llvm-6502/lib/Analysis/DataStructure/Steensgaard.cpp
Chris Lattner 15869aa2c7 All DSGraphs keep a reference to the targetdata they are created with. This is
used to eliminate the hard coded, hacked in, sparc specific, global TargetData.
Changing the TargetData used to actually match the code fixes problems, and
eliminates a crash.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@9659 91177308-0d34-0410-b5e6-96231b3b80d8
2003-11-02 22:27:28 +00:00

238 lines
8.5 KiB
C++

//===- Steensgaard.cpp - Context Insensitive Alias Analysis ---------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass uses the data structure graphs to implement a simple context
// insensitive alias analysis. It does this by computing the local analysis
// graphs for all of the functions, then merging them together into a single big
// graph without cloning.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/DataStructure.h"
#include "llvm/Analysis/DSGraph.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Module.h"
#include "Support/Debug.h"
namespace {
class Steens : public Pass, public AliasAnalysis {
DSGraph *ResultGraph;
DSGraph *GlobalsGraph; // FIXME: Eliminate globals graph stuff from DNE
public:
Steens() : ResultGraph(0), GlobalsGraph(0) {}
~Steens() {
releaseMyMemory();
assert(ResultGraph == 0 && "releaseMemory not called?");
}
//------------------------------------------------
// Implement the Pass API
//
// run - Build up the result graph, representing the pointer graph for the
// program.
//
bool run(Module &M);
virtual void releaseMyMemory() { delete ResultGraph; ResultGraph = 0; }
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AliasAnalysis::getAnalysisUsage(AU);
AU.setPreservesAll(); // Does not transform code...
AU.addRequired<LocalDataStructures>(); // Uses local dsgraph
AU.addRequired<AliasAnalysis>(); // Chains to another AA impl...
}
// print - Implement the Pass::print method...
void print(std::ostream &O, const Module *M) const {
assert(ResultGraph && "Result graph has not yet been computed!");
ResultGraph->writeGraphToFile(O, "steensgaards");
}
//------------------------------------------------
// Implement the AliasAnalysis API
//
// alias - This is the only method here that does anything interesting...
AliasResult alias(const Value *V1, unsigned V1Size,
const Value *V2, unsigned V2Size);
private:
void ResolveFunctionCall(Function *F, const DSCallSite &Call,
DSNodeHandle &RetVal);
};
// Register the pass...
RegisterOpt<Steens> X("steens-aa",
"Steensgaard's alias analysis (DSGraph based)");
// Register as an implementation of AliasAnalysis
RegisterAnalysisGroup<AliasAnalysis, Steens> Y;
}
/// ResolveFunctionCall - Resolve the actual arguments of a call to function F
/// with the specified call site descriptor. This function links the arguments
/// and the return value for the call site context-insensitively.
///
void Steens::ResolveFunctionCall(Function *F, const DSCallSite &Call,
DSNodeHandle &RetVal) {
assert(ResultGraph != 0 && "Result graph not allocated!");
DSGraph::ScalarMapTy &ValMap = ResultGraph->getScalarMap();
// Handle the return value of the function...
if (Call.getRetVal().getNode() && RetVal.getNode())
RetVal.mergeWith(Call.getRetVal());
// Loop over all pointer arguments, resolving them to their provided pointers
unsigned PtrArgIdx = 0;
for (Function::aiterator AI = F->abegin(), AE = F->aend();
AI != AE && PtrArgIdx < Call.getNumPtrArgs(); ++AI) {
DSGraph::ScalarMapTy::iterator I = ValMap.find(AI);
if (I != ValMap.end()) // If its a pointer argument...
I->second.mergeWith(Call.getPtrArg(PtrArgIdx++));
}
}
/// run - Build up the result graph, representing the pointer graph for the
/// program.
///
bool Steens::run(Module &M) {
InitializeAliasAnalysis(this);
assert(ResultGraph == 0 && "Result graph already allocated!");
LocalDataStructures &LDS = getAnalysis<LocalDataStructures>();
// Create a new, empty, graph...
ResultGraph = new DSGraph(getTargetData());
GlobalsGraph = new DSGraph(getTargetData());
ResultGraph->setGlobalsGraph(GlobalsGraph);
ResultGraph->setPrintAuxCalls();
// RetValMap - Keep track of the return values for all functions that return
// valid pointers.
//
DSGraph::ReturnNodesTy RetValMap;
// Loop over the rest of the module, merging graphs for non-external functions
// into this graph.
//
unsigned Count = 0;
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
if (!I->isExternal()) {
DSGraph::ScalarMapTy ValMap;
{ // Scope to free NodeMap memory ASAP
DSGraph::NodeMapTy NodeMap;
const DSGraph &FDSG = LDS.getDSGraph(*I);
ResultGraph->cloneInto(FDSG, ValMap, RetValMap, NodeMap);
}
// Incorporate the inlined Function's ScalarMap into the global
// ScalarMap...
DSGraph::ScalarMapTy &GVM = ResultGraph->getScalarMap();
for (DSGraph::ScalarMapTy::iterator I = ValMap.begin(),
E = ValMap.end(); I != E; ++I)
GVM[I->first].mergeWith(I->second);
if ((++Count & 1) == 0) // Prune nodes out every other time...
ResultGraph->removeTriviallyDeadNodes();
}
// FIXME: Must recalculate and use the Incomplete markers!!
// Now that we have all of the graphs inlined, we can go about eliminating
// call nodes...
//
std::vector<DSCallSite> &Calls =
ResultGraph->getAuxFunctionCalls();
assert(Calls.empty() && "Aux call list is already in use??");
// Start with a copy of the original call sites...
Calls = ResultGraph->getFunctionCalls();
for (unsigned i = 0; i != Calls.size(); ) {
DSCallSite &CurCall = Calls[i];
// Loop over the called functions, eliminating as many as possible...
std::vector<GlobalValue*> CallTargets;
if (CurCall.isDirectCall())
CallTargets.push_back(CurCall.getCalleeFunc());
else
CallTargets = CurCall.getCalleeNode()->getGlobals();
for (unsigned c = 0; c != CallTargets.size(); ) {
// If we can eliminate this function call, do so!
bool Eliminated = false;
if (Function *F = dyn_cast<Function>(CallTargets[c]))
if (!F->isExternal()) {
ResolveFunctionCall(F, CurCall, RetValMap[F]);
Eliminated = true;
}
if (Eliminated) {
CallTargets[c] = CallTargets.back();
CallTargets.pop_back();
} else
++c; // Cannot eliminate this call, skip over it...
}
if (CallTargets.empty()) { // Eliminated all calls?
CurCall = Calls.back(); // Remove entry
Calls.pop_back();
} else
++i; // Skip this call site...
}
RetValMap.clear();
// Update the "incomplete" markers on the nodes, ignoring unknownness due to
// incoming arguments...
ResultGraph->maskIncompleteMarkers();
ResultGraph->markIncompleteNodes(DSGraph::IgnoreFormalArgs);
// Remove any nodes that are dead after all of the merging we have done...
// FIXME: We should be able to disable the globals graph for steens!
ResultGraph->removeDeadNodes(DSGraph::KeepUnreachableGlobals);
DEBUG(print(std::cerr, &M));
return false;
}
// alias - This is the only method here that does anything interesting...
AliasAnalysis::AliasResult Steens::alias(const Value *V1, unsigned V1Size,
const Value *V2, unsigned V2Size) {
// FIXME: HANDLE Size argument!
assert(ResultGraph && "Result graph has not been computed yet!");
DSGraph::ScalarMapTy &GSM = ResultGraph->getScalarMap();
DSGraph::ScalarMapTy::iterator I = GSM.find(const_cast<Value*>(V1));
if (I != GSM.end() && I->second.getNode()) {
DSNodeHandle &V1H = I->second;
DSGraph::ScalarMapTy::iterator J=GSM.find(const_cast<Value*>(V2));
if (J != GSM.end() && J->second.getNode()) {
DSNodeHandle &V2H = J->second;
// If the two pointers point to different data structure graph nodes, they
// cannot alias!
if (V1H.getNode() != V2H.getNode()) // FIXME: Handle incompleteness!
return NoAlias;
// FIXME: If the two pointers point to the same node, and the offsets are
// different, and the LinkIndex vector doesn't alias the section, then the
// two pointers do not alias. We need access size information for the two
// accesses though!
//
}
}
// If we cannot determine alias properties based on our graph, fall back on
// some other AA implementation.
//
return getAnalysis<AliasAnalysis>().alias(V1, V1Size, V2, V2Size);
}