llvm-6502/lib/Target/X86/InstSelectSimple.cpp
Chris Lattner 43189d17c3 Switch visitRet to use getClass()
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@4710 91177308-0d34-0410-b5e6-96231b3b80d8
2002-11-17 20:07:45 +00:00

583 lines
20 KiB
C++

//===-- InstSelectSimple.cpp - A simple instruction selector for x86 ------===//
//
// This file defines a simple peephole instruction selector for the x86 platform
//
//===----------------------------------------------------------------------===//
#include "X86.h"
#include "X86InstrInfo.h"
#include "llvm/Function.h"
#include "llvm/iTerminators.h"
#include "llvm/iOperators.h"
#include "llvm/iOther.h"
#include "llvm/iPHINode.h"
#include "llvm/Type.h"
#include "llvm/Constants.h"
#include "llvm/Pass.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/Support/InstVisitor.h"
namespace {
struct ISel : public FunctionPass, InstVisitor<ISel> {
TargetMachine &TM;
MachineFunction *F; // The function we are compiling into
MachineBasicBlock *BB; // The current MBB we are compiling
unsigned CurReg;
std::map<Value*, unsigned> RegMap; // Mapping between Val's and SSA Regs
ISel(TargetMachine &tm)
: TM(tm), F(0), BB(0), CurReg(MRegisterInfo::FirstVirtualRegister) {}
/// runOnFunction - Top level implementation of instruction selection for
/// the entire function.
///
bool runOnFunction(Function &Fn) {
F = &MachineFunction::construct(&Fn, TM);
visit(Fn);
RegMap.clear();
F = 0;
return false; // We never modify the LLVM itself.
}
/// visitBasicBlock - This method is called when we are visiting a new basic
/// block. This simply creates a new MachineBasicBlock to emit code into
/// and adds it to the current MachineFunction. Subsequent visit* for
/// instructions will be invoked for all instructions in the basic block.
///
void visitBasicBlock(BasicBlock &LLVM_BB) {
BB = new MachineBasicBlock(&LLVM_BB);
// FIXME: Use the auto-insert form when it's available
F->getBasicBlockList().push_back(BB);
}
// Visitation methods for various instructions. These methods simply emit
// fixed X86 code for each instruction.
//
void visitReturnInst(ReturnInst &RI);
void visitBranchInst(BranchInst &BI);
// Arithmetic operators
void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); }
void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); }
void visitMul(BinaryOperator &B);
void visitDiv(BinaryOperator &B) { visitDivRem(B); }
void visitRem(BinaryOperator &B) { visitDivRem(B); }
void visitDivRem(BinaryOperator &B);
// Bitwise operators
void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); }
void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); }
void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); }
// Binary comparison operators
// Other operators
void visitShiftInst(ShiftInst &I);
void visitSetCondInst(SetCondInst &I);
void visitPHINode(PHINode &I);
void visitInstruction(Instruction &I) {
std::cerr << "Cannot instruction select: " << I;
abort();
}
/// copyConstantToRegister - Output the instructions required to put the
/// specified constant into the specified register.
///
void copyConstantToRegister(Constant *C, unsigned Reg);
/// getReg - This method turns an LLVM value into a register number. This
/// is guaranteed to produce the same register number for a particular value
/// every time it is queried.
///
unsigned getReg(Value &V) { return getReg(&V); } // Allow references
unsigned getReg(Value *V) {
unsigned &Reg = RegMap[V];
if (Reg == 0)
Reg = CurReg++;
// If this operand is a constant, emit the code to copy the constant into
// the register here...
//
if (Constant *C = dyn_cast<Constant>(V))
copyConstantToRegister(C, Reg);
return Reg;
}
};
}
/// TypeClass - Used by the X86 backend to group LLVM types by their basic X86
/// Representation.
///
enum TypeClass {
cByte, cShort, cInt, cLong, cFloat, cDouble
};
/// getClass - Turn a primitive type into a "class" number which is based on the
/// size of the type, and whether or not it is floating point.
///
static inline TypeClass getClass(const Type *Ty) {
switch (Ty->getPrimitiveID()) {
case Type::SByteTyID:
case Type::UByteTyID: return cByte; // Byte operands are class #0
case Type::ShortTyID:
case Type::UShortTyID: return cShort; // Short operands are class #1
case Type::IntTyID:
case Type::UIntTyID:
case Type::PointerTyID: return cInt; // Int's and pointers are class #2
case Type::LongTyID:
case Type::ULongTyID: return cLong; // Longs are class #3
case Type::FloatTyID: return cFloat; // Float is class #4
case Type::DoubleTyID: return cDouble; // Doubles are class #5
default:
assert(0 && "Invalid type to getClass!");
return cByte; // not reached
}
}
/// copyConstantToRegister - Output the instructions required to put the
/// specified constant into the specified register.
///
void ISel::copyConstantToRegister(Constant *C, unsigned R) {
assert (!isa<ConstantExpr>(C) && "Constant expressions not yet handled!\n");
if (C->getType()->isIntegral()) {
unsigned Class = getClass(C->getType());
assert(Class != 3 && "Type not handled yet!");
static const unsigned IntegralOpcodeTab[] = {
X86::MOVir8, X86::MOVir16, X86::MOVir32
};
if (C->getType()->isSigned()) {
ConstantSInt *CSI = cast<ConstantSInt>(C);
BuildMI(BB, IntegralOpcodeTab[Class], 1, R).addSImm(CSI->getValue());
} else {
ConstantUInt *CUI = cast<ConstantUInt>(C);
BuildMI(BB, IntegralOpcodeTab[Class], 1, R).addZImm(CUI->getValue());
}
} else {
assert(0 && "Type not handled yet!");
}
}
/// SetCC instructions - Here we just emit boilerplate code to set a byte-sized
/// register, then move it to wherever the result should be.
/// We handle FP setcc instructions by pushing them, doing a
/// compare-and-pop-twice, and then copying the concodes to the main
/// processor's concodes (I didn't make this up, it's in the Intel manual)
///
void
ISel::visitSetCondInst (SetCondInst & I)
{
// The arguments are already supposed to be of the same type.
Value *var1 = I.getOperand (0);
Value *var2 = I.getOperand (1);
unsigned reg1 = getReg (var1);
unsigned reg2 = getReg (var2);
unsigned resultReg = getReg (I);
unsigned comparisonWidth = var1->getType ()->getPrimitiveSize ();
unsigned unsignedComparison = var1->getType ()->isUnsigned ();
unsigned resultWidth = I.getType ()->getPrimitiveSize ();
bool fpComparison = var1->getType ()->isFloatingPoint ();
if (fpComparison)
{
// Push the variables on the stack with fldl opcodes.
// FIXME: assuming var1, var2 are in memory, if not, spill to
// stack first
switch (comparisonWidth)
{
case 4:
BuildMI (BB, X86::FLDr4, 1, X86::NoReg).addReg (reg1);
break;
case 8:
BuildMI (BB, X86::FLDr8, 1, X86::NoReg).addReg (reg1);
break;
default:
visitInstruction (I);
break;
}
switch (comparisonWidth)
{
case 4:
BuildMI (BB, X86::FLDr4, 1, X86::NoReg).addReg (reg2);
break;
case 8:
BuildMI (BB, X86::FLDr8, 1, X86::NoReg).addReg (reg2);
break;
default:
visitInstruction (I);
break;
}
// (Non-trapping) compare and pop twice.
BuildMI (BB, X86::FUCOMPP, 0);
// Move fp status word (concodes) to ax.
BuildMI (BB, X86::FNSTSWr8, 1, X86::AX);
// Load real concodes from ax.
BuildMI (BB, X86::SAHF, 1, X86::EFLAGS).addReg(X86::AH);
}
else
{ // integer comparison
// Emit: cmp <var1>, <var2> (do the comparison). We can
// compare 8-bit with 8-bit, 16-bit with 16-bit, 32-bit with
// 32-bit.
switch (comparisonWidth)
{
case 1:
BuildMI (BB, X86::CMPrr8, 2,
X86::EFLAGS).addReg (reg1).addReg (reg2);
break;
case 2:
BuildMI (BB, X86::CMPrr16, 2,
X86::EFLAGS).addReg (reg1).addReg (reg2);
break;
case 4:
BuildMI (BB, X86::CMPrr32, 2,
X86::EFLAGS).addReg (reg1).addReg (reg2);
break;
case 8:
default:
visitInstruction (I);
break;
}
}
// Emit setOp instruction (extract concode; clobbers ax),
// using the following mapping:
// LLVM -> X86 signed X86 unsigned
// ----- ----- -----
// seteq -> sete sete
// setne -> setne setne
// setlt -> setl setb
// setgt -> setg seta
// setle -> setle setbe
// setge -> setge setae
switch (I.getOpcode ())
{
case Instruction::SetEQ:
BuildMI (BB, X86::SETE, 0, X86::AL);
break;
case Instruction::SetGE:
if (unsignedComparison)
BuildMI (BB, X86::SETAE, 0, X86::AL);
else
BuildMI (BB, X86::SETGE, 0, X86::AL);
break;
case Instruction::SetGT:
if (unsignedComparison)
BuildMI (BB, X86::SETA, 0, X86::AL);
else
BuildMI (BB, X86::SETG, 0, X86::AL);
break;
case Instruction::SetLE:
if (unsignedComparison)
BuildMI (BB, X86::SETBE, 0, X86::AL);
else
BuildMI (BB, X86::SETLE, 0, X86::AL);
break;
case Instruction::SetLT:
if (unsignedComparison)
BuildMI (BB, X86::SETB, 0, X86::AL);
else
BuildMI (BB, X86::SETL, 0, X86::AL);
break;
case Instruction::SetNE:
BuildMI (BB, X86::SETNE, 0, X86::AL);
break;
default:
visitInstruction (I);
break;
}
// Put it in the result using a move.
switch (resultWidth)
{
case 1:
BuildMI (BB, X86::MOVrr8, 1, resultReg).addReg (X86::AL);
break;
case 2:
BuildMI (BB, X86::MOVZXr16r8, 1, resultReg).addReg (X86::AL);
break;
case 4:
BuildMI (BB, X86::MOVZXr32r8, 1, resultReg).addReg (X86::AL);
break;
case 8:
default:
visitInstruction (I);
break;
}
}
/// 'ret' instruction - Here we are interested in meeting the x86 ABI. As such,
/// we have the following possibilities:
///
/// ret void: No return value, simply emit a 'ret' instruction
/// ret sbyte, ubyte : Extend value into EAX and return
/// ret short, ushort: Extend value into EAX and return
/// ret int, uint : Move value into EAX and return
/// ret pointer : Move value into EAX and return
/// ret long, ulong : Move value into EAX/EDX (?) and return
/// ret float/double : ? Top of FP stack? XMM0?
///
void ISel::visitReturnInst (ReturnInst & I) {
if (I.getNumOperands() == 0) {
// Emit a 'ret' instruction
BuildMI(BB, X86::RET, 0);
return;
}
unsigned val = getReg(I.getOperand(0));
unsigned Class = getClass(I.getType());
bool isUnsigned = I.getOperand(0)->getType()->isUnsigned();
switch (Class) {
case cByte:
// ret sbyte, ubyte: Extend value into EAX and return
if (isUnsigned) {
BuildMI (BB, X86::MOVZXr32r8, 1, X86::EAX).addReg (val);
} else {
BuildMI (BB, X86::MOVSXr32r8, 1, X86::EAX).addReg (val);
}
break;
case cShort:
// ret short, ushort: Extend value into EAX and return
if (unsignedReturnValue) {
BuildMI (BB, X86::MOVZXr32r16, 1, X86::EAX).addReg (val);
} else {
BuildMI (BB, X86::MOVSXr32r16, 1, X86::EAX).addReg (val);
}
break;
case cInt:
// ret int, uint, ptr: Move value into EAX and return
// MOV EAX, <val>
BuildMI(BB, X86::MOVrr32, 1, X86::EAX).addReg(val);
break;
// ret float/double: top of FP stack
// FLD <val>
case cFloat: // Floats
BuildMI(BB, X86::FLDr4, 1).addReg(val);
break;
case cDouble: // Doubles
BuildMI(BB, X86::FLDr8, 1).addReg(val);
break;
case cLong:
// ret long: use EAX(least significant 32 bits)/EDX (most
// significant 32)...uh, I think so Brain, but how do i call
// up the two parts of the value from inside this mouse
// cage? *zort*
default:
visitInstruction(I);
}
// Emit a 'ret' instruction
BuildMI(BB, X86::RET, 0);
}
/// visitBranchInst - Handle conditional and unconditional branches here. Note
/// that since code layout is frozen at this point, that if we are trying to
/// jump to a block that is the immediate successor of the current block, we can
/// just make a fall-through. (but we don't currently).
///
void ISel::visitBranchInst(BranchInst &BI) {
if (BI.isConditional()) // Only handles unconditional branches so far...
visitInstruction(BI);
BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(0));
}
/// visitSimpleBinary - Implement simple binary operators for integral types...
/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or,
/// 4 for Xor.
///
void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
if (B.getType() == Type::BoolTy) // FIXME: Handle bools for logicals
visitInstruction(B);
unsigned Class = getClass(B.getType());
if (Class > 2) // FIXME: Handle longs
visitInstruction(B);
static const unsigned OpcodeTab[][4] = {
// Arithmetic operators
{ X86::ADDrr8, X86::ADDrr16, X86::ADDrr32, 0 }, // ADD
{ X86::SUBrr8, X86::SUBrr16, X86::SUBrr32, 0 }, // SUB
// Bitwise operators
{ X86::ANDrr8, X86::ANDrr16, X86::ANDrr32, 0 }, // AND
{ X86:: ORrr8, X86:: ORrr16, X86:: ORrr32, 0 }, // OR
{ X86::XORrr8, X86::XORrr16, X86::XORrr32, 0 }, // XOR
};
unsigned Opcode = OpcodeTab[OperatorClass][Class];
unsigned Op0r = getReg(B.getOperand(0));
unsigned Op1r = getReg(B.getOperand(1));
BuildMI(BB, Opcode, 2, getReg(B)).addReg(Op0r).addReg(Op1r);
}
/// visitMul - Multiplies are not simple binary operators because they must deal
/// with the EAX register explicitly.
///
void ISel::visitMul(BinaryOperator &I) {
unsigned Class = getClass(I.getType());
if (Class > 2) // FIXME: Handle longs
visitInstruction(I);
static const unsigned Regs[] ={ X86::AL , X86::AX , X86::EAX };
static const unsigned MulOpcode[]={ X86::MULrr8, X86::MULrr16, X86::MULrr32 };
static const unsigned MovOpcode[]={ X86::MOVrr8, X86::MOVrr16, X86::MOVrr32 };
unsigned Reg = Regs[Class];
unsigned Op0Reg = getReg(I.getOperand(1));
unsigned Op1Reg = getReg(I.getOperand(1));
// Put the first operand into one of the A registers...
BuildMI(BB, MovOpcode[Class], 1, Reg).addReg(Op0Reg);
// Emit the appropriate multiple instruction...
// FIXME: We need to mark that this modified AH, DX, or EDX also!!
BuildMI(BB, MulOpcode[Class], 2, Reg).addReg(Reg).addReg(Op1Reg);
// Put the result into the destination register...
BuildMI(BB, MovOpcode[Class], 1, getReg(I)).addReg(Reg);
}
/// visitDivRem - Handle division and remainder instructions... these
/// instruction both require the same instructions to be generated, they just
/// select the result from a different register. Note that both of these
/// instructions work differently for signed and unsigned operands.
///
void ISel::visitDivRem(BinaryOperator &I) {
unsigned Class = getClass(I.getType());
if (Class > 2) // FIXME: Handle longs
visitInstruction(I);
static const unsigned Regs[] ={ X86::AL , X86::AX , X86::EAX };
static const unsigned MovOpcode[]={ X86::MOVrr8, X86::MOVrr16, X86::MOVrr32 };
static const unsigned ExtOpcode[]={ X86::CBW , X86::CWD , X86::CDQ };
static const unsigned ClrOpcode[]={ X86::XORrr8, X86::XORrr16, X86::XORrr32 };
static const unsigned ExtRegs[] ={ X86::AH , X86::DX , X86::EDX };
static const unsigned DivOpcode[][4] = {
{ X86::DIVrr8 , X86::DIVrr16 , X86::DIVrr32 , 0 }, // Unsigned division
{ X86::IDIVrr8, X86::IDIVrr16, X86::IDIVrr32, 0 }, // Signed division
};
bool isSigned = I.getType()->isSigned();
unsigned Reg = Regs[Class];
unsigned ExtReg = ExtRegs[Class];
unsigned Op0Reg = getReg(I.getOperand(1));
unsigned Op1Reg = getReg(I.getOperand(1));
// Put the first operand into one of the A registers...
BuildMI(BB, MovOpcode[Class], 1, Reg).addReg(Op0Reg);
if (isSigned) {
// Emit a sign extension instruction...
BuildMI(BB, ExtOpcode[Class], 1, ExtReg).addReg(Reg);
} else {
// If unsigned, emit a zeroing instruction... (reg = xor reg, reg)
BuildMI(BB, ClrOpcode[Class], 2, ExtReg).addReg(ExtReg).addReg(ExtReg);
}
// Figure out which register we want to pick the result out of...
unsigned DestReg = (I.getOpcode() == Instruction::Div) ? Reg : ExtReg;
// Emit the appropriate divide or remainder instruction...
// FIXME: We need to mark that this modified AH, DX, or EDX also!!
BuildMI(BB,DivOpcode[isSigned][Class], 2, DestReg).addReg(Reg).addReg(Op1Reg);
// Put the result into the destination register...
BuildMI(BB, MovOpcode[Class], 1, getReg(I)).addReg(DestReg);
}
/// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here
/// for constant immediate shift values, and for constant immediate
/// shift values equal to 1. Even the general case is sort of special,
/// because the shift amount has to be in CL, not just any old register.
///
void ISel::visitShiftInst (ShiftInst &I) {
unsigned Op0r = getReg (I.getOperand(0));
unsigned DestReg = getReg(I);
bool isLeftShift = I.getOpcode() == Instruction::Shl;
bool isOperandSigned = I.getType()->isUnsigned();
unsigned OperandClass = getClass(I.getType());
if (OperandClass > 2)
visitInstruction(I); // Can't handle longs yet!
if (ConstantUInt *CUI = dyn_cast <ConstantUInt> (I.getOperand (1)))
{
// The shift amount is constant, guaranteed to be a ubyte. Get its value.
assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?");
unsigned char shAmt = CUI->getValue();
static const unsigned ConstantOperand[][4] = {
{ X86::SHRir8, X86::SHRir16, X86::SHRir32, 0 }, // SHR
{ X86::SARir8, X86::SARir16, X86::SARir32, 0 }, // SAR
{ X86::SHLir8, X86::SHLir16, X86::SHLir32, 0 }, // SHL
{ X86::SHLir8, X86::SHLir16, X86::SHLir32, 0 }, // SAL = SHL
};
const unsigned *OpTab = // Figure out the operand table to use
ConstantOperand[isLeftShift*2+isOperandSigned];
// Emit: <insn> reg, shamt (shift-by-immediate opcode "ir" form.)
BuildMI(BB, OpTab[OperandClass], 2, DestReg).addReg(Op0r).addZImm(shAmt);
}
else
{
// The shift amount is non-constant.
//
// In fact, you can only shift with a variable shift amount if
// that amount is already in the CL register, so we have to put it
// there first.
//
// Emit: move cl, shiftAmount (put the shift amount in CL.)
BuildMI(BB, X86::MOVrr8, 1, X86::CL).addReg(getReg(I.getOperand(1)));
// This is a shift right (SHR).
static const unsigned NonConstantOperand[][4] = {
{ X86::SHRrr8, X86::SHRrr16, X86::SHRrr32, 0 }, // SHR
{ X86::SARrr8, X86::SARrr16, X86::SARrr32, 0 }, // SAR
{ X86::SHLrr8, X86::SHLrr16, X86::SHLrr32, 0 }, // SHL
{ X86::SHLrr8, X86::SHLrr16, X86::SHLrr32, 0 }, // SAL = SHL
};
const unsigned *OpTab = // Figure out the operand table to use
NonConstantOperand[isLeftShift*2+isOperandSigned];
BuildMI(BB, OpTab[OperandClass], 2, DestReg).addReg(Op0r).addReg(X86::CL);
}
}
/// visitPHINode - Turn an LLVM PHI node into an X86 PHI node...
///
void ISel::visitPHINode(PHINode &PN) {
MachineInstr *MI = BuildMI(BB, X86::PHI, PN.getNumOperands(), getReg(PN));
for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
// FIXME: This will put constants after the PHI nodes in the block, which
// is invalid. They should be put inline into the PHI node eventually.
//
MI->addRegOperand(getReg(PN.getIncomingValue(i)));
MI->addPCDispOperand(PN.getIncomingBlock(i));
}
}
/// createSimpleX86InstructionSelector - This pass converts an LLVM function
/// into a machine code representation is a very simple peep-hole fashion. The
/// generated code sucks but the implementation is nice and simple.
///
Pass *createSimpleX86InstructionSelector(TargetMachine &TM) {
return new ISel(TM);
}