llvm-6502/lib/VMCore/Instructions.cpp
Nate Begeman 14b0529532 Add support alignment of allocation instructions.
Add support for specifying alignment and size of setjmp jmpbufs.

No targets currently do anything with this information, nor is it presrved
in the bytecode representation.  That's coming up next.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@24196 91177308-0d34-0410-b5e6-96231b3b80d8
2005-11-05 09:21:28 +00:00

1153 lines
41 KiB
C++

//===-- Instructions.cpp - Implement the LLVM instructions ----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements all of the non-inline methods for the LLVM instruction
// classes.
//
//===----------------------------------------------------------------------===//
#include "llvm/BasicBlock.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/Instructions.h"
#include "llvm/Support/CallSite.h"
using namespace llvm;
unsigned CallSite::getCallingConv() const {
if (CallInst *CI = dyn_cast<CallInst>(I))
return CI->getCallingConv();
else
return cast<InvokeInst>(I)->getCallingConv();
}
void CallSite::setCallingConv(unsigned CC) {
if (CallInst *CI = dyn_cast<CallInst>(I))
CI->setCallingConv(CC);
else
cast<InvokeInst>(I)->setCallingConv(CC);
}
//===----------------------------------------------------------------------===//
// TerminatorInst Class
//===----------------------------------------------------------------------===//
TerminatorInst::TerminatorInst(Instruction::TermOps iType,
Use *Ops, unsigned NumOps, Instruction *IB)
: Instruction(Type::VoidTy, iType, Ops, NumOps, "", IB) {
}
TerminatorInst::TerminatorInst(Instruction::TermOps iType,
Use *Ops, unsigned NumOps, BasicBlock *IAE)
: Instruction(Type::VoidTy, iType, Ops, NumOps, "", IAE) {
}
//===----------------------------------------------------------------------===//
// PHINode Class
//===----------------------------------------------------------------------===//
PHINode::PHINode(const PHINode &PN)
: Instruction(PN.getType(), Instruction::PHI,
new Use[PN.getNumOperands()], PN.getNumOperands()),
ReservedSpace(PN.getNumOperands()) {
Use *OL = OperandList;
for (unsigned i = 0, e = PN.getNumOperands(); i != e; i+=2) {
OL[i].init(PN.getOperand(i), this);
OL[i+1].init(PN.getOperand(i+1), this);
}
}
PHINode::~PHINode() {
delete [] OperandList;
}
// removeIncomingValue - Remove an incoming value. This is useful if a
// predecessor basic block is deleted.
Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) {
unsigned NumOps = getNumOperands();
Use *OL = OperandList;
assert(Idx*2 < NumOps && "BB not in PHI node!");
Value *Removed = OL[Idx*2];
// Move everything after this operand down.
//
// FIXME: we could just swap with the end of the list, then erase. However,
// client might not expect this to happen. The code as it is thrashes the
// use/def lists, which is kinda lame.
for (unsigned i = (Idx+1)*2; i != NumOps; i += 2) {
OL[i-2] = OL[i];
OL[i-2+1] = OL[i+1];
}
// Nuke the last value.
OL[NumOps-2].set(0);
OL[NumOps-2+1].set(0);
NumOperands = NumOps-2;
// If the PHI node is dead, because it has zero entries, nuke it now.
if (NumOps == 2 && DeletePHIIfEmpty) {
// If anyone is using this PHI, make them use a dummy value instead...
replaceAllUsesWith(UndefValue::get(getType()));
eraseFromParent();
}
return Removed;
}
/// resizeOperands - resize operands - This adjusts the length of the operands
/// list according to the following behavior:
/// 1. If NumOps == 0, grow the operand list in response to a push_back style
/// of operation. This grows the number of ops by 1.5 times.
/// 2. If NumOps > NumOperands, reserve space for NumOps operands.
/// 3. If NumOps == NumOperands, trim the reserved space.
///
void PHINode::resizeOperands(unsigned NumOps) {
if (NumOps == 0) {
NumOps = (getNumOperands())*3/2;
if (NumOps < 4) NumOps = 4; // 4 op PHI nodes are VERY common.
} else if (NumOps*2 > NumOperands) {
// No resize needed.
if (ReservedSpace >= NumOps) return;
} else if (NumOps == NumOperands) {
if (ReservedSpace == NumOps) return;
} else {
return;
}
ReservedSpace = NumOps;
Use *NewOps = new Use[NumOps];
Use *OldOps = OperandList;
for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
NewOps[i].init(OldOps[i], this);
OldOps[i].set(0);
}
delete [] OldOps;
OperandList = NewOps;
}
/// hasConstantValue - If the specified PHI node always merges together the same
/// value, return the value, otherwise return null.
///
Value *PHINode::hasConstantValue(bool AllowNonDominatingInstruction) const {
// If the PHI node only has one incoming value, eliminate the PHI node...
if (getNumIncomingValues() == 1)
if (getIncomingValue(0) != this) // not X = phi X
return getIncomingValue(0);
else
return UndefValue::get(getType()); // Self cycle is dead.
// Otherwise if all of the incoming values are the same for the PHI, replace
// the PHI node with the incoming value.
//
Value *InVal = 0;
bool HasUndefInput = false;
for (unsigned i = 0, e = getNumIncomingValues(); i != e; ++i)
if (isa<UndefValue>(getIncomingValue(i)))
HasUndefInput = true;
else if (getIncomingValue(i) != this) // Not the PHI node itself...
if (InVal && getIncomingValue(i) != InVal)
return 0; // Not the same, bail out.
else
InVal = getIncomingValue(i);
// The only case that could cause InVal to be null is if we have a PHI node
// that only has entries for itself. In this case, there is no entry into the
// loop, so kill the PHI.
//
if (InVal == 0) InVal = UndefValue::get(getType());
// If we have a PHI node like phi(X, undef, X), where X is defined by some
// instruction, we cannot always return X as the result of the PHI node. Only
// do this if X is not an instruction (thus it must dominate the PHI block),
// or if the client is prepared to deal with this possibility.
if (HasUndefInput && !AllowNonDominatingInstruction)
if (Instruction *IV = dyn_cast<Instruction>(InVal))
// If it's in the entry block, it dominates everything.
if (IV->getParent() != &IV->getParent()->getParent()->front() ||
isa<InvokeInst>(IV))
return 0; // Cannot guarantee that InVal dominates this PHINode.
// All of the incoming values are the same, return the value now.
return InVal;
}
//===----------------------------------------------------------------------===//
// CallInst Implementation
//===----------------------------------------------------------------------===//
CallInst::~CallInst() {
delete [] OperandList;
}
void CallInst::init(Value *Func, const std::vector<Value*> &Params) {
NumOperands = Params.size()+1;
Use *OL = OperandList = new Use[Params.size()+1];
OL[0].init(Func, this);
const FunctionType *FTy =
cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
assert((Params.size() == FTy->getNumParams() ||
(FTy->isVarArg() && Params.size() > FTy->getNumParams())) &&
"Calling a function with bad signature");
for (unsigned i = 0, e = Params.size(); i != e; ++i)
OL[i+1].init(Params[i], this);
}
void CallInst::init(Value *Func, Value *Actual1, Value *Actual2) {
NumOperands = 3;
Use *OL = OperandList = new Use[3];
OL[0].init(Func, this);
OL[1].init(Actual1, this);
OL[2].init(Actual2, this);
const FunctionType *FTy =
cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
assert((FTy->getNumParams() == 2 ||
(FTy->isVarArg() && FTy->getNumParams() == 0)) &&
"Calling a function with bad signature");
}
void CallInst::init(Value *Func, Value *Actual) {
NumOperands = 2;
Use *OL = OperandList = new Use[2];
OL[0].init(Func, this);
OL[1].init(Actual, this);
const FunctionType *FTy =
cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
assert((FTy->getNumParams() == 1 ||
(FTy->isVarArg() && FTy->getNumParams() == 0)) &&
"Calling a function with bad signature");
}
void CallInst::init(Value *Func) {
NumOperands = 1;
Use *OL = OperandList = new Use[1];
OL[0].init(Func, this);
const FunctionType *MTy =
cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
assert(MTy->getNumParams() == 0 && "Calling a function with bad signature");
}
CallInst::CallInst(Value *Func, const std::vector<Value*> &Params,
const std::string &Name, Instruction *InsertBefore)
: Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
->getElementType())->getReturnType(),
Instruction::Call, 0, 0, Name, InsertBefore) {
init(Func, Params);
}
CallInst::CallInst(Value *Func, const std::vector<Value*> &Params,
const std::string &Name, BasicBlock *InsertAtEnd)
: Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
->getElementType())->getReturnType(),
Instruction::Call, 0, 0, Name, InsertAtEnd) {
init(Func, Params);
}
CallInst::CallInst(Value *Func, Value *Actual1, Value *Actual2,
const std::string &Name, Instruction *InsertBefore)
: Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
->getElementType())->getReturnType(),
Instruction::Call, 0, 0, Name, InsertBefore) {
init(Func, Actual1, Actual2);
}
CallInst::CallInst(Value *Func, Value *Actual1, Value *Actual2,
const std::string &Name, BasicBlock *InsertAtEnd)
: Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
->getElementType())->getReturnType(),
Instruction::Call, 0, 0, Name, InsertAtEnd) {
init(Func, Actual1, Actual2);
}
CallInst::CallInst(Value *Func, Value* Actual, const std::string &Name,
Instruction *InsertBefore)
: Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
->getElementType())->getReturnType(),
Instruction::Call, 0, 0, Name, InsertBefore) {
init(Func, Actual);
}
CallInst::CallInst(Value *Func, Value* Actual, const std::string &Name,
BasicBlock *InsertAtEnd)
: Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
->getElementType())->getReturnType(),
Instruction::Call, 0, 0, Name, InsertAtEnd) {
init(Func, Actual);
}
CallInst::CallInst(Value *Func, const std::string &Name,
Instruction *InsertBefore)
: Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
->getElementType())->getReturnType(),
Instruction::Call, 0, 0, Name, InsertBefore) {
init(Func);
}
CallInst::CallInst(Value *Func, const std::string &Name,
BasicBlock *InsertAtEnd)
: Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
->getElementType())->getReturnType(),
Instruction::Call, 0, 0, Name, InsertAtEnd) {
init(Func);
}
CallInst::CallInst(const CallInst &CI)
: Instruction(CI.getType(), Instruction::Call, new Use[CI.getNumOperands()],
CI.getNumOperands()) {
SubclassData = CI.SubclassData;
Use *OL = OperandList;
Use *InOL = CI.OperandList;
for (unsigned i = 0, e = CI.getNumOperands(); i != e; ++i)
OL[i].init(InOL[i], this);
}
//===----------------------------------------------------------------------===//
// InvokeInst Implementation
//===----------------------------------------------------------------------===//
InvokeInst::~InvokeInst() {
delete [] OperandList;
}
void InvokeInst::init(Value *Fn, BasicBlock *IfNormal, BasicBlock *IfException,
const std::vector<Value*> &Params) {
NumOperands = 3+Params.size();
Use *OL = OperandList = new Use[3+Params.size()];
OL[0].init(Fn, this);
OL[1].init(IfNormal, this);
OL[2].init(IfException, this);
const FunctionType *FTy =
cast<FunctionType>(cast<PointerType>(Fn->getType())->getElementType());
assert((Params.size() == FTy->getNumParams()) ||
(FTy->isVarArg() && Params.size() > FTy->getNumParams()) &&
"Calling a function with bad signature");
for (unsigned i = 0, e = Params.size(); i != e; i++)
OL[i+3].init(Params[i], this);
}
InvokeInst::InvokeInst(Value *Fn, BasicBlock *IfNormal,
BasicBlock *IfException,
const std::vector<Value*> &Params,
const std::string &Name, Instruction *InsertBefore)
: TerminatorInst(cast<FunctionType>(cast<PointerType>(Fn->getType())
->getElementType())->getReturnType(),
Instruction::Invoke, 0, 0, Name, InsertBefore) {
init(Fn, IfNormal, IfException, Params);
}
InvokeInst::InvokeInst(Value *Fn, BasicBlock *IfNormal,
BasicBlock *IfException,
const std::vector<Value*> &Params,
const std::string &Name, BasicBlock *InsertAtEnd)
: TerminatorInst(cast<FunctionType>(cast<PointerType>(Fn->getType())
->getElementType())->getReturnType(),
Instruction::Invoke, 0, 0, Name, InsertAtEnd) {
init(Fn, IfNormal, IfException, Params);
}
InvokeInst::InvokeInst(const InvokeInst &II)
: TerminatorInst(II.getType(), Instruction::Invoke,
new Use[II.getNumOperands()], II.getNumOperands()) {
SubclassData = II.SubclassData;
Use *OL = OperandList, *InOL = II.OperandList;
for (unsigned i = 0, e = II.getNumOperands(); i != e; ++i)
OL[i].init(InOL[i], this);
}
BasicBlock *InvokeInst::getSuccessorV(unsigned idx) const {
return getSuccessor(idx);
}
unsigned InvokeInst::getNumSuccessorsV() const {
return getNumSuccessors();
}
void InvokeInst::setSuccessorV(unsigned idx, BasicBlock *B) {
return setSuccessor(idx, B);
}
//===----------------------------------------------------------------------===//
// ReturnInst Implementation
//===----------------------------------------------------------------------===//
void ReturnInst::init(Value *retVal) {
if (retVal && retVal->getType() != Type::VoidTy) {
assert(!isa<BasicBlock>(retVal) &&
"Cannot return basic block. Probably using the incorrect ctor");
NumOperands = 1;
RetVal.init(retVal, this);
}
}
unsigned ReturnInst::getNumSuccessorsV() const {
return getNumSuccessors();
}
// Out-of-line ReturnInst method, put here so the C++ compiler can choose to
// emit the vtable for the class in this translation unit.
void ReturnInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
assert(0 && "ReturnInst has no successors!");
}
BasicBlock *ReturnInst::getSuccessorV(unsigned idx) const {
assert(0 && "ReturnInst has no successors!");
abort();
return 0;
}
//===----------------------------------------------------------------------===//
// UnwindInst Implementation
//===----------------------------------------------------------------------===//
unsigned UnwindInst::getNumSuccessorsV() const {
return getNumSuccessors();
}
void UnwindInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
assert(0 && "UnwindInst has no successors!");
}
BasicBlock *UnwindInst::getSuccessorV(unsigned idx) const {
assert(0 && "UnwindInst has no successors!");
abort();
return 0;
}
//===----------------------------------------------------------------------===//
// UnreachableInst Implementation
//===----------------------------------------------------------------------===//
unsigned UnreachableInst::getNumSuccessorsV() const {
return getNumSuccessors();
}
void UnreachableInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
assert(0 && "UnwindInst has no successors!");
}
BasicBlock *UnreachableInst::getSuccessorV(unsigned idx) const {
assert(0 && "UnwindInst has no successors!");
abort();
return 0;
}
//===----------------------------------------------------------------------===//
// BranchInst Implementation
//===----------------------------------------------------------------------===//
void BranchInst::AssertOK() {
if (isConditional())
assert(getCondition()->getType() == Type::BoolTy &&
"May only branch on boolean predicates!");
}
BranchInst::BranchInst(const BranchInst &BI) :
TerminatorInst(Instruction::Br, Ops, BI.getNumOperands()) {
OperandList[0].init(BI.getOperand(0), this);
if (BI.getNumOperands() != 1) {
assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!");
OperandList[1].init(BI.getOperand(1), this);
OperandList[2].init(BI.getOperand(2), this);
}
}
BasicBlock *BranchInst::getSuccessorV(unsigned idx) const {
return getSuccessor(idx);
}
unsigned BranchInst::getNumSuccessorsV() const {
return getNumSuccessors();
}
void BranchInst::setSuccessorV(unsigned idx, BasicBlock *B) {
setSuccessor(idx, B);
}
//===----------------------------------------------------------------------===//
// AllocationInst Implementation
//===----------------------------------------------------------------------===//
static Value *getAISize(Value *Amt) {
if (!Amt)
Amt = ConstantUInt::get(Type::UIntTy, 1);
else
assert(Amt->getType() == Type::UIntTy &&
"Malloc/Allocation array size != UIntTy!");
return Amt;
}
AllocationInst::AllocationInst(const Type *Ty, Value *ArraySize, unsigned iTy,
unsigned Align, const std::string &Name,
Instruction *InsertBefore)
: UnaryInstruction(PointerType::get(Ty), iTy, getAISize(ArraySize),
Name, InsertBefore), Alignment(Align) {
assert(Ty != Type::VoidTy && "Cannot allocate void!");
}
AllocationInst::AllocationInst(const Type *Ty, Value *ArraySize, unsigned iTy,
unsigned Align, const std::string &Name,
BasicBlock *InsertAtEnd)
: UnaryInstruction(PointerType::get(Ty), iTy, getAISize(ArraySize),
Name, InsertAtEnd), Alignment(Align) {
assert(Ty != Type::VoidTy && "Cannot allocate void!");
}
bool AllocationInst::isArrayAllocation() const {
if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(getOperand(0)))
return CUI->getValue() != 1;
return true;
}
const Type *AllocationInst::getAllocatedType() const {
return getType()->getElementType();
}
AllocaInst::AllocaInst(const AllocaInst &AI)
: AllocationInst(AI.getType()->getElementType(), (Value*)AI.getOperand(0),
Instruction::Alloca, AI.getAlignment()) {
}
MallocInst::MallocInst(const MallocInst &MI)
: AllocationInst(MI.getType()->getElementType(), (Value*)MI.getOperand(0),
Instruction::Malloc, MI.getAlignment()) {
}
//===----------------------------------------------------------------------===//
// FreeInst Implementation
//===----------------------------------------------------------------------===//
void FreeInst::AssertOK() {
assert(isa<PointerType>(getOperand(0)->getType()) &&
"Can not free something of nonpointer type!");
}
FreeInst::FreeInst(Value *Ptr, Instruction *InsertBefore)
: UnaryInstruction(Type::VoidTy, Free, Ptr, "", InsertBefore) {
AssertOK();
}
FreeInst::FreeInst(Value *Ptr, BasicBlock *InsertAtEnd)
: UnaryInstruction(Type::VoidTy, Free, Ptr, "", InsertAtEnd) {
AssertOK();
}
//===----------------------------------------------------------------------===//
// LoadInst Implementation
//===----------------------------------------------------------------------===//
void LoadInst::AssertOK() {
assert(isa<PointerType>(getOperand(0)->getType()) &&
"Ptr must have pointer type.");
}
LoadInst::LoadInst(Value *Ptr, const std::string &Name, Instruction *InsertBef)
: UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
Load, Ptr, Name, InsertBef) {
setVolatile(false);
AssertOK();
}
LoadInst::LoadInst(Value *Ptr, const std::string &Name, BasicBlock *InsertAE)
: UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
Load, Ptr, Name, InsertAE) {
setVolatile(false);
AssertOK();
}
LoadInst::LoadInst(Value *Ptr, const std::string &Name, bool isVolatile,
Instruction *InsertBef)
: UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
Load, Ptr, Name, InsertBef) {
setVolatile(isVolatile);
AssertOK();
}
LoadInst::LoadInst(Value *Ptr, const std::string &Name, bool isVolatile,
BasicBlock *InsertAE)
: UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
Load, Ptr, Name, InsertAE) {
setVolatile(isVolatile);
AssertOK();
}
//===----------------------------------------------------------------------===//
// StoreInst Implementation
//===----------------------------------------------------------------------===//
void StoreInst::AssertOK() {
assert(isa<PointerType>(getOperand(1)->getType()) &&
"Ptr must have pointer type!");
assert(getOperand(0)->getType() ==
cast<PointerType>(getOperand(1)->getType())->getElementType()
&& "Ptr must be a pointer to Val type!");
}
StoreInst::StoreInst(Value *val, Value *addr, Instruction *InsertBefore)
: Instruction(Type::VoidTy, Store, Ops, 2, "", InsertBefore) {
Ops[0].init(val, this);
Ops[1].init(addr, this);
setVolatile(false);
AssertOK();
}
StoreInst::StoreInst(Value *val, Value *addr, BasicBlock *InsertAtEnd)
: Instruction(Type::VoidTy, Store, Ops, 2, "", InsertAtEnd) {
Ops[0].init(val, this);
Ops[1].init(addr, this);
setVolatile(false);
AssertOK();
}
StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
Instruction *InsertBefore)
: Instruction(Type::VoidTy, Store, Ops, 2, "", InsertBefore) {
Ops[0].init(val, this);
Ops[1].init(addr, this);
setVolatile(isVolatile);
AssertOK();
}
StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
BasicBlock *InsertAtEnd)
: Instruction(Type::VoidTy, Store, Ops, 2, "", InsertAtEnd) {
Ops[0].init(val, this);
Ops[1].init(addr, this);
setVolatile(isVolatile);
AssertOK();
}
//===----------------------------------------------------------------------===//
// GetElementPtrInst Implementation
//===----------------------------------------------------------------------===//
// checkType - Simple wrapper function to give a better assertion failure
// message on bad indexes for a gep instruction.
//
static inline const Type *checkType(const Type *Ty) {
assert(Ty && "Invalid indices for type!");
return Ty;
}
void GetElementPtrInst::init(Value *Ptr, const std::vector<Value*> &Idx) {
NumOperands = 1+Idx.size();
Use *OL = OperandList = new Use[NumOperands];
OL[0].init(Ptr, this);
for (unsigned i = 0, e = Idx.size(); i != e; ++i)
OL[i+1].init(Idx[i], this);
}
void GetElementPtrInst::init(Value *Ptr, Value *Idx0, Value *Idx1) {
NumOperands = 3;
Use *OL = OperandList = new Use[3];
OL[0].init(Ptr, this);
OL[1].init(Idx0, this);
OL[2].init(Idx1, this);
}
void GetElementPtrInst::init(Value *Ptr, Value *Idx) {
NumOperands = 2;
Use *OL = OperandList = new Use[2];
OL[0].init(Ptr, this);
OL[1].init(Idx, this);
}
GetElementPtrInst::GetElementPtrInst(Value *Ptr, const std::vector<Value*> &Idx,
const std::string &Name, Instruction *InBe)
: Instruction(PointerType::get(checkType(getIndexedType(Ptr->getType(),
Idx, true))),
GetElementPtr, 0, 0, Name, InBe) {
init(Ptr, Idx);
}
GetElementPtrInst::GetElementPtrInst(Value *Ptr, const std::vector<Value*> &Idx,
const std::string &Name, BasicBlock *IAE)
: Instruction(PointerType::get(checkType(getIndexedType(Ptr->getType(),
Idx, true))),
GetElementPtr, 0, 0, Name, IAE) {
init(Ptr, Idx);
}
GetElementPtrInst::GetElementPtrInst(Value *Ptr, Value *Idx,
const std::string &Name, Instruction *InBe)
: Instruction(PointerType::get(checkType(getIndexedType(Ptr->getType(),Idx))),
GetElementPtr, 0, 0, Name, InBe) {
init(Ptr, Idx);
}
GetElementPtrInst::GetElementPtrInst(Value *Ptr, Value *Idx,
const std::string &Name, BasicBlock *IAE)
: Instruction(PointerType::get(checkType(getIndexedType(Ptr->getType(),Idx))),
GetElementPtr, 0, 0, Name, IAE) {
init(Ptr, Idx);
}
GetElementPtrInst::GetElementPtrInst(Value *Ptr, Value *Idx0, Value *Idx1,
const std::string &Name, Instruction *InBe)
: Instruction(PointerType::get(checkType(getIndexedType(Ptr->getType(),
Idx0, Idx1, true))),
GetElementPtr, 0, 0, Name, InBe) {
init(Ptr, Idx0, Idx1);
}
GetElementPtrInst::GetElementPtrInst(Value *Ptr, Value *Idx0, Value *Idx1,
const std::string &Name, BasicBlock *IAE)
: Instruction(PointerType::get(checkType(getIndexedType(Ptr->getType(),
Idx0, Idx1, true))),
GetElementPtr, 0, 0, Name, IAE) {
init(Ptr, Idx0, Idx1);
}
GetElementPtrInst::~GetElementPtrInst() {
delete[] OperandList;
}
// getIndexedType - Returns the type of the element that would be loaded with
// a load instruction with the specified parameters.
//
// A null type is returned if the indices are invalid for the specified
// pointer type.
//
const Type* GetElementPtrInst::getIndexedType(const Type *Ptr,
const std::vector<Value*> &Idx,
bool AllowCompositeLeaf) {
if (!isa<PointerType>(Ptr)) return 0; // Type isn't a pointer type!
// Handle the special case of the empty set index set...
if (Idx.empty())
if (AllowCompositeLeaf ||
cast<PointerType>(Ptr)->getElementType()->isFirstClassType())
return cast<PointerType>(Ptr)->getElementType();
else
return 0;
unsigned CurIdx = 0;
while (const CompositeType *CT = dyn_cast<CompositeType>(Ptr)) {
if (Idx.size() == CurIdx) {
if (AllowCompositeLeaf || CT->isFirstClassType()) return Ptr;
return 0; // Can't load a whole structure or array!?!?
}
Value *Index = Idx[CurIdx++];
if (isa<PointerType>(CT) && CurIdx != 1)
return 0; // Can only index into pointer types at the first index!
if (!CT->indexValid(Index)) return 0;
Ptr = CT->getTypeAtIndex(Index);
// If the new type forwards to another type, then it is in the middle
// of being refined to another type (and hence, may have dropped all
// references to what it was using before). So, use the new forwarded
// type.
if (const Type * Ty = Ptr->getForwardedType()) {
Ptr = Ty;
}
}
return CurIdx == Idx.size() ? Ptr : 0;
}
const Type* GetElementPtrInst::getIndexedType(const Type *Ptr,
Value *Idx0, Value *Idx1,
bool AllowCompositeLeaf) {
const PointerType *PTy = dyn_cast<PointerType>(Ptr);
if (!PTy) return 0; // Type isn't a pointer type!
// Check the pointer index.
if (!PTy->indexValid(Idx0)) return 0;
const CompositeType *CT = dyn_cast<CompositeType>(PTy->getElementType());
if (!CT || !CT->indexValid(Idx1)) return 0;
const Type *ElTy = CT->getTypeAtIndex(Idx1);
if (AllowCompositeLeaf || ElTy->isFirstClassType())
return ElTy;
return 0;
}
const Type* GetElementPtrInst::getIndexedType(const Type *Ptr, Value *Idx) {
const PointerType *PTy = dyn_cast<PointerType>(Ptr);
if (!PTy) return 0; // Type isn't a pointer type!
// Check the pointer index.
if (!PTy->indexValid(Idx)) return 0;
return PTy->getElementType();
}
//===----------------------------------------------------------------------===//
// BinaryOperator Class
//===----------------------------------------------------------------------===//
void BinaryOperator::init(BinaryOps iType)
{
Value *LHS = getOperand(0), *RHS = getOperand(1);
assert(LHS->getType() == RHS->getType() &&
"Binary operator operand types must match!");
#ifndef NDEBUG
switch (iType) {
case Add: case Sub:
case Mul: case Div:
case Rem:
assert(getType() == LHS->getType() &&
"Arithmetic operation should return same type as operands!");
assert((getType()->isInteger() ||
getType()->isFloatingPoint() ||
isa<PackedType>(getType()) ) &&
"Tried to create an arithmetic operation on a non-arithmetic type!");
break;
case And: case Or:
case Xor:
assert(getType() == LHS->getType() &&
"Logical operation should return same type as operands!");
assert(getType()->isIntegral() &&
"Tried to create a logical operation on a non-integral type!");
break;
case SetLT: case SetGT: case SetLE:
case SetGE: case SetEQ: case SetNE:
assert(getType() == Type::BoolTy && "Setcc must return bool!");
default:
break;
}
#endif
}
BinaryOperator *BinaryOperator::create(BinaryOps Op, Value *S1, Value *S2,
const std::string &Name,
Instruction *InsertBefore) {
assert(S1->getType() == S2->getType() &&
"Cannot create binary operator with two operands of differing type!");
switch (Op) {
// Binary comparison operators...
case SetLT: case SetGT: case SetLE:
case SetGE: case SetEQ: case SetNE:
return new SetCondInst(Op, S1, S2, Name, InsertBefore);
default:
return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore);
}
}
BinaryOperator *BinaryOperator::create(BinaryOps Op, Value *S1, Value *S2,
const std::string &Name,
BasicBlock *InsertAtEnd) {
BinaryOperator *Res = create(Op, S1, S2, Name);
InsertAtEnd->getInstList().push_back(Res);
return Res;
}
BinaryOperator *BinaryOperator::createNeg(Value *Op, const std::string &Name,
Instruction *InsertBefore) {
if (!Op->getType()->isFloatingPoint())
return new BinaryOperator(Instruction::Sub,
Constant::getNullValue(Op->getType()), Op,
Op->getType(), Name, InsertBefore);
else
return new BinaryOperator(Instruction::Sub,
ConstantFP::get(Op->getType(), -0.0), Op,
Op->getType(), Name, InsertBefore);
}
BinaryOperator *BinaryOperator::createNeg(Value *Op, const std::string &Name,
BasicBlock *InsertAtEnd) {
if (!Op->getType()->isFloatingPoint())
return new BinaryOperator(Instruction::Sub,
Constant::getNullValue(Op->getType()), Op,
Op->getType(), Name, InsertAtEnd);
else
return new BinaryOperator(Instruction::Sub,
ConstantFP::get(Op->getType(), -0.0), Op,
Op->getType(), Name, InsertAtEnd);
}
BinaryOperator *BinaryOperator::createNot(Value *Op, const std::string &Name,
Instruction *InsertBefore) {
return new BinaryOperator(Instruction::Xor, Op,
ConstantIntegral::getAllOnesValue(Op->getType()),
Op->getType(), Name, InsertBefore);
}
BinaryOperator *BinaryOperator::createNot(Value *Op, const std::string &Name,
BasicBlock *InsertAtEnd) {
return new BinaryOperator(Instruction::Xor, Op,
ConstantIntegral::getAllOnesValue(Op->getType()),
Op->getType(), Name, InsertAtEnd);
}
// isConstantAllOnes - Helper function for several functions below
static inline bool isConstantAllOnes(const Value *V) {
return isa<ConstantIntegral>(V) &&cast<ConstantIntegral>(V)->isAllOnesValue();
}
bool BinaryOperator::isNeg(const Value *V) {
if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
if (Bop->getOpcode() == Instruction::Sub)
if (!V->getType()->isFloatingPoint())
return Bop->getOperand(0) == Constant::getNullValue(Bop->getType());
else
return Bop->getOperand(0) == ConstantFP::get(Bop->getType(), -0.0);
return false;
}
bool BinaryOperator::isNot(const Value *V) {
if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
return (Bop->getOpcode() == Instruction::Xor &&
(isConstantAllOnes(Bop->getOperand(1)) ||
isConstantAllOnes(Bop->getOperand(0))));
return false;
}
Value *BinaryOperator::getNegArgument(Value *BinOp) {
assert(isNeg(BinOp) && "getNegArgument from non-'neg' instruction!");
return cast<BinaryOperator>(BinOp)->getOperand(1);
}
const Value *BinaryOperator::getNegArgument(const Value *BinOp) {
return getNegArgument(const_cast<Value*>(BinOp));
}
Value *BinaryOperator::getNotArgument(Value *BinOp) {
assert(isNot(BinOp) && "getNotArgument on non-'not' instruction!");
BinaryOperator *BO = cast<BinaryOperator>(BinOp);
Value *Op0 = BO->getOperand(0);
Value *Op1 = BO->getOperand(1);
if (isConstantAllOnes(Op0)) return Op1;
assert(isConstantAllOnes(Op1));
return Op0;
}
const Value *BinaryOperator::getNotArgument(const Value *BinOp) {
return getNotArgument(const_cast<Value*>(BinOp));
}
// swapOperands - Exchange the two operands to this instruction. This
// instruction is safe to use on any binary instruction and does not
// modify the semantics of the instruction. If the instruction is
// order dependent (SetLT f.e.) the opcode is changed.
//
bool BinaryOperator::swapOperands() {
if (isCommutative())
; // If the instruction is commutative, it is safe to swap the operands
else if (SetCondInst *SCI = dyn_cast<SetCondInst>(this))
/// FIXME: SetCC instructions shouldn't all have different opcodes.
setOpcode(SCI->getSwappedCondition());
else
return true; // Can't commute operands
std::swap(Ops[0], Ops[1]);
return false;
}
//===----------------------------------------------------------------------===//
// SetCondInst Class
//===----------------------------------------------------------------------===//
SetCondInst::SetCondInst(BinaryOps Opcode, Value *S1, Value *S2,
const std::string &Name, Instruction *InsertBefore)
: BinaryOperator(Opcode, S1, S2, Type::BoolTy, Name, InsertBefore) {
// Make sure it's a valid type... getInverseCondition will assert out if not.
assert(getInverseCondition(Opcode));
}
SetCondInst::SetCondInst(BinaryOps Opcode, Value *S1, Value *S2,
const std::string &Name, BasicBlock *InsertAtEnd)
: BinaryOperator(Opcode, S1, S2, Type::BoolTy, Name, InsertAtEnd) {
// Make sure it's a valid type... getInverseCondition will assert out if not.
assert(getInverseCondition(Opcode));
}
// getInverseCondition - Return the inverse of the current condition opcode.
// For example seteq -> setne, setgt -> setle, setlt -> setge, etc...
//
Instruction::BinaryOps SetCondInst::getInverseCondition(BinaryOps Opcode) {
switch (Opcode) {
default:
assert(0 && "Unknown setcc opcode!");
case SetEQ: return SetNE;
case SetNE: return SetEQ;
case SetGT: return SetLE;
case SetLT: return SetGE;
case SetGE: return SetLT;
case SetLE: return SetGT;
}
}
// getSwappedCondition - Return the condition opcode that would be the result
// of exchanging the two operands of the setcc instruction without changing
// the result produced. Thus, seteq->seteq, setle->setge, setlt->setgt, etc.
//
Instruction::BinaryOps SetCondInst::getSwappedCondition(BinaryOps Opcode) {
switch (Opcode) {
default: assert(0 && "Unknown setcc instruction!");
case SetEQ: case SetNE: return Opcode;
case SetGT: return SetLT;
case SetLT: return SetGT;
case SetGE: return SetLE;
case SetLE: return SetGE;
}
}
//===----------------------------------------------------------------------===//
// SwitchInst Implementation
//===----------------------------------------------------------------------===//
void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumCases) {
assert(Value && Default);
ReservedSpace = 2+NumCases*2;
NumOperands = 2;
OperandList = new Use[ReservedSpace];
OperandList[0].init(Value, this);
OperandList[1].init(Default, this);
}
SwitchInst::SwitchInst(const SwitchInst &SI)
: TerminatorInst(Instruction::Switch, new Use[SI.getNumOperands()],
SI.getNumOperands()) {
Use *OL = OperandList, *InOL = SI.OperandList;
for (unsigned i = 0, E = SI.getNumOperands(); i != E; i+=2) {
OL[i].init(InOL[i], this);
OL[i+1].init(InOL[i+1], this);
}
}
SwitchInst::~SwitchInst() {
delete [] OperandList;
}
/// addCase - Add an entry to the switch instruction...
///
void SwitchInst::addCase(ConstantInt *OnVal, BasicBlock *Dest) {
unsigned OpNo = NumOperands;
if (OpNo+2 > ReservedSpace)
resizeOperands(0); // Get more space!
// Initialize some new operands.
assert(OpNo+1 < ReservedSpace && "Growing didn't work!");
NumOperands = OpNo+2;
OperandList[OpNo].init(OnVal, this);
OperandList[OpNo+1].init(Dest, this);
}
/// removeCase - This method removes the specified successor from the switch
/// instruction. Note that this cannot be used to remove the default
/// destination (successor #0).
///
void SwitchInst::removeCase(unsigned idx) {
assert(idx != 0 && "Cannot remove the default case!");
assert(idx*2 < getNumOperands() && "Successor index out of range!!!");
unsigned NumOps = getNumOperands();
Use *OL = OperandList;
// Move everything after this operand down.
//
// FIXME: we could just swap with the end of the list, then erase. However,
// client might not expect this to happen. The code as it is thrashes the
// use/def lists, which is kinda lame.
for (unsigned i = (idx+1)*2; i != NumOps; i += 2) {
OL[i-2] = OL[i];
OL[i-2+1] = OL[i+1];
}
// Nuke the last value.
OL[NumOps-2].set(0);
OL[NumOps-2+1].set(0);
NumOperands = NumOps-2;
}
/// resizeOperands - resize operands - This adjusts the length of the operands
/// list according to the following behavior:
/// 1. If NumOps == 0, grow the operand list in response to a push_back style
/// of operation. This grows the number of ops by 1.5 times.
/// 2. If NumOps > NumOperands, reserve space for NumOps operands.
/// 3. If NumOps == NumOperands, trim the reserved space.
///
void SwitchInst::resizeOperands(unsigned NumOps) {
if (NumOps == 0) {
NumOps = getNumOperands()/2*6;
} else if (NumOps*2 > NumOperands) {
// No resize needed.
if (ReservedSpace >= NumOps) return;
} else if (NumOps == NumOperands) {
if (ReservedSpace == NumOps) return;
} else {
return;
}
ReservedSpace = NumOps;
Use *NewOps = new Use[NumOps];
Use *OldOps = OperandList;
for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
NewOps[i].init(OldOps[i], this);
OldOps[i].set(0);
}
delete [] OldOps;
OperandList = NewOps;
}
BasicBlock *SwitchInst::getSuccessorV(unsigned idx) const {
return getSuccessor(idx);
}
unsigned SwitchInst::getNumSuccessorsV() const {
return getNumSuccessors();
}
void SwitchInst::setSuccessorV(unsigned idx, BasicBlock *B) {
setSuccessor(idx, B);
}
// Define these methods here so vtables don't get emitted into every translation
// unit that uses these classes.
GetElementPtrInst *GetElementPtrInst::clone() const {
return new GetElementPtrInst(*this);
}
BinaryOperator *BinaryOperator::clone() const {
return create(getOpcode(), Ops[0], Ops[1]);
}
MallocInst *MallocInst::clone() const { return new MallocInst(*this); }
AllocaInst *AllocaInst::clone() const { return new AllocaInst(*this); }
FreeInst *FreeInst::clone() const { return new FreeInst(getOperand(0)); }
LoadInst *LoadInst::clone() const { return new LoadInst(*this); }
StoreInst *StoreInst::clone() const { return new StoreInst(*this); }
CastInst *CastInst::clone() const { return new CastInst(*this); }
CallInst *CallInst::clone() const { return new CallInst(*this); }
ShiftInst *ShiftInst::clone() const { return new ShiftInst(*this); }
SelectInst *SelectInst::clone() const { return new SelectInst(*this); }
VAArgInst *VAArgInst::clone() const { return new VAArgInst(*this); }
PHINode *PHINode::clone() const { return new PHINode(*this); }
ReturnInst *ReturnInst::clone() const { return new ReturnInst(*this); }
BranchInst *BranchInst::clone() const { return new BranchInst(*this); }
SwitchInst *SwitchInst::clone() const { return new SwitchInst(*this); }
InvokeInst *InvokeInst::clone() const { return new InvokeInst(*this); }
UnwindInst *UnwindInst::clone() const { return new UnwindInst(); }
UnreachableInst *UnreachableInst::clone() const { return new UnreachableInst();}