLI = 0;
DidRepairRange = false;
}
SlotIndex SplitAnalysis::computeLastSplitPoint(unsigned Num) {
const MachineBasicBlock *MBB = MF.getBlockNumbered(Num);
const MachineBasicBlock *LPad = MBB->getLandingPadSuccessor();
std::pair<SlotIndex, SlotIndex> &LSP = LastSplitPoint[Num];
// Compute split points on the first call. The pair is independent of the
// current live interval.
if (!LSP.first.isValid()) {
MachineBasicBlock::const_iterator FirstTerm = MBB->getFirstTerminator();
if (FirstTerm == MBB->end())
LSP.first = LIS.getMBBEndIdx(MBB);
else
LSP.first = LIS.getInstructionIndex(FirstTerm);
// If there is a landing pad successor, also find the call instruction.
if (!LPad)
return LSP.first;
// There may not be a call instruction (?) in which case we ignore LPad.
LSP.second = LSP.first;
for (MachineBasicBlock::const_iterator I = MBB->end(), E = MBB->begin();
I != E;) {
--I;
if (I->getDesc().isCall()) {
LSP.second = LIS.getInstructionIndex(I);
break;
}
}
}
// If CurLI is live into a landing pad successor, move the last split point
// back to the call that may throw.
if (LPad && LSP.second.isValid() && LIS.isLiveInToMBB(*CurLI, LPad))
return LSP.second;
else
return LSP.first;
}
/// analyzeUses - Count instructions, basic blocks, and loops using CurLI.
void SplitAnalysis::analyzeUses() {
assert(UseSlots.empty() && "Call clear first");
// First get all the defs from the interval values. This provides the correct
// slots for early clobbers.
for (LiveInterval::const_vni_iterator I = CurLI->vni_begin(),
E = CurLI->vni_end(); I != E; ++I)
if (!(*I)->isPHIDef() && !(*I)->isUnused())
UseSlots.push_back((*I)->def);
// Get use slots form the use-def chain.
const MachineRegisterInfo &MRI = MF.getRegInfo();
for (MachineRegisterInfo::use_nodbg_iterator
I = MRI.use_nodbg_begin(CurLI->reg), E = MRI.use_nodbg_end(); I != E;
++I)
if (!I.getOperand().isUndef())
UseSlots.push_back(LIS.getInstructionIndex(&*I).getDefIndex());
array_pod_sort(UseSlots.begin(), UseSlots.end());
// Remove duplicates, keeping the smaller slot for each instruction.
// That is what we want for early clobbers.
UseSlots.erase(std::unique(UseSlots.begin(), UseSlots.end(),
SlotIndex::isSameInstr),
UseSlots.end());
// Compute per-live block info.
if (!calcLiveBlockInfo()) {
// FIXME: calcLiveBlockInfo found inconsistencies in the live range.
// I am looking at you, RegisterCoalescer!
DidRepairRange = true;
++NumRepairs;
DEBUG(dbgs() << "*** Fixing inconsistent live interval! ***\n");
const_cast<LiveIntervals&>(LIS)
.shrinkToUses(const_cast<LiveInterval*>(CurLI));
UseBlocks.clear();
ThroughBlocks.clear();
bool fixed = calcLiveBlockInfo();
(void)fixed;
assert(fixed && "Couldn't fix broken live interval");
}
DEBUG(dbgs() << "Analyze counted "
<< UseSlots.size() << " instrs in "
<< UseBlocks.size() << " blocks, through "
<< NumThroughBlocks << " blocks.\n");
}
/// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks
/// where CurLI is live.
bool SplitAnalysis::calcLiveBlockInfo() {
ThroughBlocks.resize(MF.getNumBlockIDs());
NumThroughBlocks = NumGapBlocks = 0;
if (CurLI->empty())
return true;
LiveInterval::const_iterator LVI = CurLI->begin();
LiveInterval::const_iterator LVE = CurLI->end();
SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE;
UseI = UseSlots.begin();
UseE = UseSlots.end();
// Loop over basic blocks where CurLI is live.
MachineFunction::iterator MFI = LIS.getMBBFromIndex(LVI->start);
for (;;) {
BlockInfo BI;
BI.MBB = MFI;
SlotIndex Start, Stop;
tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
// If the block contains no uses, the range must be live through. At one
// point, RegisterCoalescer could create dangling ranges that ended
// mid-block.
if (UseI == UseE || *UseI >= Stop) {
++NumThroughBlocks;
ThroughBlocks.set(BI.MBB->getNumber());
// The range shouldn't end mid-block if there are no uses. This shouldn't
// happen.
if (LVI->end < Stop)
return false;
} else {
// This block has uses. Find the first and last uses in the block.
BI.FirstUse = *UseI;
assert(BI.FirstUse >= Start);
do ++UseI;
while (UseI != UseE && *UseI < Stop);
BI.LastUse = UseI[-1];
assert(BI.LastUse < Stop);
// LVI is the first live segment overlapping MBB.
BI.LiveIn = LVI->start <= Start;
// Look for gaps in the live range.
BI.LiveOut = true;
while (LVI->end < Stop) {
SlotIndex LastStop = LVI->end;
if (++LVI == LVE || LVI->start >= Stop) {
BI.LiveOut = false;
BI.LastUse = LastStop;
break;
}
if (LastStop < LVI->start) {
// There is a gap in the live range. Create duplicate entries for the
// live-in snippet and the live-out snippet.
++NumGapBlocks;
// Push the Live-in part.
BI.LiveThrough = false;
BI.LiveOut = false;
UseBlocks.push_back(BI);
UseBlocks.back().LastUse = LastStop;
// Set up BI for the live-out part.
BI.LiveIn = false;
BI.LiveOut = true;
BI.FirstUse = LVI->start;
}
}
// Don't set LiveThrough when the block has a gap.
BI.LiveThrough = BI.LiveIn && BI.LiveOut;
UseBlocks.push_back(BI);
// LVI is now at LVE or LVI->end >= Stop.
if (LVI == LVE)
break;
}
// Live segment ends exactly at Stop. Move to the next segment.
if (LVI->end == Stop && ++LVI == LVE)
break;
// Pick the next basic block.
if (LVI->start < Stop)
++MFI;
else
MFI = LIS.getMBBFromIndex(LVI->start);
}
assert(getNumLiveBlocks() == countLiveBlocks(CurLI) && "Bad block count");
return true;
}
unsigned SplitAnalysis::countLiveBlocks(const LiveInterval *cli) const {
if (cli->empty())
return 0;
LiveInterval *li = const_cast<LiveInterval*>(cli);
LiveInterval::iterator LVI = li->begin();
LiveInterval::iterator LVE = li->end();
unsigned Count = 0;
// Loop over basic blocks where li is live.
MachineFunction::const_iterator MFI = LIS.getMBBFromIndex(LVI->start);
SlotIndex Stop = LIS.getMBBEndIdx(MFI);
for (;;) {
++Count;
LVI = li->advanceTo(LVI, Stop);
if (LVI == LVE)
return Count;
do {
++MFI;
Stop = LIS.getMBBEndIdx(MFI);
} while (Stop <= LVI->start);
}
}
bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const {
unsigned OrigReg = VRM.getOriginal(CurLI->reg);
const LiveInterval &Orig = LIS.getInterval(OrigReg);
assert(!Orig.empty() && "Splitting empty interval?");
LiveInterval::const_iterator I = Orig.find(Idx);
// Range containing Idx should begin at Idx.
if (I != Orig.end() && I->start <= Idx)
return I->start == Idx;
// Range does not contain Idx, previous must end at Idx.
return I != Orig.begin() && (--I)->end == Idx;
}
void SplitAnalysis::analyze(const LiveInterval *li) {
clear();
CurLI = li;
analyzeUses();
}
//===----------------------------------------------------------------------===//
// Split Editor
//===----------------------------------------------------------------------===//
/// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
SplitEditor::SplitEditor(SplitAnalysis &sa,
LiveIntervals &lis,
VirtRegMap &vrm,
MachineDominatorTree &mdt)
: SA(sa), LIS(lis), VRM(vrm),
MRI(vrm.getMachineFunction().getRegInfo()),
MDT(mdt),
TII(*vrm.getMachineFunction().getTarget().getInstrInfo()),
TRI(*vrm.getMachineFunction().getTarget().getRegisterInfo()),
Edit(0),
OpenIdx(0),
RegAssign(Allocator)
{}
void SplitEditor::reset(LiveRangeEdit &lre) {
Edit = &lre;
OpenIdx = 0;
RegAssign.clear();
Values.clear();
// We don't need to clear LiveOutCache, only LiveOutSeen entries are read.
LiveOutSeen.clear();
// We don't need an AliasAnalysis since we will only be performing
// cheap-as-a-copy remats anyway.
Edit->anyRematerializable(LIS, TII, 0);
}
void SplitEditor::dump() const {
if (RegAssign.empty()) {
dbgs() << " empty\n";
return;
}
for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I)
dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value();
dbgs() << '\n';
}
VNInfo *SplitEditor::defValue(unsigned RegIdx,
const VNInfo *ParentVNI,
SlotIndex Idx) {
assert(ParentVNI && "Mapping NULL value");
assert(Idx.isValid() && "Invalid SlotIndex");
assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI");
LiveInterval *LI = Edit->get(RegIdx);
// Create a new value.
VNInfo *VNI = LI->getNextValue(Idx, 0, LIS.getVNInfoAllocator());
// Use insert for lookup, so we can add missing values with a second lookup.
std::pair<ValueMap::iterator, bool> InsP =
Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id), VNI));
// This was the first time (RegIdx, ParentVNI) was mapped.
// Keep it as a simple def without any liveness.
if (InsP.second)
return VNI;
// If the previous value was a simple mapping, add liveness for it now.
if (VNInfo *OldVNI = InsP.first->second) {
SlotIndex Def = OldVNI->def;
LI->addRange(LiveRange(Def, Def.getNextSlot(), OldVNI));
// No longer a simple mapping.
InsP.first->second = 0;
}
// This is a complex mapping, add liveness for VNI
SlotIndex Def = VNI->def;
LI->addRange(LiveRange(Def, Def.getNextSlot(), VNI));
return VNI;
}
void SplitEditor::markComplexMapped(unsigned RegIdx, const VNInfo *ParentVNI) {
assert(ParentVNI && "Mapping NULL value");
VNInfo *&VNI = Values[std::make_pair(RegIdx, ParentVNI->id)];
// ParentVNI was either unmapped or already complex mapped. Either way.
if (!VNI)
return;
// This was previously a single mapping. Make sure the old def is represented
// by a trivial live range.
SlotIndex Def = VNI->def;
Edit->get(RegIdx)->addRange(LiveRange(Def, Def.getNextSlot(), VNI));
VNI = 0;
}
// extendRange - Extend the live range to reach Idx.
// Potentially create phi-def values.
void SplitEditor::extendRange(unsigned RegIdx, SlotIndex Idx) {
assert(Idx.isValid() && "Invalid SlotIndex");
MachineBasicBlock *IdxMBB = LIS.getMBBFromIndex(Idx);
assert(IdxMBB && "No MBB at Idx");
LiveInterval *LI = Edit->get(RegIdx);
// Is there a def in the same MBB we can extend?
if (LI->extendInBlock(LIS.getMBBStartIdx(IdxMBB), Idx))
return;
// Now for the fun part. We know that ParentVNI potentially has multiple defs,
// and we may need to create even more phi-defs to preserve VNInfo SSA form.
// Perform a search for all predecessor blocks where we know the dominating
// VNInfo.
VNInfo *VNI = findReachingDefs(LI, IdxMBB, Idx.getNextSlot());
// When there were multiple different values, we may need new PHIs.
if (!VNI)
return updateSSA();
// Poor man's SSA update for the single-value case.
LiveOutPair LOP(VNI, MDT[LIS.getMBBFromIndex(VNI->def)]);
for (SmallVectorImpl<LiveInBlock>::iterator I = LiveInBlocks.begin(),
E = LiveInBlocks.end(); I != E; ++I) {
MachineBasicBlock *MBB = I->DomNode->getBlock();
SlotIndex Start = LIS.getMBBStartIdx(MBB);
if (I->Kill.isValid())
LI->addRange(LiveRange(Start, I->Kill, VNI));
else {
LiveOutCache[MBB] = LOP;
LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI));
}
}
}
/// findReachingDefs - Search the CFG for known live-out values.
/// Add required live-in blocks to LiveInBlocks.
VNInfo *SplitEditor::findReachingDefs(LiveInterval *LI,
MachineBasicBlock *KillMBB,
SlotIndex Kill) {
// Initialize the live-out cache the first time it is needed.
if (LiveOutSeen.empty()) {
unsigned N = VRM.getMachineFunction().getNumBlockIDs();
LiveOutSeen.resize(N);
LiveOutCache.resize(N);
}
// Blocks where LI should be live-in.
SmallVector<MachineBasicBlock*, 16> WorkList(1, KillMBB);
// Remember if we have seen more than one value.
bool UniqueVNI = true;
VNInfo *TheVNI = 0;
// Using LiveOutCache as a visited set, perform a BFS for all reaching defs.
for (unsigned i = 0; i != WorkList.size(); ++i) {
MachineBasicBlock *MBB = WorkList[i];
assert(!MBB->pred_empty() && "Value live-in to entry block?");
for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
PE = MBB->pred_end(); PI != PE; ++PI) {
MachineBasicBlock *Pred = *PI;
LiveOutPair &LOP = LiveOutCache[Pred];
// Is this a known live-out block?
if (LiveOutSeen.test(Pred->getNumber())) {
if (VNInfo *VNI = LOP.first) {
if (TheVNI && TheVNI != VNI)
UniqueVNI = false;
TheVNI = VNI;
}
continue;
}
// First time. LOP is garbage and must be cleared below.
LiveOutSeen.set(Pred->getNumber());
// Does Pred provide a live-out value?
SlotIndex Start, Last;
tie(Start, Last) = LIS.getSlotIndexes()->getMBBRange(Pred);
Last = Last.getPrevSlot();
VNInfo *VNI = LI->extendInBlock(Start, Last);
LOP.first = VNI;
if (VNI) {
LOP.second = MDT[LIS.getMBBFromIndex(VNI->def)];
if (TheVNI && TheVNI != VNI)
UniqueVNI = false;
TheVNI = VNI;
continue;
}
LOP.second = 0;
// No, we need a live-in value for Pred as well
if (Pred != KillMBB)
WorkList.push_back(Pred);
else
// Loopback to KillMBB, so value is really live through.
Kill = SlotIndex();
}
}
// Transfer WorkList to LiveInBlocks in reverse order.
// This ordering works best with updateSSA().
LiveInBlocks.clear();
LiveInBlocks.reserve(WorkList.size());
while(!WorkList.empty())
LiveInBlocks.push_back(MDT[WorkList.pop_back_val()]);
// The kill block may not be live-through.
assert(LiveInBlocks.back().DomNode->getBlock() == KillMBB);
LiveInBlocks.back().Kill = Kill;
return UniqueVNI ? TheVNI : 0;
}
void SplitEditor::updateSSA() {
// This is essentially the same iterative algorithm that SSAUpdater uses,
// except we already have a dominator tree, so we don't have to recompute it.
unsigned Changes;
do {
Changes = 0;
// Propagate live-out values down the dominator tree, inserting phi-defs
// when necessary.
for (SmallVectorImpl<LiveInBlock>::iterator I = LiveInBlocks.begin(),
E = LiveInBlocks.end(); I != E; ++I) {
MachineDomTreeNode *Node = I->DomNode;
// Skip block if the live-in value has already been determined.
if (!Node)
continue;
MachineBasicBlock *MBB = Node->getBlock();
MachineDomTreeNode *IDom = Node->getIDom();
LiveOutPair IDomValue;
// We need a live-in value to a block with no immediate dominator?
// This is probably an unreachable block that has survived somehow.
bool needPHI = !IDom || !LiveOutSeen.test(IDom->getBlock()->getNumber());
// IDom dominates all of our predecessors, but it may not be their
// immediate dominator. Check if any of them have live-out values that are
// properly dominated by IDom. If so, we need a phi-def here.
if (!needPHI) {
IDomValue = LiveOutCache[IDom->getBlock()];
for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
PE = MBB->pred_end(); PI != PE; ++PI) {
LiveOutPair Value = LiveOutCache[*PI];
if (!Value.first || Value.first == IDomValue.first)
continue;
// This predecessor is carrying something other than IDomValue.
// It could be because IDomValue hasn't propagated yet, or it could be
// because MBB is in the dominance frontier of that value.
if (MDT.dominates(IDom, Value.second)) {
needPHI = true;
break;
}
}
}
// The value may be live-through even if Kill is set, as can happen when
// we are called from extendRange. In that case LiveOutSeen is true, and
// LiveOutCache indicates a foreign or missing value.
LiveOutPair &LOP = LiveOutCache[MBB];
// Create a phi-def if required.
if (needPHI) {
++Changes;
SlotIndex Start = LIS.getMBBStartIdx(MBB);
unsigned RegIdx = RegAssign.lookup(Start);
LiveInterval *LI = Edit->get(RegIdx);
VNInfo *VNI = LI->getNextValue(Start, 0, LIS.getVNInfoAllocator());
VNI->setIsPHIDef(true);
I->Value = VNI;
// This block is done, we know the final value.
I->DomNode = 0;
if (I->Kill.isValid())
LI->addRange(LiveRange(Start, I->Kill, VNI));
else {
LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI));
LOP = LiveOutPair(VNI, Node);
}
} else if (IDomValue.first) {
// No phi-def here. Remember incoming value.
I->Value = IDomValue.first;
if (I->Kill.isValid())
continue;
// Propagate IDomValue if needed:
// MBB is live-out and doesn't define its own value.
if (LOP.second != Node && LOP.first != IDomValue.first) {
++Changes;
LOP = IDomValue;
}
}
}
} while (Changes);
// The values in LiveInBlocks are now accurate. No more phi-defs are needed
// for these blocks, so we can color the live ranges.
for (SmallVectorImpl<LiveInBlock>::iterator I = LiveInBlocks.begin(),
E = LiveInBlocks.end(); I != E; ++I) {
if (!I->DomNode)
continue;
assert(I->Value && "No live-in value found");
MachineBasicBlock *MBB = I->DomNode->getBlock();
SlotIndex Start = LIS.getMBBStartIdx(MBB);
unsigned RegIdx = RegAssign.lookup(Start);
LiveInterval *LI = Edit->get(RegIdx);
LI->addRange(LiveRange(Start, I->Kill.isValid() ?
I->Kill : LIS.getMBBEndIdx(MBB), I->Value));
}
}
VNInfo *SplitEditor::defFromParent(unsigned RegIdx,
VNInfo *ParentVNI,
SlotIndex UseIdx,
MachineBasicBlock &MBB,
MachineBasicBlock::iterator I) {
MachineInstr *CopyMI = 0;
SlotIndex Def;
LiveInterval *LI = Edit->get(RegIdx);
// We may be trying to avoid interference that ends at a deleted instruction,
// so always begin RegIdx 0 early and all others late.
bool Late = RegIdx != 0;
// Attempt cheap-as-a-copy rematerialization.
LiveRangeEdit::Remat RM(ParentVNI);
if (Edit->canRematerializeAt(RM, UseIdx, true, LIS)) {
Def = Edit->rematerializeAt(MBB, I, LI->reg, RM, LIS, TII, TRI, Late);
++NumRemats;
} else {
// Can't remat, just insert a copy from parent.
CopyMI = BuildMI(MBB, I, DebugLoc(), TII.get(TargetOpcode::COPY), LI->reg)
.addReg(Edit->getReg());
Def = LIS.getSlotIndexes()->insertMachineInstrInMaps(CopyMI, Late)
.getDefIndex();
++NumCopies;
}
// Define the value in Reg.
VNInfo *VNI = defValue(RegIdx, ParentVNI, Def);
VNI->setCopy(CopyMI);
return VNI;
}
/// Create a new virtual register and live interval.
unsigned SplitEditor::openIntv() {
// Create the complement as index 0.
if (Edit->empty())
Edit->create(LIS, VRM);
// Create the open interval.
OpenIdx = Edit->size();
Edit->create(LIS, VRM);
return OpenIdx;
}
void SplitEditor::selectIntv(unsigned Idx) {
assert(Idx != 0 && "Cannot select the complement interval");
assert(Idx < Edit->size() && "Can only select previously opened interval");
DEBUG(dbgs() << " selectIntv " << OpenIdx << " -> " << Idx << '\n');
OpenIdx = Idx;
}
SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) {
assert(OpenIdx && "openIntv not called before enterIntvBefore");
DEBUG(dbgs() << " enterIntvBefore " << Idx);
Idx = Idx.getBaseIndex();
VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
if (!ParentVNI) {
DEBUG(dbgs() << ": not live\n");
return Idx;
}
DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
assert(MI && "enterIntvBefore called with invalid index");
VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI);
return VNI->def;
}
SlotIndex SplitEditor::enterIntvAfter(SlotIndex Idx) {
assert(OpenIdx && "openIntv not called before enterIntvAfter");
DEBUG(dbgs() << " enterIntvAfter " << Idx);
Idx = Idx.getBoundaryIndex();
VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
if (!ParentVNI) {
DEBUG(dbgs() << ": not live\n");
return Idx;
}
DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
assert(MI && "enterIntvAfter called with invalid index");
VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(),
llvm::next(MachineBasicBlock::iterator(MI)));
return VNI->def;
}
SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) {
assert(OpenIdx && "openIntv not called before enterIntvAtEnd");
SlotIndex End = LIS.getMBBEndIdx(&MBB);
SlotIndex Last = End.getPrevSlot();
DEBUG(dbgs() << " enterIntvAtEnd BB#" << MBB.getNumber() << ", " << Last);
VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last);
if (!ParentVNI) {
DEBUG(dbgs() << ": not live\n");
return End;
}
DEBUG(dbgs() << ": valno " << ParentVNI->id);
VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB,
LIS.getLastSplitPoint(Edit->getParent(), &MBB));
RegAssign.insert(VNI->def, End, OpenIdx);
DEBUG(dump());
return VNI->def;
}
/// useIntv - indicate that all instructions in MBB should use OpenLI.
void SplitEditor::useIntv(const MachineBasicBlock &MBB) {
useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB));
}
void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) {
assert(OpenIdx && "openIntv not called before useIntv");
DEBUG(dbgs() << " useIntv [" << Start << ';' << End << "):");
RegAssign.insert(Start, End, OpenIdx);
DEBUG(dump());
}
SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) {
assert(OpenIdx && "openIntv not called before leaveIntvAfter");
DEBUG(dbgs() << " leaveIntvAfter " << Idx);
// The interval must be live beyond the instruction at Idx.
Idx = Idx.getBoundaryIndex();
VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
if (!ParentVNI) {
DEBUG(dbgs() << ": not live\n");
return Idx.getNextSlot();
}
DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
assert(MI && "No instruction at index");
VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(),
llvm::next(MachineBasicBlock::iterator(MI)));
return VNI->def;
}
SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) {
assert(OpenIdx && "openIntv not called before leaveIntvBefore");
DEBUG(dbgs() << " leaveIntvBefore " << Idx);
// The interval must be live into the instruction at Idx.
Idx = Idx.getBoundaryIndex();
VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
if (!ParentVNI) {
DEBUG(dbgs() << ": not live\n");
return Idx.getNextSlot();
}
DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
assert(MI && "No instruction at index");
VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
return VNI->def;
}
SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) {
assert(OpenIdx && "openIntv not called before leaveIntvAtTop");
SlotIndex Start = LIS.getMBBStartIdx(&MBB);
DEBUG(dbgs() << " leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start);
VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
if (!ParentVNI) {
DEBUG(dbgs() << ": not live\n");
return Start;
}
VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB,
MBB.SkipPHIsAndLabels(MBB.begin()));
RegAssign.insert(Start, VNI->def, OpenIdx);
DEBUG(dump());
return VNI->def;
}
void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) {
assert(OpenIdx && "openIntv not called before overlapIntv");
const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
assert(ParentVNI == Edit->getParent().getVNInfoAt(End.getPrevSlot()) &&
"Parent changes value in extended range");
assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) &&
"Range cannot span basic blocks");
// The complement interval will be extended as needed by extendRange().
if (ParentVNI)
markComplexMapped(0, ParentVNI);
DEBUG(dbgs() << " overlapIntv [" << Start << ';' << End << "):");
RegAssign.insert(Start, End, OpenIdx);
DEBUG(dump());
}
/// transferValues - Transfer all possible values to the new live ranges.
/// Values that were rematerialized are left alone, they need extendRange().
bool SplitEditor::transferValues() {
bool Skipped = false;
LiveInBlocks.clear();
RegAssignMap::const_iterator AssignI = RegAssign.begin();
for (LiveInterval::const_iterator ParentI = Edit->getParent().begin(),
ParentE = Edit->getParent().end(); ParentI != ParentE; ++ParentI) {
DEBUG(dbgs() << " blit " << *ParentI << ':');
VNInfo *ParentVNI = ParentI->valno;
// RegAssign has holes where RegIdx 0 should be used.
SlotIndex Start = ParentI->start;
AssignI.advanceTo(Start);
do {
unsigned RegIdx;
SlotIndex End = ParentI->end;
if (!AssignI.valid()) {
RegIdx = 0;
} else if (AssignI.start() <= Start) {
RegIdx = AssignI.value();
if (AssignI.stop() < End) {
End = AssignI.stop();
++AssignI;
}
} else {
RegIdx = 0;
End = std::min(End, AssignI.start());
}
// The interval [Start;End) is continuously mapped to RegIdx, ParentVNI.
DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx);
LiveInterval *LI = Edit->get(RegIdx);
// Check for a simply defined value that can be blitted directly.
if (VNInfo *VNI = Values.lookup(std::make_pair(RegIdx, ParentVNI->id))) {
DEBUG(dbgs() << ':' << VNI->id);
LI->addRange(LiveRange(Start, End, VNI));
Start = End;
continue;
}
// Skip rematerialized values, we need to use extendRange() and
// extendPHIKillRanges() to completely recompute the live ranges.
if (Edit->didRematerialize(ParentVNI)) {
DEBUG(dbgs() << "(remat)");
Skipped = true;
Start = End;
continue;
}
// Initialize the live-out cache the first time it is needed.
if (LiveOutSeen.empty()) {
unsigned N = VRM.getMachineFunction().getNumBlockIDs();
LiveOutSeen.resize(N);
LiveOutCache.resize(N);
}
// This value has multiple defs in RegIdx, but it wasn't rematerialized,
// so the live range is accurate. Add live-in blocks in [Start;End) to the
// LiveInBlocks.
MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start);
SlotIndex BlockStart, BlockEnd;
tie(BlockStart, BlockEnd) = LIS.getSlotIndexes()->getMBBRange(MBB);
// The first block may be live-in, or it may have its own def.
if (Start != BlockStart) {
VNInfo *VNI = LI->extendInBlock(BlockStart,
std::min(BlockEnd, End).getPrevSlot());
assert(VNI && "Missing def for complex mapped value");
DEBUG(dbgs() << ':' << VNI->id << "*BB#" << MBB->getNumber());
// MBB has its own def. Is it also live-out?
if (BlockEnd <= End) {
LiveOutSeen.set(MBB->getNumber());
LiveOutCache[MBB] = LiveOutPair(VNI, MDT[MBB]);
}
// Skip to the next block for live-in.
++MBB;
BlockStart = BlockEnd;
}
// Handle the live-in blocks covered by [Start;End).
assert(Start <= BlockStart && "Expected live-in block");
while (BlockStart < End) {
DEBUG(dbgs() << ">BB#" << MBB->getNumber());
BlockEnd = LIS.getMBBEndIdx(MBB);
if (BlockStart == ParentVNI->def) {
// This block has the def of a parent PHI, so it isn't live-in.
assert(ParentVNI->isPHIDef() && "Non-phi defined at block start?");
VNInfo *VNI = LI->extendInBlock(BlockStart,
std::min(BlockEnd, End).getPrevSlot());
assert(VNI && "Missing def for complex mapped parent PHI");
if (End >= BlockEnd) {
// Live-out as well.
LiveOutSeen.set(MBB->getNumber());
LiveOutCache[MBB] = LiveOutPair(VNI, MDT[MBB]);
}
} else {
// This block needs a live-in value.
LiveInBlocks.push_back(MDT[MBB]);
// The last block covered may not be live-out.
if (End < BlockEnd)
LiveInBlocks.back().Kill = End;
else {
// Live-out, but we need updateSSA to tell us the value.
LiveOutSeen.set(MBB->getNumber());
LiveOutCache[MBB] = LiveOutPair((VNInfo*)0,
(MachineDomTreeNode*)0);
}
}
BlockStart = BlockEnd;
++MBB;
}
Start = End;
} while (Start != ParentI->end);
DEBUG(dbgs() << '\n');
}
if (!LiveInBlocks.empty())
updateSSA();
return Skipped;
}
void SplitEditor::extendPHIKillRanges() {
// Extend live ranges to be live-out for successor PHI values.
for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(),
E = Edit->getParent().vni_end(); I != E; ++I) {
const VNInfo *PHIVNI = *I;
if (PHIVNI->isUnused() || !PHIVNI->isPHIDef())
continue;
unsigned RegIdx = RegAssign.lookup(PHIVNI->def);
MachineBasicBlock *MBB = LIS.getMBBFromIndex(PHIVNI->def);
for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
PE = MBB->pred_end(); PI != PE; ++PI) {
SlotIndex End = LIS.getMBBEndIdx(*PI).getPrevSlot();
// The predecessor may not have a live-out value. That is OK, like an
// undef PHI operand.
if (Edit->getParent().liveAt(End)) {
assert(RegAssign.lookup(End) == RegIdx &&
"Different register assignment in phi predecessor");
extendRange(RegIdx, End);
}
}
}
}
/// rewriteAssigned - Rewrite all uses of Edit->getReg().
void SplitEditor::rewriteAssigned(bool ExtendRanges) {
for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit->getReg()),
RE = MRI.reg_end(); RI != RE;) {
MachineOperand &MO = RI.getOperand();
MachineInstr *MI = MO.getParent();
++RI;
// LiveDebugVariables should have handled all DBG_VALUE instructions.
if (MI->isDebugValue()) {
DEBUG(dbgs() << "Zapping " << *MI);
MO.setReg(0);
continue;
}
// <undef> operands don't really read the register, so just assign them to
// the complement.
if (MO.isUse() && MO.isUndef()) {
MO.setReg(Edit->get(0)->reg);
continue;
}
SlotIndex Idx = LIS.getInstructionIndex(MI);
if (MO.isDef())
Idx = MO.isEarlyClobber() ? Idx.getUseIndex() : Idx.getDefIndex();
// Rewrite to the mapped register at Idx.
unsigned RegIdx = RegAssign.lookup(Idx);
MO.setReg(Edit->get(RegIdx)->reg);
DEBUG(dbgs() << " rewr BB#" << MI->getParent()->getNumber() << '\t'
<< Idx << ':' << RegIdx << '\t' << *MI);
// Extend liveness to Idx if the instruction reads reg.
if (!ExtendRanges)
continue;
// Skip instructions that don't read Reg.
if (MO.isDef()) {
if (!MO.getSubReg() && !MO.isEarlyClobber())
continue;
// We may wan't to extend a live range for a partial redef, or for a use
// tied to an early clobber.
Idx = Idx.getPrevSlot();
if (!Edit->getParent().liveAt(Idx))
continue;
} else
Idx = Idx.getUseIndex();
extendRange(RegIdx, Idx);
}
}
void SplitEditor::deleteRematVictims() {
SmallVector<MachineInstr*, 8> Dead;
for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I){
LiveInterval *LI = *I;
for (LiveInterval::const_iterator LII = LI->begin(), LIE = LI->end();
LII != LIE; ++LII) {
// Dead defs end at the store slot.
if (LII->end != LII->valno->def.getNextSlot())
continue;
MachineInstr *MI = LIS.getInstructionFromIndex(LII->valno->def);
assert(MI && "Missing instruction for dead def");
MI->addRegisterDead(LI->reg, &TRI);
if (!MI->allDefsAreDead())
continue;
DEBUG(dbgs() << "All defs dead: " << *MI);
Dead.push_back(MI);
}
}
if (Dead.empty())
return;
Edit->eliminateDeadDefs(Dead, LIS, VRM, TII);
}
void SplitEditor::finish(SmallVectorImpl<unsigned> *LRMap) {
++NumFinished;
// At this point, the live intervals in Edit contain VNInfos corresponding to
// the inserted copies.
// Add the original defs from the parent interval.
for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(),
E = Edit->getParent().vni_end(); I != E; ++I) {
const VNInfo *ParentVNI = *I;
if (ParentVNI->isUnused())
continue;
unsigned RegIdx = RegAssign.lookup(ParentVNI->def);
VNInfo *VNI = defValue(RegIdx, ParentVNI, ParentVNI->def);
VNI->setIsPHIDef(ParentVNI->isPHIDef());
VNI->setCopy(ParentVNI->getCopy());
// Mark rematted values as complex everywhere to force liveness computation.
// The new live ranges may be truncated.
if (Edit->didRematerialize(ParentVNI))
for (unsigned i = 0, e = Edit->size(); i != e; ++i)
markComplexMapped(i, ParentVNI);
}
// Transfer the simply mapped values, check if any are skipped.
bool Skipped = transferValues();
if (Skipped)
extendPHIKillRanges();
else
++NumSimple;
// Rewrite virtual registers, possibly extending ranges.
rewriteAssigned(Skipped);
// Delete defs that were rematted everywhere.
if (Skipped)
deleteRematVictims();
// Get rid of unused values and set phi-kill flags.
for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I)
(*I)->RenumberValues(LIS);
// Provide a reverse mapping from original indices to Edit ranges.
if (LRMap) {
LRMap->clear();
for (unsigned i = 0, e = Edit->size(); i != e; ++i)
LRMap->push_back(i);
}
// Now check if any registers were separated into multiple components.
ConnectedVNInfoEqClasses ConEQ(LIS);
for (unsigned i = 0, e = Edit->size(); i != e; ++i) {
// Don't use iterators, they are invalidated by create() below.
LiveInterval *li = Edit->get(i);
unsigned NumComp = ConEQ.Classify(li);
if (NumComp <= 1)
continue;
DEBUG(dbgs() << " " << NumComp << " components: " << *li << '\n');
SmallVector<LiveInterval*, 8> dups;
dups.push_back(li);
for (unsigned j = 1; j != NumComp; ++j)
dups.push_back(&Edit->create(LIS, VRM));
ConEQ.Distribute(&dups[0], MRI);
// The new intervals all map back to i.
if (LRMap)
LRMap->resize(Edit->size(), i);
}
// Calculate spill weight and allocation hints for new intervals.
Edit->calculateRegClassAndHint(VRM.getMachineFunction(), LIS, SA.Loops);
assert(!LRMap || LRMap->size() == Edit->size());
}
//===----------------------------------------------------------------------===//
// Single Block Splitting
//===----------------------------------------------------------------------===//
/// getMultiUseBlocks - if CurLI has more than one use in a basic block, it
/// may be an advantage to split CurLI for the duration of the block.
bool SplitAnalysis::getMultiUseBlocks(BlockPtrSet &Blocks) {
// If CurLI is local to one block, there is no point to splitting it.
if (UseBlocks.size() <= 1)
return false;
// Add blocks with multiple uses.
for (unsigned i = 0, e = UseBlocks.size(); i != e; ++i) {
const BlockInfo &BI = UseBlocks[i];
if (BI.FirstUse == BI.LastUse)
continue;
Blocks.insert(BI.MBB);
}
return !Blocks.empty();
}
void SplitEditor::splitSingleBlock(const SplitAnalysis::BlockInfo &BI) {
openIntv();
SlotIndex LastSplitPoint = SA.getLastSplitPoint(BI.MBB->getNumber());
SlotIndex SegStart = enterIntvBefore(std::min(BI.FirstUse,
LastSplitPoint));
if (!BI.LiveOut || BI.LastUse < LastSplitPoint) {
useIntv(SegStart, leaveIntvAfter(BI.LastUse));
} else {
// The last use is after the last valid split point.
SlotIndex SegStop = leaveIntvBefore(LastSplitPoint);
useIntv(SegStart, SegStop);
overlapIntv(SegStop, BI.LastUse);
}
}
/// splitSingleBlocks - Split CurLI into a separate live interval inside each
/// basic block in Blocks.
void SplitEditor::splitSingleBlocks(const SplitAnalysis::BlockPtrSet &Blocks) {
DEBUG(dbgs() << " splitSingleBlocks for " << Blocks.size() << " blocks.\n");
ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA.getUseBlocks();
for (unsigned i = 0; i != UseBlocks.size(); ++i) {
const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
if (Blocks.count(BI.MBB))
splitSingleBlock(BI);
}
finish();
}