llvm-6502/lib/Target/X86/X86CallFrameOptimization.cpp
Michael Kuperstein acd5f13c88 [X86] Convert esp-relative movs of function arguments to pushes, step 2
This moves the transformation introduced in r223757 into a separate MI pass.
This allows it to cover many more cases (not only cases where there must be a 
reserved call frame), and perform rudimentary call folding. It still doesn't 
have a heuristic, so it is enabled only for optsize/minsize, with stack 
alignment <= 8, where it ought to be a fairly clear win.

(Re-commit of r227728)

Differential Revision: http://reviews.llvm.org/D6789


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227752 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-01 16:56:04 +00:00

401 lines
14 KiB
C++

//===----- X86CallFrameOptimization.cpp - Optimize x86 call sequences -----===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines a pass that optimizes call sequences on x86.
// Currently, it converts movs of function parameters onto the stack into
// pushes. This is beneficial for two main reasons:
// 1) The push instruction encoding is much smaller than an esp-relative mov
// 2) It is possible to push memory arguments directly. So, if the
// the transformation is preformed pre-reg-alloc, it can help relieve
// register pressure.
//
//===----------------------------------------------------------------------===//
#include <algorithm>
#include "X86.h"
#include "X86InstrInfo.h"
#include "X86Subtarget.h"
#include "X86MachineFunctionInfo.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/IR/Function.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
using namespace llvm;
#define DEBUG_TYPE "x86-cf-opt"
cl::opt<bool> NoX86CFOpt("no-x86-call-frame-opt",
cl::desc("Avoid optimizing x86 call frames for size"),
cl::init(false), cl::Hidden);
namespace {
class X86CallFrameOptimization : public MachineFunctionPass {
public:
X86CallFrameOptimization() : MachineFunctionPass(ID) {}
bool runOnMachineFunction(MachineFunction &MF) override;
private:
bool shouldPerformTransformation(MachineFunction &MF);
bool adjustCallSequence(MachineFunction &MF, MachineBasicBlock &MBB,
MachineBasicBlock::iterator I);
MachineInstr *canFoldIntoRegPush(MachineBasicBlock::iterator FrameSetup,
unsigned Reg);
const char *getPassName() const override {
return "X86 Optimize Call Frame";
}
const TargetInstrInfo *TII;
const TargetFrameLowering *TFL;
const MachineRegisterInfo *MRI;
static char ID;
};
char X86CallFrameOptimization::ID = 0;
}
FunctionPass *llvm::createX86CallFrameOptimization() {
return new X86CallFrameOptimization();
}
// This checks whether the transformation is legal and profitable
bool X86CallFrameOptimization::shouldPerformTransformation(MachineFunction &MF) {
if (NoX86CFOpt.getValue())
return false;
// We currently only support call sequences where *all* parameters.
// are passed on the stack.
// No point in running this in 64-bit mode, since some arguments are
// passed in-register in all common calling conventions, so the pattern
// we're looking for will never match.
const X86Subtarget &STI = MF.getTarget().getSubtarget<X86Subtarget>();
if (STI.is64Bit())
return false;
// You would expect straight-line code between call-frame setup and
// call-frame destroy. You would be wrong. There are circumstances (e.g.
// CMOV_GR8 expansion of a select that feeds a function call!) where we can
// end up with the setup and the destroy in different basic blocks.
// This is bad, and breaks SP adjustment.
// So, check that all of the frames in the function are closed inside
// the same block, and, for good measure, that there are no nested frames.
int FrameSetupOpcode = TII->getCallFrameSetupOpcode();
int FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
for (MachineBasicBlock &BB : MF) {
bool InsideFrameSequence = false;
for (MachineInstr &MI : BB) {
if (MI.getOpcode() == FrameSetupOpcode) {
if (InsideFrameSequence)
return false;
InsideFrameSequence = true;
}
else if (MI.getOpcode() == FrameDestroyOpcode) {
if (!InsideFrameSequence)
return false;
InsideFrameSequence = false;
}
}
if (InsideFrameSequence)
return false;
}
// Now that we know the transformation is legal, check if it is
// profitable.
// TODO: Add a heuristic that actually looks at the function,
// and enable this for more cases.
// This transformation is always a win when we expected to have
// a reserved call frame. Under other circumstances, it may be either
// a win or a loss, and requires a heuristic.
// For now, enable it only for the relatively clear win cases.
bool CannotReserveFrame = MF.getFrameInfo()->hasVarSizedObjects();
if (CannotReserveFrame)
return true;
// For now, don't even try to evaluate the profitability when
// not optimizing for size.
AttributeSet FnAttrs = MF.getFunction()->getAttributes();
bool OptForSize =
FnAttrs.hasAttribute(AttributeSet::FunctionIndex,
Attribute::OptimizeForSize) ||
FnAttrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::MinSize);
if (!OptForSize)
return false;
// Stack re-alignment can make this unprofitable even in terms of size.
// As mentioned above, a better heuristic is needed. For now, don't do this
// when the required alignment is above 8. (4 would be the safe choice, but
// some experimentation showed 8 is generally good).
if (TFL->getStackAlignment() > 8)
return false;
return true;
}
bool X86CallFrameOptimization::runOnMachineFunction(MachineFunction &MF) {
TII = MF.getSubtarget().getInstrInfo();
TFL = MF.getSubtarget().getFrameLowering();
MRI = &MF.getRegInfo();
if (!shouldPerformTransformation(MF))
return false;
int FrameSetupOpcode = TII->getCallFrameSetupOpcode();
bool Changed = false;
for (MachineFunction::iterator BB = MF.begin(), E = MF.end(); BB != E; ++BB)
for (MachineBasicBlock::iterator I = BB->begin(); I != BB->end(); ++I)
if (I->getOpcode() == FrameSetupOpcode)
Changed |= adjustCallSequence(MF, *BB, I);
return Changed;
}
bool X86CallFrameOptimization::adjustCallSequence(MachineFunction &MF,
MachineBasicBlock &MBB,
MachineBasicBlock::iterator I) {
// Check that this particular call sequence is amenable to the
// transformation.
const X86RegisterInfo &RegInfo = *static_cast<const X86RegisterInfo *>(
MF.getSubtarget().getRegisterInfo());
unsigned StackPtr = RegInfo.getStackRegister();
int FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
// We expect to enter this at the beginning of a call sequence
assert(I->getOpcode() == TII->getCallFrameSetupOpcode());
MachineBasicBlock::iterator FrameSetup = I++;
// For globals in PIC mode, we can have some LEAs here.
// Ignore them, they don't bother us.
// TODO: Extend this to something that covers more cases.
while (I->getOpcode() == X86::LEA32r)
++I;
// We expect a copy instruction here.
// TODO: The copy instruction is a lowering artifact.
// We should also support a copy-less version, where the stack
// pointer is used directly.
if (!I->isCopy() || !I->getOperand(0).isReg())
return false;
MachineBasicBlock::iterator SPCopy = I++;
StackPtr = SPCopy->getOperand(0).getReg();
// Scan the call setup sequence for the pattern we're looking for.
// We only handle a simple case - a sequence of MOV32mi or MOV32mr
// instructions, that push a sequence of 32-bit values onto the stack, with
// no gaps between them.
SmallVector<MachineInstr*, 4> MovVector(4, nullptr);
unsigned int MaxAdjust = FrameSetup->getOperand(0).getImm() / 4;
if (MaxAdjust > 4)
MovVector.resize(MaxAdjust, nullptr);
do {
int Opcode = I->getOpcode();
if (Opcode != X86::MOV32mi && Opcode != X86::MOV32mr)
break;
// We only want movs of the form:
// movl imm/r32, k(%esp)
// If we run into something else, bail.
// Note that AddrBaseReg may, counter to its name, not be a register,
// but rather a frame index.
// TODO: Support the fi case. This should probably work now that we
// have the infrastructure to track the stack pointer within a call
// sequence.
if (!I->getOperand(X86::AddrBaseReg).isReg() ||
(I->getOperand(X86::AddrBaseReg).getReg() != StackPtr) ||
!I->getOperand(X86::AddrScaleAmt).isImm() ||
(I->getOperand(X86::AddrScaleAmt).getImm() != 1) ||
(I->getOperand(X86::AddrIndexReg).getReg() != X86::NoRegister) ||
(I->getOperand(X86::AddrSegmentReg).getReg() != X86::NoRegister) ||
!I->getOperand(X86::AddrDisp).isImm())
return false;
int64_t StackDisp = I->getOperand(X86::AddrDisp).getImm();
assert(StackDisp >= 0 && "Negative stack displacement when passing parameters");
// We really don't want to consider the unaligned case.
if (StackDisp % 4)
return false;
StackDisp /= 4;
assert((size_t)StackDisp < MovVector.size() &&
"Function call has more parameters than the stack is adjusted for.");
// If the same stack slot is being filled twice, something's fishy.
if (MovVector[StackDisp] != nullptr)
return false;
MovVector[StackDisp] = I;
++I;
} while (I != MBB.end());
// We now expect the end of the sequence - a call and a stack adjust.
if (I == MBB.end())
return false;
// For PCrel calls, we expect an additional COPY of the basereg.
// If we find one, skip it.
if (I->isCopy()) {
if (I->getOperand(1).getReg() ==
MF.getInfo<X86MachineFunctionInfo>()->getGlobalBaseReg())
++I;
else
return false;
}
if (!I->isCall())
return false;
MachineBasicBlock::iterator Call = I;
if ((++I)->getOpcode() != FrameDestroyOpcode)
return false;
// Now, go through the vector, and see that we don't have any gaps,
// but only a series of 32-bit MOVs.
int64_t ExpectedDist = 0;
auto MMI = MovVector.begin(), MME = MovVector.end();
for (; MMI != MME; ++MMI, ExpectedDist += 4)
if (*MMI == nullptr)
break;
// If the call had no parameters, do nothing
if (!ExpectedDist)
return false;
// We are either at the last parameter, or a gap.
// Make sure it's not a gap
for (; MMI != MME; ++MMI)
if (*MMI != nullptr)
return false;
// Ok, we can in fact do the transformation for this call.
// Do not remove the FrameSetup instruction, but adjust the parameters.
// PEI will end up finalizing the handling of this.
FrameSetup->getOperand(1).setImm(ExpectedDist);
DebugLoc DL = I->getDebugLoc();
// Now, iterate through the vector in reverse order, and replace the movs
// with pushes. MOVmi/MOVmr doesn't have any defs, so no need to
// replace uses.
for (int Idx = (ExpectedDist / 4) - 1; Idx >= 0; --Idx) {
MachineBasicBlock::iterator MOV = *MovVector[Idx];
MachineOperand PushOp = MOV->getOperand(X86::AddrNumOperands);
if (MOV->getOpcode() == X86::MOV32mi) {
unsigned PushOpcode = X86::PUSHi32;
// If the operand is a small (8-bit) immediate, we can use a
// PUSH instruction with a shorter encoding.
// Note that isImm() may fail even though this is a MOVmi, because
// the operand can also be a symbol.
if (PushOp.isImm()) {
int64_t Val = PushOp.getImm();
if (isInt<8>(Val))
PushOpcode = X86::PUSH32i8;
}
BuildMI(MBB, Call, DL, TII->get(PushOpcode)).addOperand(PushOp);
} else {
unsigned int Reg = PushOp.getReg();
// If PUSHrmm is not slow on this target, try to fold the source of the
// push into the instruction.
const X86Subtarget &ST = MF.getTarget().getSubtarget<X86Subtarget>();
bool SlowPUSHrmm = ST.isAtom() || ST.isSLM();
// Check that this is legal to fold. Right now, we're extremely
// conservative about that.
MachineInstr *DefMov = nullptr;
if (!SlowPUSHrmm && (DefMov = canFoldIntoRegPush(FrameSetup, Reg))) {
MachineInstr *Push = BuildMI(MBB, Call, DL, TII->get(X86::PUSH32rmm));
unsigned NumOps = DefMov->getDesc().getNumOperands();
for (unsigned i = NumOps - X86::AddrNumOperands; i != NumOps; ++i)
Push->addOperand(DefMov->getOperand(i));
DefMov->eraseFromParent();
} else {
BuildMI(MBB, Call, DL, TII->get(X86::PUSH32r)).addReg(Reg).getInstr();
}
}
MBB.erase(MOV);
}
// The stack-pointer copy is no longer used in the call sequences.
// There should not be any other users, but we can't commit to that, so:
if (MRI->use_empty(SPCopy->getOperand(0).getReg()))
SPCopy->eraseFromParent();
// Once we've done this, we need to make sure PEI doesn't assume a reserved
// frame.
X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
FuncInfo->setHasPushSequences(true);
return true;
}
MachineInstr *X86CallFrameOptimization::canFoldIntoRegPush(
MachineBasicBlock::iterator FrameSetup, unsigned Reg) {
// Do an extremely restricted form of load folding.
// ISel will often create patterns like:
// movl 4(%edi), %eax
// movl 8(%edi), %ecx
// movl 12(%edi), %edx
// movl %edx, 8(%esp)
// movl %ecx, 4(%esp)
// movl %eax, (%esp)
// call
// Get rid of those with prejudice.
if (!TargetRegisterInfo::isVirtualRegister(Reg))
return nullptr;
// Make sure this is the only use of Reg.
if (!MRI->hasOneNonDBGUse(Reg))
return nullptr;
MachineBasicBlock::iterator DefMI = MRI->getVRegDef(Reg);
// Make sure the def is a MOV from memory.
// If the def is an another block, give up.
if (DefMI->getOpcode() != X86::MOV32rm ||
DefMI->getParent() != FrameSetup->getParent())
return nullptr;
// Be careful with movs that load from a stack slot, since it may get
// resolved incorrectly.
// TODO: Again, we already have the infrastructure, so this should work.
if (!DefMI->getOperand(1).isReg())
return nullptr;
// Now, make sure everything else up until the ADJCALLSTACK is a sequence
// of MOVs. To be less conservative would require duplicating a lot of the
// logic from PeepholeOptimizer.
// FIXME: A possibly better approach would be to teach the PeepholeOptimizer
// to be smarter about folding into pushes.
for (auto I = DefMI; I != FrameSetup; ++I)
if (I->getOpcode() != X86::MOV32rm)
return nullptr;
return DefMI;
}