Richard Trieu f801b8fe7a Fix up some asserts that are within an if statement. This removes the need
for assert(0 && "text").


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185396 91177308-0d34-0410-b5e6-96231b3b80d8
2013-07-01 23:42:53 +00:00

1829 lines
61 KiB
C++

//===- llvm/TableGen/Record.h - Classes for Table Records -------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the main TableGen data structures, including the TableGen
// types, values, and high-level data structures.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_TABLEGEN_RECORD_H
#define LLVM_TABLEGEN_RECORD_H
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/DataTypes.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Support/raw_ostream.h"
#include <map>
namespace llvm {
class raw_ostream;
// RecTy subclasses.
class BitRecTy;
class BitsRecTy;
class IntRecTy;
class StringRecTy;
class ListRecTy;
class DagRecTy;
class RecordRecTy;
// Init subclasses.
class Init;
class UnsetInit;
class BitInit;
class BitsInit;
class IntInit;
class StringInit;
class ListInit;
class UnOpInit;
class BinOpInit;
class TernOpInit;
class DefInit;
class DagInit;
class TypedInit;
class VarInit;
class FieldInit;
class VarBitInit;
class VarListElementInit;
// Other classes.
class Record;
class RecordVal;
struct MultiClass;
class RecordKeeper;
//===----------------------------------------------------------------------===//
// Type Classes
//===----------------------------------------------------------------------===//
class RecTy {
public:
/// \brief Subclass discriminator (for dyn_cast<> et al.)
enum RecTyKind {
BitRecTyKind,
BitsRecTyKind,
IntRecTyKind,
StringRecTyKind,
ListRecTyKind,
DagRecTyKind,
RecordRecTyKind
};
private:
RecTyKind Kind;
ListRecTy *ListTy;
virtual void anchor();
public:
RecTyKind getRecTyKind() const { return Kind; }
RecTy(RecTyKind K) : Kind(K), ListTy(0) {}
virtual ~RecTy() {}
virtual std::string getAsString() const = 0;
void print(raw_ostream &OS) const { OS << getAsString(); }
void dump() const;
/// typeIsConvertibleTo - Return true if all values of 'this' type can be
/// converted to the specified type.
virtual bool typeIsConvertibleTo(const RecTy *RHS) const = 0;
/// getListTy - Returns the type representing list<this>.
ListRecTy *getListTy();
public: // These methods should only be called from subclasses of Init
virtual Init *convertValue( UnsetInit *UI) { return 0; }
virtual Init *convertValue( BitInit *BI) { return 0; }
virtual Init *convertValue( BitsInit *BI) { return 0; }
virtual Init *convertValue( IntInit *II) { return 0; }
virtual Init *convertValue(StringInit *SI) { return 0; }
virtual Init *convertValue( ListInit *LI) { return 0; }
virtual Init *convertValue( UnOpInit *UI) {
return convertValue((TypedInit*)UI);
}
virtual Init *convertValue( BinOpInit *UI) {
return convertValue((TypedInit*)UI);
}
virtual Init *convertValue( TernOpInit *UI) {
return convertValue((TypedInit*)UI);
}
virtual Init *convertValue(VarBitInit *VB) { return 0; }
virtual Init *convertValue( DefInit *DI) { return 0; }
virtual Init *convertValue( DagInit *DI) { return 0; }
virtual Init *convertValue( TypedInit *TI) { return 0; }
virtual Init *convertValue( VarInit *VI) {
return convertValue((TypedInit*)VI);
}
virtual Init *convertValue( FieldInit *FI) {
return convertValue((TypedInit*)FI);
}
public:
virtual bool baseClassOf(const RecTy*) const;
};
inline raw_ostream &operator<<(raw_ostream &OS, const RecTy &Ty) {
Ty.print(OS);
return OS;
}
/// BitRecTy - 'bit' - Represent a single bit
///
class BitRecTy : public RecTy {
static BitRecTy Shared;
BitRecTy() : RecTy(BitRecTyKind) {}
public:
static bool classof(const RecTy *RT) {
return RT->getRecTyKind() == BitRecTyKind;
}
static BitRecTy *get() { return &Shared; }
virtual Init *convertValue( UnsetInit *UI) { return (Init*)UI; }
virtual Init *convertValue( BitInit *BI) { return (Init*)BI; }
virtual Init *convertValue( BitsInit *BI);
virtual Init *convertValue( IntInit *II);
virtual Init *convertValue(StringInit *SI) { return 0; }
virtual Init *convertValue( ListInit *LI) { return 0; }
virtual Init *convertValue(VarBitInit *VB) { return (Init*)VB; }
virtual Init *convertValue( DefInit *DI) { return 0; }
virtual Init *convertValue( DagInit *DI) { return 0; }
virtual Init *convertValue( UnOpInit *UI) { return RecTy::convertValue(UI);}
virtual Init *convertValue( BinOpInit *UI) { return RecTy::convertValue(UI);}
virtual Init *convertValue( TernOpInit *UI) { return RecTy::convertValue(UI);}
virtual Init *convertValue( TypedInit *TI);
virtual Init *convertValue( VarInit *VI) { return RecTy::convertValue(VI);}
virtual Init *convertValue( FieldInit *FI) { return RecTy::convertValue(FI);}
virtual std::string getAsString() const { return "bit"; }
virtual bool typeIsConvertibleTo(const RecTy *RHS) const {
return RHS->baseClassOf(this);
}
virtual bool baseClassOf(const RecTy*) const;
};
/// BitsRecTy - 'bits<n>' - Represent a fixed number of bits
///
class BitsRecTy : public RecTy {
unsigned Size;
explicit BitsRecTy(unsigned Sz) : RecTy(BitsRecTyKind), Size(Sz) {}
public:
static bool classof(const RecTy *RT) {
return RT->getRecTyKind() == BitsRecTyKind;
}
static BitsRecTy *get(unsigned Sz);
unsigned getNumBits() const { return Size; }
virtual Init *convertValue( UnsetInit *UI);
virtual Init *convertValue( BitInit *UI);
virtual Init *convertValue( BitsInit *BI);
virtual Init *convertValue( IntInit *II);
virtual Init *convertValue(StringInit *SI) { return 0; }
virtual Init *convertValue( ListInit *LI) { return 0; }
virtual Init *convertValue(VarBitInit *VB) { return 0; }
virtual Init *convertValue( DefInit *DI) { return 0; }
virtual Init *convertValue( DagInit *DI) { return 0; }
virtual Init *convertValue( UnOpInit *UI) { return RecTy::convertValue(UI);}
virtual Init *convertValue( BinOpInit *UI) { return RecTy::convertValue(UI);}
virtual Init *convertValue( TernOpInit *UI) { return RecTy::convertValue(UI);}
virtual Init *convertValue( TypedInit *TI);
virtual Init *convertValue( VarInit *VI) { return RecTy::convertValue(VI);}
virtual Init *convertValue( FieldInit *FI) { return RecTy::convertValue(FI);}
virtual std::string getAsString() const;
virtual bool typeIsConvertibleTo(const RecTy *RHS) const {
return RHS->baseClassOf(this);
}
virtual bool baseClassOf(const RecTy*) const;
};
/// IntRecTy - 'int' - Represent an integer value of no particular size
///
class IntRecTy : public RecTy {
static IntRecTy Shared;
IntRecTy() : RecTy(IntRecTyKind) {}
public:
static bool classof(const RecTy *RT) {
return RT->getRecTyKind() == IntRecTyKind;
}
static IntRecTy *get() { return &Shared; }
virtual Init *convertValue( UnsetInit *UI) { return (Init*)UI; }
virtual Init *convertValue( BitInit *BI);
virtual Init *convertValue( BitsInit *BI);
virtual Init *convertValue( IntInit *II) { return (Init*)II; }
virtual Init *convertValue(StringInit *SI) { return 0; }
virtual Init *convertValue( ListInit *LI) { return 0; }
virtual Init *convertValue(VarBitInit *VB) { return 0; }
virtual Init *convertValue( DefInit *DI) { return 0; }
virtual Init *convertValue( DagInit *DI) { return 0; }
virtual Init *convertValue( UnOpInit *UI) { return RecTy::convertValue(UI);}
virtual Init *convertValue( BinOpInit *UI) { return RecTy::convertValue(UI);}
virtual Init *convertValue( TernOpInit *UI) { return RecTy::convertValue(UI);}
virtual Init *convertValue( TypedInit *TI);
virtual Init *convertValue( VarInit *VI) { return RecTy::convertValue(VI);}
virtual Init *convertValue( FieldInit *FI) { return RecTy::convertValue(FI);}
virtual std::string getAsString() const { return "int"; }
virtual bool typeIsConvertibleTo(const RecTy *RHS) const {
return RHS->baseClassOf(this);
}
virtual bool baseClassOf(const RecTy*) const;
};
/// StringRecTy - 'string' - Represent an string value
///
class StringRecTy : public RecTy {
static StringRecTy Shared;
StringRecTy() : RecTy(StringRecTyKind) {}
public:
static bool classof(const RecTy *RT) {
return RT->getRecTyKind() == StringRecTyKind;
}
static StringRecTy *get() { return &Shared; }
virtual Init *convertValue( UnsetInit *UI) { return (Init*)UI; }
virtual Init *convertValue( BitInit *BI) { return 0; }
virtual Init *convertValue( BitsInit *BI) { return 0; }
virtual Init *convertValue( IntInit *II) { return 0; }
virtual Init *convertValue(StringInit *SI) { return (Init*)SI; }
virtual Init *convertValue( ListInit *LI) { return 0; }
virtual Init *convertValue( UnOpInit *BO);
virtual Init *convertValue( BinOpInit *BO);
virtual Init *convertValue( TernOpInit *BO) { return RecTy::convertValue(BO);}
virtual Init *convertValue(VarBitInit *VB) { return 0; }
virtual Init *convertValue( DefInit *DI) { return 0; }
virtual Init *convertValue( DagInit *DI) { return 0; }
virtual Init *convertValue( TypedInit *TI);
virtual Init *convertValue( VarInit *VI) { return RecTy::convertValue(VI);}
virtual Init *convertValue( FieldInit *FI) { return RecTy::convertValue(FI);}
virtual std::string getAsString() const { return "string"; }
virtual bool typeIsConvertibleTo(const RecTy *RHS) const {
return RHS->baseClassOf(this);
}
};
/// ListRecTy - 'list<Ty>' - Represent a list of values, all of which must be of
/// the specified type.
///
class ListRecTy : public RecTy {
RecTy *Ty;
explicit ListRecTy(RecTy *T) : RecTy(ListRecTyKind), Ty(T) {}
friend ListRecTy *RecTy::getListTy();
public:
static bool classof(const RecTy *RT) {
return RT->getRecTyKind() == ListRecTyKind;
}
static ListRecTy *get(RecTy *T) { return T->getListTy(); }
RecTy *getElementType() const { return Ty; }
virtual Init *convertValue( UnsetInit *UI) { return (Init*)UI; }
virtual Init *convertValue( BitInit *BI) { return 0; }
virtual Init *convertValue( BitsInit *BI) { return 0; }
virtual Init *convertValue( IntInit *II) { return 0; }
virtual Init *convertValue(StringInit *SI) { return 0; }
virtual Init *convertValue( ListInit *LI);
virtual Init *convertValue(VarBitInit *VB) { return 0; }
virtual Init *convertValue( DefInit *DI) { return 0; }
virtual Init *convertValue( DagInit *DI) { return 0; }
virtual Init *convertValue( UnOpInit *UI) { return RecTy::convertValue(UI);}
virtual Init *convertValue( BinOpInit *UI) { return RecTy::convertValue(UI);}
virtual Init *convertValue( TernOpInit *UI) { return RecTy::convertValue(UI);}
virtual Init *convertValue( TypedInit *TI);
virtual Init *convertValue( VarInit *VI) { return RecTy::convertValue(VI);}
virtual Init *convertValue( FieldInit *FI) { return RecTy::convertValue(FI);}
virtual std::string getAsString() const;
virtual bool typeIsConvertibleTo(const RecTy *RHS) const {
return RHS->baseClassOf(this);
}
virtual bool baseClassOf(const RecTy*) const;
};
/// DagRecTy - 'dag' - Represent a dag fragment
///
class DagRecTy : public RecTy {
static DagRecTy Shared;
DagRecTy() : RecTy(DagRecTyKind) {}
public:
static bool classof(const RecTy *RT) {
return RT->getRecTyKind() == DagRecTyKind;
}
static DagRecTy *get() { return &Shared; }
virtual Init *convertValue( UnsetInit *UI) { return (Init*)UI; }
virtual Init *convertValue( BitInit *BI) { return 0; }
virtual Init *convertValue( BitsInit *BI) { return 0; }
virtual Init *convertValue( IntInit *II) { return 0; }
virtual Init *convertValue(StringInit *SI) { return 0; }
virtual Init *convertValue( ListInit *LI) { return 0; }
virtual Init *convertValue(VarBitInit *VB) { return 0; }
virtual Init *convertValue( DefInit *DI) { return 0; }
virtual Init *convertValue( UnOpInit *BO);
virtual Init *convertValue( BinOpInit *BO);
virtual Init *convertValue( TernOpInit *BO) { return RecTy::convertValue(BO);}
virtual Init *convertValue( DagInit *CI) { return (Init*)CI; }
virtual Init *convertValue( TypedInit *TI);
virtual Init *convertValue( VarInit *VI) { return RecTy::convertValue(VI);}
virtual Init *convertValue( FieldInit *FI) { return RecTy::convertValue(FI);}
virtual std::string getAsString() const { return "dag"; }
virtual bool typeIsConvertibleTo(const RecTy *RHS) const {
return RHS->baseClassOf(this);
}
};
/// RecordRecTy - '[classname]' - Represent an instance of a class, such as:
/// (R32 X = EAX).
///
class RecordRecTy : public RecTy {
Record *Rec;
explicit RecordRecTy(Record *R) : RecTy(RecordRecTyKind), Rec(R) {}
friend class Record;
public:
static bool classof(const RecTy *RT) {
return RT->getRecTyKind() == RecordRecTyKind;
}
static RecordRecTy *get(Record *R);
Record *getRecord() const { return Rec; }
virtual Init *convertValue( UnsetInit *UI) { return (Init*)UI; }
virtual Init *convertValue( BitInit *BI) { return 0; }
virtual Init *convertValue( BitsInit *BI) { return 0; }
virtual Init *convertValue( IntInit *II) { return 0; }
virtual Init *convertValue(StringInit *SI) { return 0; }
virtual Init *convertValue( ListInit *LI) { return 0; }
virtual Init *convertValue(VarBitInit *VB) { return 0; }
virtual Init *convertValue( UnOpInit *UI) { return RecTy::convertValue(UI);}
virtual Init *convertValue( BinOpInit *UI) { return RecTy::convertValue(UI);}
virtual Init *convertValue( TernOpInit *UI) { return RecTy::convertValue(UI);}
virtual Init *convertValue( DefInit *DI);
virtual Init *convertValue( DagInit *DI) { return 0; }
virtual Init *convertValue( TypedInit *VI);
virtual Init *convertValue( VarInit *VI) { return RecTy::convertValue(VI);}
virtual Init *convertValue( FieldInit *FI) { return RecTy::convertValue(FI);}
virtual std::string getAsString() const;
virtual bool typeIsConvertibleTo(const RecTy *RHS) const {
return RHS->baseClassOf(this);
}
virtual bool baseClassOf(const RecTy*) const;
};
/// resolveTypes - Find a common type that T1 and T2 convert to.
/// Return 0 if no such type exists.
///
RecTy *resolveTypes(RecTy *T1, RecTy *T2);
//===----------------------------------------------------------------------===//
// Initializer Classes
//===----------------------------------------------------------------------===//
class Init {
protected:
/// \brief Discriminator enum (for isa<>, dyn_cast<>, et al.)
///
/// This enum is laid out by a preorder traversal of the inheritance
/// hierarchy, and does not contain an entry for abstract classes, as per
/// the recommendation in docs/HowToSetUpLLVMStyleRTTI.rst.
///
/// We also explicitly include "first" and "last" values for each
/// interior node of the inheritance tree, to make it easier to read the
/// corresponding classof().
///
/// We could pack these a bit tighter by not having the IK_FirstXXXInit
/// and IK_LastXXXInit be their own values, but that would degrade
/// readability for really no benefit.
enum InitKind {
IK_BitInit,
IK_BitsInit,
IK_FirstTypedInit,
IK_DagInit,
IK_DefInit,
IK_FieldInit,
IK_IntInit,
IK_ListInit,
IK_FirstOpInit,
IK_BinOpInit,
IK_TernOpInit,
IK_UnOpInit,
IK_LastOpInit,
IK_StringInit,
IK_VarInit,
IK_VarListElementInit,
IK_LastTypedInit,
IK_UnsetInit,
IK_VarBitInit
};
private:
const InitKind Kind;
Init(const Init &) LLVM_DELETED_FUNCTION;
Init &operator=(const Init &) LLVM_DELETED_FUNCTION;
virtual void anchor();
public:
InitKind getKind() const { return Kind; }
protected:
explicit Init(InitKind K) : Kind(K) {}
public:
virtual ~Init() {}
/// isComplete - This virtual method should be overridden by values that may
/// not be completely specified yet.
virtual bool isComplete() const { return true; }
/// print - Print out this value.
void print(raw_ostream &OS) const { OS << getAsString(); }
/// getAsString - Convert this value to a string form.
virtual std::string getAsString() const = 0;
/// getAsUnquotedString - Convert this value to a string form,
/// without adding quote markers. This primaruly affects
/// StringInits where we will not surround the string value with
/// quotes.
virtual std::string getAsUnquotedString() const { return getAsString(); }
/// dump - Debugging method that may be called through a debugger, just
/// invokes print on stderr.
void dump() const;
/// convertInitializerTo - This virtual function is a simple call-back
/// function that should be overridden to call the appropriate
/// RecTy::convertValue method.
///
virtual Init *convertInitializerTo(RecTy *Ty) const = 0;
/// convertInitializerBitRange - This method is used to implement the bitrange
/// selection operator. Given an initializer, it selects the specified bits
/// out, returning them as a new init of bits type. If it is not legal to use
/// the bit subscript operator on this initializer, return null.
///
virtual Init *
convertInitializerBitRange(const std::vector<unsigned> &Bits) const {
return 0;
}
/// convertInitListSlice - This method is used to implement the list slice
/// selection operator. Given an initializer, it selects the specified list
/// elements, returning them as a new init of list type. If it is not legal
/// to take a slice of this, return null.
///
virtual Init *
convertInitListSlice(const std::vector<unsigned> &Elements) const {
return 0;
}
/// getFieldType - This method is used to implement the FieldInit class.
/// Implementors of this method should return the type of the named field if
/// they are of record type.
///
virtual RecTy *getFieldType(const std::string &FieldName) const { return 0; }
/// getFieldInit - This method complements getFieldType to return the
/// initializer for the specified field. If getFieldType returns non-null
/// this method should return non-null, otherwise it returns null.
///
virtual Init *getFieldInit(Record &R, const RecordVal *RV,
const std::string &FieldName) const {
return 0;
}
/// resolveReferences - This method is used by classes that refer to other
/// variables which may not be defined at the time the expression is formed.
/// If a value is set for the variable later, this method will be called on
/// users of the value to allow the value to propagate out.
///
virtual Init *resolveReferences(Record &R, const RecordVal *RV) const {
return const_cast<Init *>(this);
}
/// getBit - This method is used to return the initializer for the specified
/// bit.
virtual Init *getBit(unsigned Bit) const = 0;
/// getBitVar - This method is used to retrieve the initializer for bit
/// reference. For non-VarBitInit, it simply returns itself.
virtual Init *getBitVar() const { return const_cast<Init*>(this); }
/// getBitNum - This method is used to retrieve the bit number of a bit
/// reference. For non-VarBitInit, it simply returns 0.
virtual unsigned getBitNum() const { return 0; }
};
inline raw_ostream &operator<<(raw_ostream &OS, const Init &I) {
I.print(OS); return OS;
}
/// TypedInit - This is the common super-class of types that have a specific,
/// explicit, type.
///
class TypedInit : public Init {
RecTy *Ty;
TypedInit(const TypedInit &Other) LLVM_DELETED_FUNCTION;
TypedInit &operator=(const TypedInit &Other) LLVM_DELETED_FUNCTION;
protected:
explicit TypedInit(InitKind K, RecTy *T) : Init(K), Ty(T) {}
public:
static bool classof(const Init *I) {
return I->getKind() >= IK_FirstTypedInit &&
I->getKind() <= IK_LastTypedInit;
}
RecTy *getType() const { return Ty; }
virtual Init *
convertInitializerBitRange(const std::vector<unsigned> &Bits) const;
virtual Init *
convertInitListSlice(const std::vector<unsigned> &Elements) const;
/// getFieldType - This method is used to implement the FieldInit class.
/// Implementors of this method should return the type of the named field if
/// they are of record type.
///
virtual RecTy *getFieldType(const std::string &FieldName) const;
/// resolveListElementReference - This method is used to implement
/// VarListElementInit::resolveReferences. If the list element is resolvable
/// now, we return the resolved value, otherwise we return null.
virtual Init *resolveListElementReference(Record &R, const RecordVal *RV,
unsigned Elt) const = 0;
};
/// UnsetInit - ? - Represents an uninitialized value
///
class UnsetInit : public Init {
UnsetInit() : Init(IK_UnsetInit) {}
UnsetInit(const UnsetInit &) LLVM_DELETED_FUNCTION;
UnsetInit &operator=(const UnsetInit &Other) LLVM_DELETED_FUNCTION;
virtual void anchor();
public:
static bool classof(const Init *I) {
return I->getKind() == IK_UnsetInit;
}
static UnsetInit *get();
virtual Init *convertInitializerTo(RecTy *Ty) const {
return Ty->convertValue(const_cast<UnsetInit *>(this));
}
virtual Init *getBit(unsigned Bit) const {
return const_cast<UnsetInit*>(this);
}
virtual bool isComplete() const { return false; }
virtual std::string getAsString() const { return "?"; }
};
/// BitInit - true/false - Represent a concrete initializer for a bit.
///
class BitInit : public Init {
bool Value;
explicit BitInit(bool V) : Init(IK_BitInit), Value(V) {}
BitInit(const BitInit &Other) LLVM_DELETED_FUNCTION;
BitInit &operator=(BitInit &Other) LLVM_DELETED_FUNCTION;
virtual void anchor();
public:
static bool classof(const Init *I) {
return I->getKind() == IK_BitInit;
}
static BitInit *get(bool V);
bool getValue() const { return Value; }
virtual Init *convertInitializerTo(RecTy *Ty) const {
return Ty->convertValue(const_cast<BitInit *>(this));
}
virtual Init *getBit(unsigned Bit) const {
assert(Bit < 1 && "Bit index out of range!");
return const_cast<BitInit*>(this);
}
virtual std::string getAsString() const { return Value ? "1" : "0"; }
};
/// BitsInit - { a, b, c } - Represents an initializer for a BitsRecTy value.
/// It contains a vector of bits, whose size is determined by the type.
///
class BitsInit : public Init, public FoldingSetNode {
std::vector<Init*> Bits;
BitsInit(ArrayRef<Init *> Range)
: Init(IK_BitsInit), Bits(Range.begin(), Range.end()) {}
BitsInit(const BitsInit &Other) LLVM_DELETED_FUNCTION;
BitsInit &operator=(const BitsInit &Other) LLVM_DELETED_FUNCTION;
public:
static bool classof(const Init *I) {
return I->getKind() == IK_BitsInit;
}
static BitsInit *get(ArrayRef<Init *> Range);
void Profile(FoldingSetNodeID &ID) const;
unsigned getNumBits() const { return Bits.size(); }
virtual Init *convertInitializerTo(RecTy *Ty) const {
return Ty->convertValue(const_cast<BitsInit *>(this));
}
virtual Init *
convertInitializerBitRange(const std::vector<unsigned> &Bits) const;
virtual bool isComplete() const {
for (unsigned i = 0; i != getNumBits(); ++i)
if (!getBit(i)->isComplete()) return false;
return true;
}
bool allInComplete() const {
for (unsigned i = 0; i != getNumBits(); ++i)
if (getBit(i)->isComplete()) return false;
return true;
}
virtual std::string getAsString() const;
virtual Init *resolveReferences(Record &R, const RecordVal *RV) const;
virtual Init *getBit(unsigned Bit) const {
assert(Bit < Bits.size() && "Bit index out of range!");
return Bits[Bit];
}
};
/// IntInit - 7 - Represent an initalization by a literal integer value.
///
class IntInit : public TypedInit {
int64_t Value;
explicit IntInit(int64_t V)
: TypedInit(IK_IntInit, IntRecTy::get()), Value(V) {}
IntInit(const IntInit &Other) LLVM_DELETED_FUNCTION;
IntInit &operator=(const IntInit &Other) LLVM_DELETED_FUNCTION;
public:
static bool classof(const Init *I) {
return I->getKind() == IK_IntInit;
}
static IntInit *get(int64_t V);
int64_t getValue() const { return Value; }
virtual Init *convertInitializerTo(RecTy *Ty) const {
return Ty->convertValue(const_cast<IntInit *>(this));
}
virtual Init *
convertInitializerBitRange(const std::vector<unsigned> &Bits) const;
virtual std::string getAsString() const;
/// resolveListElementReference - This method is used to implement
/// VarListElementInit::resolveReferences. If the list element is resolvable
/// now, we return the resolved value, otherwise we return null.
virtual Init *resolveListElementReference(Record &R, const RecordVal *RV,
unsigned Elt) const {
llvm_unreachable("Illegal element reference off int");
}
virtual Init *getBit(unsigned Bit) const {
return BitInit::get((Value & (1ULL << Bit)) != 0);
}
};
/// StringInit - "foo" - Represent an initialization by a string value.
///
class StringInit : public TypedInit {
std::string Value;
explicit StringInit(const std::string &V)
: TypedInit(IK_StringInit, StringRecTy::get()), Value(V) {}
StringInit(const StringInit &Other) LLVM_DELETED_FUNCTION;
StringInit &operator=(const StringInit &Other) LLVM_DELETED_FUNCTION;
virtual void anchor();
public:
static bool classof(const Init *I) {
return I->getKind() == IK_StringInit;
}
static StringInit *get(StringRef);
const std::string &getValue() const { return Value; }
virtual Init *convertInitializerTo(RecTy *Ty) const {
return Ty->convertValue(const_cast<StringInit *>(this));
}
virtual std::string getAsString() const { return "\"" + Value + "\""; }
virtual std::string getAsUnquotedString() const { return Value; }
/// resolveListElementReference - This method is used to implement
/// VarListElementInit::resolveReferences. If the list element is resolvable
/// now, we return the resolved value, otherwise we return null.
virtual Init *resolveListElementReference(Record &R, const RecordVal *RV,
unsigned Elt) const {
llvm_unreachable("Illegal element reference off string");
}
virtual Init *getBit(unsigned Bit) const {
llvm_unreachable("Illegal bit reference off string");
}
};
/// ListInit - [AL, AH, CL] - Represent a list of defs
///
class ListInit : public TypedInit, public FoldingSetNode {
std::vector<Init*> Values;
public:
typedef std::vector<Init*>::const_iterator const_iterator;
private:
explicit ListInit(ArrayRef<Init *> Range, RecTy *EltTy)
: TypedInit(IK_ListInit, ListRecTy::get(EltTy)),
Values(Range.begin(), Range.end()) {}
ListInit(const ListInit &Other) LLVM_DELETED_FUNCTION;
ListInit &operator=(const ListInit &Other) LLVM_DELETED_FUNCTION;
public:
static bool classof(const Init *I) {
return I->getKind() == IK_ListInit;
}
static ListInit *get(ArrayRef<Init *> Range, RecTy *EltTy);
void Profile(FoldingSetNodeID &ID) const;
unsigned getSize() const { return Values.size(); }
Init *getElement(unsigned i) const {
assert(i < Values.size() && "List element index out of range!");
return Values[i];
}
Record *getElementAsRecord(unsigned i) const;
virtual Init *
convertInitListSlice(const std::vector<unsigned> &Elements) const;
virtual Init *convertInitializerTo(RecTy *Ty) const {
return Ty->convertValue(const_cast<ListInit *>(this));
}
/// resolveReferences - This method is used by classes that refer to other
/// variables which may not be defined at the time they expression is formed.
/// If a value is set for the variable later, this method will be called on
/// users of the value to allow the value to propagate out.
///
virtual Init *resolveReferences(Record &R, const RecordVal *RV) const;
virtual std::string getAsString() const;
ArrayRef<Init*> getValues() const { return Values; }
inline const_iterator begin() const { return Values.begin(); }
inline const_iterator end () const { return Values.end(); }
inline size_t size () const { return Values.size(); }
inline bool empty() const { return Values.empty(); }
/// resolveListElementReference - This method is used to implement
/// VarListElementInit::resolveReferences. If the list element is resolvable
/// now, we return the resolved value, otherwise we return null.
virtual Init *resolveListElementReference(Record &R, const RecordVal *RV,
unsigned Elt) const;
virtual Init *getBit(unsigned Bit) const {
llvm_unreachable("Illegal bit reference off list");
}
};
/// OpInit - Base class for operators
///
class OpInit : public TypedInit {
OpInit(const OpInit &Other) LLVM_DELETED_FUNCTION;
OpInit &operator=(OpInit &Other) LLVM_DELETED_FUNCTION;
protected:
explicit OpInit(InitKind K, RecTy *Type) : TypedInit(K, Type) {}
public:
static bool classof(const Init *I) {
return I->getKind() >= IK_FirstOpInit &&
I->getKind() <= IK_LastOpInit;
}
// Clone - Clone this operator, replacing arguments with the new list
virtual OpInit *clone(std::vector<Init *> &Operands) const = 0;
virtual int getNumOperands() const = 0;
virtual Init *getOperand(int i) const = 0;
// Fold - If possible, fold this to a simpler init. Return this if not
// possible to fold.
virtual Init *Fold(Record *CurRec, MultiClass *CurMultiClass) const = 0;
virtual Init *convertInitializerTo(RecTy *Ty) const {
return Ty->convertValue(const_cast<OpInit *>(this));
}
virtual Init *resolveListElementReference(Record &R, const RecordVal *RV,
unsigned Elt) const;
virtual Init *getBit(unsigned Bit) const;
};
/// UnOpInit - !op (X) - Transform an init.
///
class UnOpInit : public OpInit {
public:
enum UnaryOp { CAST, HEAD, TAIL, EMPTY };
private:
UnaryOp Opc;
Init *LHS;
UnOpInit(UnaryOp opc, Init *lhs, RecTy *Type)
: OpInit(IK_UnOpInit, Type), Opc(opc), LHS(lhs) {}
UnOpInit(const UnOpInit &Other) LLVM_DELETED_FUNCTION;
UnOpInit &operator=(const UnOpInit &Other) LLVM_DELETED_FUNCTION;
public:
static bool classof(const Init *I) {
return I->getKind() == IK_UnOpInit;
}
static UnOpInit *get(UnaryOp opc, Init *lhs, RecTy *Type);
// Clone - Clone this operator, replacing arguments with the new list
virtual OpInit *clone(std::vector<Init *> &Operands) const {
assert(Operands.size() == 1 &&
"Wrong number of operands for unary operation");
return UnOpInit::get(getOpcode(), *Operands.begin(), getType());
}
virtual int getNumOperands() const { return 1; }
virtual Init *getOperand(int i) const {
assert(i == 0 && "Invalid operand id for unary operator");
return getOperand();
}
UnaryOp getOpcode() const { return Opc; }
Init *getOperand() const { return LHS; }
// Fold - If possible, fold this to a simpler init. Return this if not
// possible to fold.
virtual Init *Fold(Record *CurRec, MultiClass *CurMultiClass) const;
virtual Init *resolveReferences(Record &R, const RecordVal *RV) const;
virtual std::string getAsString() const;
};
/// BinOpInit - !op (X, Y) - Combine two inits.
///
class BinOpInit : public OpInit {
public:
enum BinaryOp { ADD, SHL, SRA, SRL, STRCONCAT, CONCAT, EQ };
private:
BinaryOp Opc;
Init *LHS, *RHS;
BinOpInit(BinaryOp opc, Init *lhs, Init *rhs, RecTy *Type) :
OpInit(IK_BinOpInit, Type), Opc(opc), LHS(lhs), RHS(rhs) {}
BinOpInit(const BinOpInit &Other) LLVM_DELETED_FUNCTION;
BinOpInit &operator=(const BinOpInit &Other) LLVM_DELETED_FUNCTION;
public:
static bool classof(const Init *I) {
return I->getKind() == IK_BinOpInit;
}
static BinOpInit *get(BinaryOp opc, Init *lhs, Init *rhs,
RecTy *Type);
// Clone - Clone this operator, replacing arguments with the new list
virtual OpInit *clone(std::vector<Init *> &Operands) const {
assert(Operands.size() == 2 &&
"Wrong number of operands for binary operation");
return BinOpInit::get(getOpcode(), Operands[0], Operands[1], getType());
}
virtual int getNumOperands() const { return 2; }
virtual Init *getOperand(int i) const {
assert((i == 0 || i == 1) && "Invalid operand id for binary operator");
if (i == 0) {
return getLHS();
} else {
return getRHS();
}
}
BinaryOp getOpcode() const { return Opc; }
Init *getLHS() const { return LHS; }
Init *getRHS() const { return RHS; }
// Fold - If possible, fold this to a simpler init. Return this if not
// possible to fold.
virtual Init *Fold(Record *CurRec, MultiClass *CurMultiClass) const;
virtual Init *resolveReferences(Record &R, const RecordVal *RV) const;
virtual std::string getAsString() const;
};
/// TernOpInit - !op (X, Y, Z) - Combine two inits.
///
class TernOpInit : public OpInit {
public:
enum TernaryOp { SUBST, FOREACH, IF };
private:
TernaryOp Opc;
Init *LHS, *MHS, *RHS;
TernOpInit(TernaryOp opc, Init *lhs, Init *mhs, Init *rhs,
RecTy *Type) :
OpInit(IK_TernOpInit, Type), Opc(opc), LHS(lhs), MHS(mhs), RHS(rhs) {}
TernOpInit(const TernOpInit &Other) LLVM_DELETED_FUNCTION;
TernOpInit &operator=(const TernOpInit &Other) LLVM_DELETED_FUNCTION;
public:
static bool classof(const Init *I) {
return I->getKind() == IK_TernOpInit;
}
static TernOpInit *get(TernaryOp opc, Init *lhs,
Init *mhs, Init *rhs,
RecTy *Type);
// Clone - Clone this operator, replacing arguments with the new list
virtual OpInit *clone(std::vector<Init *> &Operands) const {
assert(Operands.size() == 3 &&
"Wrong number of operands for ternary operation");
return TernOpInit::get(getOpcode(), Operands[0], Operands[1], Operands[2],
getType());
}
virtual int getNumOperands() const { return 3; }
virtual Init *getOperand(int i) const {
assert((i == 0 || i == 1 || i == 2) &&
"Invalid operand id for ternary operator");
if (i == 0) {
return getLHS();
} else if (i == 1) {
return getMHS();
} else {
return getRHS();
}
}
TernaryOp getOpcode() const { return Opc; }
Init *getLHS() const { return LHS; }
Init *getMHS() const { return MHS; }
Init *getRHS() const { return RHS; }
// Fold - If possible, fold this to a simpler init. Return this if not
// possible to fold.
virtual Init *Fold(Record *CurRec, MultiClass *CurMultiClass) const;
virtual bool isComplete() const { return false; }
virtual Init *resolveReferences(Record &R, const RecordVal *RV) const;
virtual std::string getAsString() const;
};
/// VarInit - 'Opcode' - Represent a reference to an entire variable object.
///
class VarInit : public TypedInit {
Init *VarName;
explicit VarInit(const std::string &VN, RecTy *T)
: TypedInit(IK_VarInit, T), VarName(StringInit::get(VN)) {}
explicit VarInit(Init *VN, RecTy *T)
: TypedInit(IK_VarInit, T), VarName(VN) {}
VarInit(const VarInit &Other) LLVM_DELETED_FUNCTION;
VarInit &operator=(const VarInit &Other) LLVM_DELETED_FUNCTION;
public:
static bool classof(const Init *I) {
return I->getKind() == IK_VarInit;
}
static VarInit *get(const std::string &VN, RecTy *T);
static VarInit *get(Init *VN, RecTy *T);
virtual Init *convertInitializerTo(RecTy *Ty) const {
return Ty->convertValue(const_cast<VarInit *>(this));
}
const std::string &getName() const;
Init *getNameInit() const { return VarName; }
std::string getNameInitAsString() const {
return getNameInit()->getAsUnquotedString();
}
virtual Init *resolveListElementReference(Record &R, const RecordVal *RV,
unsigned Elt) const;
virtual RecTy *getFieldType(const std::string &FieldName) const;
virtual Init *getFieldInit(Record &R, const RecordVal *RV,
const std::string &FieldName) const;
/// resolveReferences - This method is used by classes that refer to other
/// variables which may not be defined at the time they expression is formed.
/// If a value is set for the variable later, this method will be called on
/// users of the value to allow the value to propagate out.
///
virtual Init *resolveReferences(Record &R, const RecordVal *RV) const;
virtual Init *getBit(unsigned Bit) const;
virtual std::string getAsString() const { return getName(); }
};
/// VarBitInit - Opcode{0} - Represent access to one bit of a variable or field.
///
class VarBitInit : public Init {
TypedInit *TI;
unsigned Bit;
VarBitInit(TypedInit *T, unsigned B) : Init(IK_VarBitInit), TI(T), Bit(B) {
assert(T->getType() &&
(isa<IntRecTy>(T->getType()) ||
(isa<BitsRecTy>(T->getType()) &&
cast<BitsRecTy>(T->getType())->getNumBits() > B)) &&
"Illegal VarBitInit expression!");
}
VarBitInit(const VarBitInit &Other) LLVM_DELETED_FUNCTION;
VarBitInit &operator=(const VarBitInit &Other) LLVM_DELETED_FUNCTION;
public:
static bool classof(const Init *I) {
return I->getKind() == IK_VarBitInit;
}
static VarBitInit *get(TypedInit *T, unsigned B);
virtual Init *convertInitializerTo(RecTy *Ty) const {
return Ty->convertValue(const_cast<VarBitInit *>(this));
}
virtual Init *getBitVar() const { return TI; }
virtual unsigned getBitNum() const { return Bit; }
virtual std::string getAsString() const;
virtual Init *resolveReferences(Record &R, const RecordVal *RV) const;
virtual Init *getBit(unsigned B) const {
assert(B < 1 && "Bit index out of range!");
return const_cast<VarBitInit*>(this);
}
};
/// VarListElementInit - List[4] - Represent access to one element of a var or
/// field.
class VarListElementInit : public TypedInit {
TypedInit *TI;
unsigned Element;
VarListElementInit(TypedInit *T, unsigned E)
: TypedInit(IK_VarListElementInit,
cast<ListRecTy>(T->getType())->getElementType()),
TI(T), Element(E) {
assert(T->getType() && isa<ListRecTy>(T->getType()) &&
"Illegal VarBitInit expression!");
}
VarListElementInit(const VarListElementInit &Other) LLVM_DELETED_FUNCTION;
void operator=(const VarListElementInit &Other) LLVM_DELETED_FUNCTION;
public:
static bool classof(const Init *I) {
return I->getKind() == IK_VarListElementInit;
}
static VarListElementInit *get(TypedInit *T, unsigned E);
virtual Init *convertInitializerTo(RecTy *Ty) const {
return Ty->convertValue(const_cast<VarListElementInit *>(this));
}
TypedInit *getVariable() const { return TI; }
unsigned getElementNum() const { return Element; }
/// resolveListElementReference - This method is used to implement
/// VarListElementInit::resolveReferences. If the list element is resolvable
/// now, we return the resolved value, otherwise we return null.
virtual Init *resolveListElementReference(Record &R,
const RecordVal *RV,
unsigned Elt) const;
virtual std::string getAsString() const;
virtual Init *resolveReferences(Record &R, const RecordVal *RV) const;
virtual Init *getBit(unsigned Bit) const;
};
/// DefInit - AL - Represent a reference to a 'def' in the description
///
class DefInit : public TypedInit {
Record *Def;
DefInit(Record *D, RecordRecTy *T) : TypedInit(IK_DefInit, T), Def(D) {}
friend class Record;
DefInit(const DefInit &Other) LLVM_DELETED_FUNCTION;
DefInit &operator=(const DefInit &Other) LLVM_DELETED_FUNCTION;
public:
static bool classof(const Init *I) {
return I->getKind() == IK_DefInit;
}
static DefInit *get(Record*);
virtual Init *convertInitializerTo(RecTy *Ty) const {
return Ty->convertValue(const_cast<DefInit *>(this));
}
Record *getDef() const { return Def; }
//virtual Init *convertInitializerBitRange(const std::vector<unsigned> &Bits);
virtual RecTy *getFieldType(const std::string &FieldName) const;
virtual Init *getFieldInit(Record &R, const RecordVal *RV,
const std::string &FieldName) const;
virtual std::string getAsString() const;
virtual Init *getBit(unsigned Bit) const {
llvm_unreachable("Illegal bit reference off def");
}
/// resolveListElementReference - This method is used to implement
/// VarListElementInit::resolveReferences. If the list element is resolvable
/// now, we return the resolved value, otherwise we return null.
virtual Init *resolveListElementReference(Record &R, const RecordVal *RV,
unsigned Elt) const {
llvm_unreachable("Illegal element reference off def");
}
};
/// FieldInit - X.Y - Represent a reference to a subfield of a variable
///
class FieldInit : public TypedInit {
Init *Rec; // Record we are referring to
std::string FieldName; // Field we are accessing
FieldInit(Init *R, const std::string &FN)
: TypedInit(IK_FieldInit, R->getFieldType(FN)), Rec(R), FieldName(FN) {
assert(getType() && "FieldInit with non-record type!");
}
FieldInit(const FieldInit &Other) LLVM_DELETED_FUNCTION;
FieldInit &operator=(const FieldInit &Other) LLVM_DELETED_FUNCTION;
public:
static bool classof(const Init *I) {
return I->getKind() == IK_FieldInit;
}
static FieldInit *get(Init *R, const std::string &FN);
static FieldInit *get(Init *R, const Init *FN);
virtual Init *convertInitializerTo(RecTy *Ty) const {
return Ty->convertValue(const_cast<FieldInit *>(this));
}
virtual Init *getBit(unsigned Bit) const;
virtual Init *resolveListElementReference(Record &R,
const RecordVal *RV,
unsigned Elt) const;
virtual Init *resolveReferences(Record &R, const RecordVal *RV) const;
virtual std::string getAsString() const {
return Rec->getAsString() + "." + FieldName;
}
};
/// DagInit - (v a, b) - Represent a DAG tree value. DAG inits are required
/// to have at least one value then a (possibly empty) list of arguments. Each
/// argument can have a name associated with it.
///
class DagInit : public TypedInit, public FoldingSetNode {
Init *Val;
std::string ValName;
std::vector<Init*> Args;
std::vector<std::string> ArgNames;
DagInit(Init *V, const std::string &VN,
ArrayRef<Init *> ArgRange,
ArrayRef<std::string> NameRange)
: TypedInit(IK_DagInit, DagRecTy::get()), Val(V), ValName(VN),
Args(ArgRange.begin(), ArgRange.end()),
ArgNames(NameRange.begin(), NameRange.end()) {}
DagInit(const DagInit &Other) LLVM_DELETED_FUNCTION;
DagInit &operator=(const DagInit &Other) LLVM_DELETED_FUNCTION;
public:
static bool classof(const Init *I) {
return I->getKind() == IK_DagInit;
}
static DagInit *get(Init *V, const std::string &VN,
ArrayRef<Init *> ArgRange,
ArrayRef<std::string> NameRange);
static DagInit *get(Init *V, const std::string &VN,
const std::vector<
std::pair<Init*, std::string> > &args);
void Profile(FoldingSetNodeID &ID) const;
virtual Init *convertInitializerTo(RecTy *Ty) const {
return Ty->convertValue(const_cast<DagInit *>(this));
}
Init *getOperator() const { return Val; }
const std::string &getName() const { return ValName; }
unsigned getNumArgs() const { return Args.size(); }
Init *getArg(unsigned Num) const {
assert(Num < Args.size() && "Arg number out of range!");
return Args[Num];
}
const std::string &getArgName(unsigned Num) const {
assert(Num < ArgNames.size() && "Arg number out of range!");
return ArgNames[Num];
}
virtual Init *resolveReferences(Record &R, const RecordVal *RV) const;
virtual std::string getAsString() const;
typedef std::vector<Init*>::const_iterator const_arg_iterator;
typedef std::vector<std::string>::const_iterator const_name_iterator;
inline const_arg_iterator arg_begin() const { return Args.begin(); }
inline const_arg_iterator arg_end () const { return Args.end(); }
inline size_t arg_size () const { return Args.size(); }
inline bool arg_empty() const { return Args.empty(); }
inline const_name_iterator name_begin() const { return ArgNames.begin(); }
inline const_name_iterator name_end () const { return ArgNames.end(); }
inline size_t name_size () const { return ArgNames.size(); }
inline bool name_empty() const { return ArgNames.empty(); }
virtual Init *getBit(unsigned Bit) const {
llvm_unreachable("Illegal bit reference off dag");
}
virtual Init *resolveListElementReference(Record &R, const RecordVal *RV,
unsigned Elt) const {
llvm_unreachable("Illegal element reference off dag");
}
};
//===----------------------------------------------------------------------===//
// High-Level Classes
//===----------------------------------------------------------------------===//
class RecordVal {
Init *Name;
RecTy *Ty;
unsigned Prefix;
Init *Value;
public:
RecordVal(Init *N, RecTy *T, unsigned P);
RecordVal(const std::string &N, RecTy *T, unsigned P);
const std::string &getName() const;
const Init *getNameInit() const { return Name; }
std::string getNameInitAsString() const {
return getNameInit()->getAsUnquotedString();
}
unsigned getPrefix() const { return Prefix; }
RecTy *getType() const { return Ty; }
Init *getValue() const { return Value; }
bool setValue(Init *V) {
if (V) {
Value = V->convertInitializerTo(Ty);
return Value == 0;
}
Value = 0;
return false;
}
void dump() const;
void print(raw_ostream &OS, bool PrintSem = true) const;
};
inline raw_ostream &operator<<(raw_ostream &OS, const RecordVal &RV) {
RV.print(OS << " ");
return OS;
}
class Record {
static unsigned LastID;
// Unique record ID.
unsigned ID;
Init *Name;
// Location where record was instantiated, followed by the location of
// multiclass prototypes used.
SmallVector<SMLoc, 4> Locs;
std::vector<Init *> TemplateArgs;
std::vector<RecordVal> Values;
std::vector<Record *> SuperClasses;
std::vector<SMRange> SuperClassRanges;
// Tracks Record instances. Not owned by Record.
RecordKeeper &TrackedRecords;
DefInit *TheInit;
bool IsAnonymous;
void init();
void checkName();
public:
// Constructs a record.
explicit Record(const std::string &N, ArrayRef<SMLoc> locs,
RecordKeeper &records, bool Anonymous = false) :
ID(LastID++), Name(StringInit::get(N)), Locs(locs.begin(), locs.end()),
TrackedRecords(records), TheInit(0), IsAnonymous(Anonymous) {
init();
}
explicit Record(Init *N, ArrayRef<SMLoc> locs, RecordKeeper &records,
bool Anonymous = false) :
ID(LastID++), Name(N), Locs(locs.begin(), locs.end()),
TrackedRecords(records), TheInit(0), IsAnonymous(Anonymous) {
init();
}
// When copy-constructing a Record, we must still guarantee a globally unique
// ID number. All other fields can be copied normally.
Record(const Record &O) :
ID(LastID++), Name(O.Name), Locs(O.Locs), TemplateArgs(O.TemplateArgs),
Values(O.Values), SuperClasses(O.SuperClasses),
SuperClassRanges(O.SuperClassRanges), TrackedRecords(O.TrackedRecords),
TheInit(O.TheInit), IsAnonymous(O.IsAnonymous) { }
~Record() {}
static unsigned getNewUID() { return LastID++; }
unsigned getID() const { return ID; }
const std::string &getName() const;
Init *getNameInit() const {
return Name;
}
const std::string getNameInitAsString() const {
return getNameInit()->getAsUnquotedString();
}
void setName(Init *Name); // Also updates RecordKeeper.
void setName(const std::string &Name); // Also updates RecordKeeper.
ArrayRef<SMLoc> getLoc() const { return Locs; }
/// get the corresponding DefInit.
DefInit *getDefInit();
const std::vector<Init *> &getTemplateArgs() const {
return TemplateArgs;
}
const std::vector<RecordVal> &getValues() const { return Values; }
const std::vector<Record*> &getSuperClasses() const { return SuperClasses; }
ArrayRef<SMRange> getSuperClassRanges() const { return SuperClassRanges; }
bool isTemplateArg(Init *Name) const {
for (unsigned i = 0, e = TemplateArgs.size(); i != e; ++i)
if (TemplateArgs[i] == Name) return true;
return false;
}
bool isTemplateArg(StringRef Name) const {
return isTemplateArg(StringInit::get(Name.str()));
}
const RecordVal *getValue(const Init *Name) const {
for (unsigned i = 0, e = Values.size(); i != e; ++i)
if (Values[i].getNameInit() == Name) return &Values[i];
return 0;
}
const RecordVal *getValue(StringRef Name) const {
return getValue(StringInit::get(Name));
}
RecordVal *getValue(const Init *Name) {
for (unsigned i = 0, e = Values.size(); i != e; ++i)
if (Values[i].getNameInit() == Name) return &Values[i];
return 0;
}
RecordVal *getValue(StringRef Name) {
return getValue(StringInit::get(Name));
}
void addTemplateArg(Init *Name) {
assert(!isTemplateArg(Name) && "Template arg already defined!");
TemplateArgs.push_back(Name);
}
void addTemplateArg(StringRef Name) {
addTemplateArg(StringInit::get(Name.str()));
}
void addValue(const RecordVal &RV) {
assert(getValue(RV.getNameInit()) == 0 && "Value already added!");
Values.push_back(RV);
if (Values.size() > 1)
// Keep NAME at the end of the list. It makes record dumps a
// bit prettier and allows TableGen tests to be written more
// naturally. Tests can use CHECK-NEXT to look for Record
// fields they expect to see after a def. They can't do that if
// NAME is the first Record field.
std::swap(Values[Values.size() - 2], Values[Values.size() - 1]);
}
void removeValue(Init *Name) {
for (unsigned i = 0, e = Values.size(); i != e; ++i)
if (Values[i].getNameInit() == Name) {
Values.erase(Values.begin()+i);
return;
}
llvm_unreachable("Cannot remove an entry that does not exist!");
}
void removeValue(StringRef Name) {
removeValue(StringInit::get(Name.str()));
}
bool isSubClassOf(const Record *R) const {
for (unsigned i = 0, e = SuperClasses.size(); i != e; ++i)
if (SuperClasses[i] == R)
return true;
return false;
}
bool isSubClassOf(StringRef Name) const {
for (unsigned i = 0, e = SuperClasses.size(); i != e; ++i)
if (SuperClasses[i]->getNameInitAsString() == Name)
return true;
return false;
}
void addSuperClass(Record *R, SMRange Range) {
assert(!isSubClassOf(R) && "Already subclassing record!");
SuperClasses.push_back(R);
SuperClassRanges.push_back(Range);
}
/// resolveReferences - If there are any field references that refer to fields
/// that have been filled in, we can propagate the values now.
///
void resolveReferences() { resolveReferencesTo(0); }
/// resolveReferencesTo - If anything in this record refers to RV, replace the
/// reference to RV with the RHS of RV. If RV is null, we resolve all
/// possible references.
void resolveReferencesTo(const RecordVal *RV);
RecordKeeper &getRecords() const {
return TrackedRecords;
}
bool isAnonymous() const {
return IsAnonymous;
}
void dump() const;
//===--------------------------------------------------------------------===//
// High-level methods useful to tablegen back-ends
//
/// getValueInit - Return the initializer for a value with the specified name,
/// or throw an exception if the field does not exist.
///
Init *getValueInit(StringRef FieldName) const;
/// Return true if the named field is unset.
bool isValueUnset(StringRef FieldName) const {
return getValueInit(FieldName) == UnsetInit::get();
}
/// getValueAsString - This method looks up the specified field and returns
/// its value as a string, throwing an exception if the field does not exist
/// or if the value is not a string.
///
std::string getValueAsString(StringRef FieldName) const;
/// getValueAsBitsInit - This method looks up the specified field and returns
/// its value as a BitsInit, throwing an exception if the field does not exist
/// or if the value is not the right type.
///
BitsInit *getValueAsBitsInit(StringRef FieldName) const;
/// getValueAsListInit - This method looks up the specified field and returns
/// its value as a ListInit, throwing an exception if the field does not exist
/// or if the value is not the right type.
///
ListInit *getValueAsListInit(StringRef FieldName) const;
/// getValueAsListOfDefs - This method looks up the specified field and
/// returns its value as a vector of records, throwing an exception if the
/// field does not exist or if the value is not the right type.
///
std::vector<Record*> getValueAsListOfDefs(StringRef FieldName) const;
/// getValueAsListOfInts - This method looks up the specified field and
/// returns its value as a vector of integers, throwing an exception if the
/// field does not exist or if the value is not the right type.
///
std::vector<int64_t> getValueAsListOfInts(StringRef FieldName) const;
/// getValueAsListOfStrings - This method looks up the specified field and
/// returns its value as a vector of strings, throwing an exception if the
/// field does not exist or if the value is not the right type.
///
std::vector<std::string> getValueAsListOfStrings(StringRef FieldName) const;
/// getValueAsDef - This method looks up the specified field and returns its
/// value as a Record, throwing an exception if the field does not exist or if
/// the value is not the right type.
///
Record *getValueAsDef(StringRef FieldName) const;
/// getValueAsBit - This method looks up the specified field and returns its
/// value as a bit, throwing an exception if the field does not exist or if
/// the value is not the right type.
///
bool getValueAsBit(StringRef FieldName) const;
/// getValueAsBitOrUnset - This method looks up the specified field and
/// returns its value as a bit. If the field is unset, sets Unset to true and
/// retunrs false.
///
bool getValueAsBitOrUnset(StringRef FieldName, bool &Unset) const;
/// getValueAsInt - This method looks up the specified field and returns its
/// value as an int64_t, throwing an exception if the field does not exist or
/// if the value is not the right type.
///
int64_t getValueAsInt(StringRef FieldName) const;
/// getValueAsDag - This method looks up the specified field and returns its
/// value as an Dag, throwing an exception if the field does not exist or if
/// the value is not the right type.
///
DagInit *getValueAsDag(StringRef FieldName) const;
};
raw_ostream &operator<<(raw_ostream &OS, const Record &R);
struct MultiClass {
Record Rec; // Placeholder for template args and Name.
typedef std::vector<Record*> RecordVector;
RecordVector DefPrototypes;
void dump() const;
MultiClass(const std::string &Name, SMLoc Loc, RecordKeeper &Records) :
Rec(Name, Loc, Records) {}
};
class RecordKeeper {
std::map<std::string, Record*> Classes, Defs;
public:
~RecordKeeper() {
for (std::map<std::string, Record*>::iterator I = Classes.begin(),
E = Classes.end(); I != E; ++I)
delete I->second;
for (std::map<std::string, Record*>::iterator I = Defs.begin(),
E = Defs.end(); I != E; ++I)
delete I->second;
}
const std::map<std::string, Record*> &getClasses() const { return Classes; }
const std::map<std::string, Record*> &getDefs() const { return Defs; }
Record *getClass(const std::string &Name) const {
std::map<std::string, Record*>::const_iterator I = Classes.find(Name);
return I == Classes.end() ? 0 : I->second;
}
Record *getDef(const std::string &Name) const {
std::map<std::string, Record*>::const_iterator I = Defs.find(Name);
return I == Defs.end() ? 0 : I->second;
}
void addClass(Record *R) {
bool Ins = Classes.insert(std::make_pair(R->getName(), R)).second;
(void)Ins;
assert(Ins && "Class already exists");
}
void addDef(Record *R) {
bool Ins = Defs.insert(std::make_pair(R->getName(), R)).second;
(void)Ins;
assert(Ins && "Record already exists");
}
/// removeClass - Remove, but do not delete, the specified record.
///
void removeClass(const std::string &Name) {
assert(Classes.count(Name) && "Class does not exist!");
Classes.erase(Name);
}
/// removeDef - Remove, but do not delete, the specified record.
///
void removeDef(const std::string &Name) {
assert(Defs.count(Name) && "Def does not exist!");
Defs.erase(Name);
}
//===--------------------------------------------------------------------===//
// High-level helper methods, useful for tablegen backends...
/// getAllDerivedDefinitions - This method returns all concrete definitions
/// that derive from the specified class name. If a class with the specified
/// name does not exist, an exception is thrown.
std::vector<Record*>
getAllDerivedDefinitions(const std::string &ClassName) const;
void dump() const;
};
/// LessRecord - Sorting predicate to sort record pointers by name.
///
struct LessRecord {
bool operator()(const Record *Rec1, const Record *Rec2) const {
return StringRef(Rec1->getName()).compare_numeric(Rec2->getName()) < 0;
}
};
/// LessRecordByID - Sorting predicate to sort record pointers by their
/// unique ID. If you just need a deterministic order, use this, since it
/// just compares two `unsigned`; the other sorting predicates require
/// string manipulation.
struct LessRecordByID {
bool operator()(const Record *LHS, const Record *RHS) const {
return LHS->getID() < RHS->getID();
}
};
/// LessRecordFieldName - Sorting predicate to sort record pointers by their
/// name field.
///
struct LessRecordFieldName {
bool operator()(const Record *Rec1, const Record *Rec2) const {
return Rec1->getValueAsString("Name") < Rec2->getValueAsString("Name");
}
};
struct LessRecordRegister {
static size_t min(size_t a, size_t b) { return a < b ? a : b; }
static bool ascii_isdigit(char x) { return x >= '0' && x <= '9'; }
struct RecordParts {
SmallVector<std::pair< bool, StringRef>, 4> Parts;
RecordParts(StringRef Rec) {
if (Rec.empty())
return;
size_t Len = 0;
const char *Start = Rec.data();
const char *Curr = Start;
bool isDigitPart = ascii_isdigit(Curr[0]);
for (size_t I = 0, E = Rec.size(); I != E; ++I, ++Len) {
bool isDigit = ascii_isdigit(Curr[I]);
if (isDigit != isDigitPart) {
Parts.push_back(std::make_pair(isDigitPart, StringRef(Start, Len)));
Len = 0;
Start = &Curr[I];
isDigitPart = ascii_isdigit(Curr[I]);
}
}
// Push the last part.
Parts.push_back(std::make_pair(isDigitPart, StringRef(Start, Len)));
}
size_t size() { return Parts.size(); }
std::pair<bool, StringRef> getPart(size_t i) {
assert (i < Parts.size() && "Invalid idx!");
return Parts[i];
}
};
bool operator()(const Record *Rec1, const Record *Rec2) const {
RecordParts LHSParts(StringRef(Rec1->getName()));
RecordParts RHSParts(StringRef(Rec2->getName()));
size_t LHSNumParts = LHSParts.size();
size_t RHSNumParts = RHSParts.size();
assert (LHSNumParts && RHSNumParts && "Expected at least one part!");
if (LHSNumParts != RHSNumParts)
return LHSNumParts < RHSNumParts;
// We expect the registers to be of the form [_a-zA-z]+([0-9]*[_a-zA-Z]*)*.
for (size_t I = 0, E = LHSNumParts; I < E; I+=2) {
std::pair<bool, StringRef> LHSPart = LHSParts.getPart(I);
std::pair<bool, StringRef> RHSPart = RHSParts.getPart(I);
// Expect even part to always be alpha.
assert (LHSPart.first == false && RHSPart.first == false &&
"Expected both parts to be alpha.");
if (int Res = LHSPart.second.compare(RHSPart.second))
return Res < 0;
}
for (size_t I = 1, E = LHSNumParts; I < E; I+=2) {
std::pair<bool, StringRef> LHSPart = LHSParts.getPart(I);
std::pair<bool, StringRef> RHSPart = RHSParts.getPart(I);
// Expect odd part to always be numeric.
assert (LHSPart.first == true && RHSPart.first == true &&
"Expected both parts to be numeric.");
if (LHSPart.second.size() != RHSPart.second.size())
return LHSPart.second.size() < RHSPart.second.size();
unsigned LHSVal, RHSVal;
bool LHSFailed = LHSPart.second.getAsInteger(10, LHSVal); (void)LHSFailed;
assert(!LHSFailed && "Unable to convert LHS to integer.");
bool RHSFailed = RHSPart.second.getAsInteger(10, RHSVal); (void)RHSFailed;
assert(!RHSFailed && "Unable to convert RHS to integer.");
if (LHSVal != RHSVal)
return LHSVal < RHSVal;
}
return LHSNumParts < RHSNumParts;
}
};
raw_ostream &operator<<(raw_ostream &OS, const RecordKeeper &RK);
/// QualifyName - Return an Init with a qualifier prefix referring
/// to CurRec's name.
Init *QualifyName(Record &CurRec, MultiClass *CurMultiClass,
Init *Name, const std::string &Scoper);
/// QualifyName - Return an Init with a qualifier prefix referring
/// to CurRec's name.
Init *QualifyName(Record &CurRec, MultiClass *CurMultiClass,
const std::string &Name, const std::string &Scoper);
} // End llvm namespace
#endif