llvm-6502/include/llvm/Transforms/Scalar.h
Nate Begeman 14b0529532 Add support alignment of allocation instructions.
Add support for specifying alignment and size of setjmp jmpbufs.

No targets currently do anything with this information, nor is it presrved
in the bytecode representation.  That's coming up next.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@24196 91177308-0d34-0410-b5e6-96231b3b80d8
2005-11-05 09:21:28 +00:00

297 lines
11 KiB
C++

//===-- Scalar.h - Scalar Transformations -----------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This header file defines prototypes for accessor functions that expose passes
// in the Scalar transformations library.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_TRANSFORMS_SCALAR_H
#define LLVM_TRANSFORMS_SCALAR_H
namespace llvm {
class ModulePass;
class FunctionPass;
class GetElementPtrInst;
class PassInfo;
class TerminatorInst;
//===----------------------------------------------------------------------===//
//
// RaisePointerReferences - Try to eliminate as many pointer arithmetic
// expressions as possible, by converting expressions to use getelementptr and
// friends.
//
FunctionPass *createRaisePointerReferencesPass();
//===----------------------------------------------------------------------===//
//
// Constant Propagation Pass - A worklist driven constant propagation pass
//
FunctionPass *createConstantPropagationPass();
//===----------------------------------------------------------------------===//
//
// Sparse Conditional Constant Propagation Pass
//
FunctionPass *createSCCPPass();
//===----------------------------------------------------------------------===//
//
// DeadInstElimination - This pass quickly removes trivially dead instructions
// without modifying the CFG of the function. It is a BasicBlockPass, so it
// runs efficiently when queued next to other BasicBlockPass's.
//
FunctionPass *createDeadInstEliminationPass();
//===----------------------------------------------------------------------===//
//
// DeadCodeElimination - This pass is more powerful than DeadInstElimination,
// because it is worklist driven that can potentially revisit instructions when
// their other instructions become dead, to eliminate chains of dead
// computations.
//
FunctionPass *createDeadCodeEliminationPass();
//===----------------------------------------------------------------------===//
//
// DeadStoreElimination - This pass deletes stores that are post-dominated by
// must-aliased stores and are not loaded used between the stores.
//
FunctionPass *createDeadStoreEliminationPass();
//===----------------------------------------------------------------------===//
//
// AggressiveDCE - This pass uses the SSA based Aggressive DCE algorithm. This
// algorithm assumes instructions are dead until proven otherwise, which makes
// it more successful are removing non-obviously dead instructions.
//
FunctionPass *createAggressiveDCEPass();
//===----------------------------------------------------------------------===//
//
// Scalar Replacement of Aggregates - Break up alloca's of aggregates into
// multiple allocas if possible.
//
FunctionPass *createScalarReplAggregatesPass();
//===----------------------------------------------------------------------===//
//
// GCSE - This pass is designed to be a very quick global transformation that
// eliminates global common subexpressions from a function. It does this by
// examining the SSA value graph of the function, instead of doing slow
// bit-vector computations.
//
FunctionPass *createGCSEPass();
//===----------------------------------------------------------------------===//
//
// InductionVariableSimplify - Transform induction variables in a program to all
// use a single canonical induction variable per loop.
//
FunctionPass *createIndVarSimplifyPass();
//===----------------------------------------------------------------------===//
//
// InstructionCombining - Combine instructions to form fewer, simple
// instructions. This pass does not modify the CFG, and has a tendency to
// make instructions dead, so a subsequent DCE pass is useful.
//
// This pass combines things like:
// %Y = add int 1, %X
// %Z = add int 1, %Y
// into:
// %Z = add int 2, %X
//
FunctionPass *createInstructionCombiningPass();
//===----------------------------------------------------------------------===//
//
// LICM - This pass is a loop invariant code motion and memory promotion pass.
//
FunctionPass *createLICMPass();
//===----------------------------------------------------------------------===//
//
// LoopStrengthReduce - This pass is strength reduces GEP instructions that use
// a loop's canonical induction variable as one of their indices. The
// MaxTargetAMSize is the largest element size that the target architecture
// can handle in its addressing modes. Power of two multipliers less than or
// equal to this value are not reduced.
//
FunctionPass *createLoopStrengthReducePass(unsigned MaxTargetAMSize = 1);
//===----------------------------------------------------------------------===//
//
// LoopUnswitch - This pass is a simple loop unswitching pass.
//
FunctionPass *createLoopUnswitchPass();
//===----------------------------------------------------------------------===//
//
// LoopUnroll - This pass is a simple loop unrolling pass.
//
FunctionPass *createLoopUnrollPass();
//===----------------------------------------------------------------------===//
//
// This pass is used to promote memory references to be register references. A
// simple example of the transformation performed by this pass is:
//
// FROM CODE TO CODE
// %X = alloca int, uint 1 ret int 42
// store int 42, int *%X
// %Y = load int* %X
// ret int %Y
//
FunctionPass *createPromoteMemoryToRegisterPass();
//===----------------------------------------------------------------------===//
//
// This pass reassociates commutative expressions in an order that is designed
// to promote better constant propagation, GCSE, LICM, PRE...
//
// For example: 4 + (x + 5) -> x + (4 + 5)
//
FunctionPass *createReassociatePass();
//===----------------------------------------------------------------------===//
//
// This pass eliminates correlated conditions, such as these:
// if (X == 0)
// if (X > 2) ; // Known false
// else
// Y = X * Z; // = 0
//
FunctionPass *createCorrelatedExpressionEliminationPass();
// createCondPropagationPass - This pass propagates information about
// conditional expressions through the program, allowing it to eliminate
// conditional branches in some cases.
//
FunctionPass *createCondPropagationPass();
//===----------------------------------------------------------------------===//
//
// TailDuplication - Eliminate unconditional branches through controlled code
// duplication, creating simpler CFG structures.
//
FunctionPass *createTailDuplicationPass();
//===----------------------------------------------------------------------===//
//
// CFG Simplification - Merge basic blocks, eliminate unreachable blocks,
// simplify terminator instructions, etc...
//
FunctionPass *createCFGSimplificationPass();
//===----------------------------------------------------------------------===//
//
// BreakCriticalEdges pass - Break all of the critical edges in the CFG by
// inserting a dummy basic block. This pass may be "required" by passes that
// cannot deal with critical edges. For this usage, a pass must call:
//
// AU.addRequiredID(BreakCriticalEdgesID);
//
// This pass obviously invalidates the CFG, but can update forward dominator
// (set, immediate dominators, tree, and frontier) information.
//
FunctionPass *createBreakCriticalEdgesPass();
extern const PassInfo *BreakCriticalEdgesID;
//===----------------------------------------------------------------------===//
//
// LoopSimplify pass - Insert Pre-header blocks into the CFG for every function
// in the module. This pass updates dominator information, loop information,
// and does not add critical edges to the CFG.
//
// AU.addRequiredID(LoopSimplifyID);
//
FunctionPass *createLoopSimplifyPass();
extern const PassInfo *LoopSimplifyID;
//===----------------------------------------------------------------------===//
//
// This pass eliminates call instructions to the current function which occur
// immediately before return instructions.
//
FunctionPass *createTailCallEliminationPass();
//===----------------------------------------------------------------------===//
// This pass convert malloc and free instructions to %malloc & %free function
// calls.
//
FunctionPass *createLowerAllocationsPass(bool LowerMallocArgToInteger = false);
//===----------------------------------------------------------------------===//
// This pass converts SwitchInst instructions into a sequence of chained binary
// branch instructions.
//
FunctionPass *createLowerSwitchPass();
//===----------------------------------------------------------------------===//
// This pass converts SelectInst instructions into conditional branch and PHI
// instructions. If the OnlyFP flag is set to true, then only floating point
// select instructions are lowered.
//
FunctionPass *createLowerSelectPass(bool OnlyFP = false);
//===----------------------------------------------------------------------===//
// This pass converts PackedType operations into low-level scalar operations.
//
FunctionPass *createLowerPackedPass();
//===----------------------------------------------------------------------===//
// This pass converts invoke and unwind instructions to use sjlj exception
// handling mechanisms. Note that after this pass runs the CFG is not entirely
// accurate (exceptional control flow edges are not correct anymore) so only
// very simple things should be done after the lowerinvoke pass has run (like
// generation of native code). This should *NOT* be used as a general purpose
// "my LLVM-to-LLVM pass doesn't support the invoke instruction yet" lowering
// pass.
//
FunctionPass *createLowerInvokePass(unsigned JumBufSize = 200,
unsigned JumpBufAlign = 0);
extern const PassInfo *LowerInvokePassID;
//===----------------------------------------------------------------------===//
/// createLowerGCPass - This function returns an instance of the "lowergc"
/// pass, which lowers garbage collection intrinsics to normal LLVM code.
///
FunctionPass *createLowerGCPass();
//===----------------------------------------------------------------------===//
// This pass reorders basic blocks in order to increase the number of fall-
// through conditional branches.
FunctionPass *createBlockPlacementPass();
//===----------------------------------------------------------------------===//
// This pass does partial redundancy elimination.
FunctionPass *createPREPass();
} // End llvm namespace
#endif