mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-16 11:30:51 +00:00
2c7c54c86c
In order to enable the preservation of noalias function parameter information after inlining, and the representation of block-level __restrict__ pointer information (etc.), additional kinds of aliasing metadata will be introduced. This metadata needs to be carried around in AliasAnalysis::Location objects (and MMOs at the SDAG level), and so we need to generalize the current scheme (which is hard-coded to just one TBAA MDNode*). This commit introduces only the necessary refactoring to allow for the introduction of other aliasing metadata types, but does not actually introduce any (that will come in a follow-up commit). What it does introduce is a new AAMDNodes structure to hold all of the aliasing metadata nodes associated with a particular memory-accessing instruction, and uses that structure instead of the raw MDNode* in AliasAnalysis::Location, etc. No functionality change intended. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213859 91177308-0d34-0410-b5e6-96231b3b80d8
1715 lines
66 KiB
C++
1715 lines
66 KiB
C++
//===- JumpThreading.cpp - Thread control through conditional blocks ------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the Jump Threading pass.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/DenseSet.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/CFG.h"
|
|
#include "llvm/Analysis/ConstantFolding.h"
|
|
#include "llvm/Analysis/InstructionSimplify.h"
|
|
#include "llvm/Analysis/LazyValueInfo.h"
|
|
#include "llvm/Analysis/Loads.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/Metadata.h"
|
|
#include "llvm/IR/ValueHandle.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Target/TargetLibraryInfo.h"
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
#include "llvm/Transforms/Utils/SSAUpdater.h"
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "jump-threading"
|
|
|
|
STATISTIC(NumThreads, "Number of jumps threaded");
|
|
STATISTIC(NumFolds, "Number of terminators folded");
|
|
STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi");
|
|
|
|
static cl::opt<unsigned>
|
|
Threshold("jump-threading-threshold",
|
|
cl::desc("Max block size to duplicate for jump threading"),
|
|
cl::init(6), cl::Hidden);
|
|
|
|
namespace {
|
|
// These are at global scope so static functions can use them too.
|
|
typedef SmallVectorImpl<std::pair<Constant*, BasicBlock*> > PredValueInfo;
|
|
typedef SmallVector<std::pair<Constant*, BasicBlock*>, 8> PredValueInfoTy;
|
|
|
|
// This is used to keep track of what kind of constant we're currently hoping
|
|
// to find.
|
|
enum ConstantPreference {
|
|
WantInteger,
|
|
WantBlockAddress
|
|
};
|
|
|
|
/// This pass performs 'jump threading', which looks at blocks that have
|
|
/// multiple predecessors and multiple successors. If one or more of the
|
|
/// predecessors of the block can be proven to always jump to one of the
|
|
/// successors, we forward the edge from the predecessor to the successor by
|
|
/// duplicating the contents of this block.
|
|
///
|
|
/// An example of when this can occur is code like this:
|
|
///
|
|
/// if () { ...
|
|
/// X = 4;
|
|
/// }
|
|
/// if (X < 3) {
|
|
///
|
|
/// In this case, the unconditional branch at the end of the first if can be
|
|
/// revectored to the false side of the second if.
|
|
///
|
|
class JumpThreading : public FunctionPass {
|
|
const DataLayout *DL;
|
|
TargetLibraryInfo *TLI;
|
|
LazyValueInfo *LVI;
|
|
#ifdef NDEBUG
|
|
SmallPtrSet<BasicBlock*, 16> LoopHeaders;
|
|
#else
|
|
SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders;
|
|
#endif
|
|
DenseSet<std::pair<Value*, BasicBlock*> > RecursionSet;
|
|
|
|
// RAII helper for updating the recursion stack.
|
|
struct RecursionSetRemover {
|
|
DenseSet<std::pair<Value*, BasicBlock*> > &TheSet;
|
|
std::pair<Value*, BasicBlock*> ThePair;
|
|
|
|
RecursionSetRemover(DenseSet<std::pair<Value*, BasicBlock*> > &S,
|
|
std::pair<Value*, BasicBlock*> P)
|
|
: TheSet(S), ThePair(P) { }
|
|
|
|
~RecursionSetRemover() {
|
|
TheSet.erase(ThePair);
|
|
}
|
|
};
|
|
public:
|
|
static char ID; // Pass identification
|
|
JumpThreading() : FunctionPass(ID) {
|
|
initializeJumpThreadingPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
bool runOnFunction(Function &F) override;
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.addRequired<LazyValueInfo>();
|
|
AU.addPreserved<LazyValueInfo>();
|
|
AU.addRequired<TargetLibraryInfo>();
|
|
}
|
|
|
|
void FindLoopHeaders(Function &F);
|
|
bool ProcessBlock(BasicBlock *BB);
|
|
bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs,
|
|
BasicBlock *SuccBB);
|
|
bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
|
|
const SmallVectorImpl<BasicBlock *> &PredBBs);
|
|
|
|
bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,
|
|
PredValueInfo &Result,
|
|
ConstantPreference Preference);
|
|
bool ProcessThreadableEdges(Value *Cond, BasicBlock *BB,
|
|
ConstantPreference Preference);
|
|
|
|
bool ProcessBranchOnPHI(PHINode *PN);
|
|
bool ProcessBranchOnXOR(BinaryOperator *BO);
|
|
|
|
bool SimplifyPartiallyRedundantLoad(LoadInst *LI);
|
|
bool TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB);
|
|
};
|
|
}
|
|
|
|
char JumpThreading::ID = 0;
|
|
INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading",
|
|
"Jump Threading", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(LazyValueInfo)
|
|
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
|
|
INITIALIZE_PASS_END(JumpThreading, "jump-threading",
|
|
"Jump Threading", false, false)
|
|
|
|
// Public interface to the Jump Threading pass
|
|
FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); }
|
|
|
|
/// runOnFunction - Top level algorithm.
|
|
///
|
|
bool JumpThreading::runOnFunction(Function &F) {
|
|
if (skipOptnoneFunction(F))
|
|
return false;
|
|
|
|
DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
|
|
DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
|
|
DL = DLP ? &DLP->getDataLayout() : nullptr;
|
|
TLI = &getAnalysis<TargetLibraryInfo>();
|
|
LVI = &getAnalysis<LazyValueInfo>();
|
|
|
|
// Remove unreachable blocks from function as they may result in infinite
|
|
// loop. We do threading if we found something profitable. Jump threading a
|
|
// branch can create other opportunities. If these opportunities form a cycle
|
|
// i.e. if any jump treading is undoing previous threading in the path, then
|
|
// we will loop forever. We take care of this issue by not jump threading for
|
|
// back edges. This works for normal cases but not for unreachable blocks as
|
|
// they may have cycle with no back edge.
|
|
removeUnreachableBlocks(F);
|
|
|
|
FindLoopHeaders(F);
|
|
|
|
bool Changed, EverChanged = false;
|
|
do {
|
|
Changed = false;
|
|
for (Function::iterator I = F.begin(), E = F.end(); I != E;) {
|
|
BasicBlock *BB = I;
|
|
// Thread all of the branches we can over this block.
|
|
while (ProcessBlock(BB))
|
|
Changed = true;
|
|
|
|
++I;
|
|
|
|
// If the block is trivially dead, zap it. This eliminates the successor
|
|
// edges which simplifies the CFG.
|
|
if (pred_begin(BB) == pred_end(BB) &&
|
|
BB != &BB->getParent()->getEntryBlock()) {
|
|
DEBUG(dbgs() << " JT: Deleting dead block '" << BB->getName()
|
|
<< "' with terminator: " << *BB->getTerminator() << '\n');
|
|
LoopHeaders.erase(BB);
|
|
LVI->eraseBlock(BB);
|
|
DeleteDeadBlock(BB);
|
|
Changed = true;
|
|
continue;
|
|
}
|
|
|
|
BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
|
|
|
|
// Can't thread an unconditional jump, but if the block is "almost
|
|
// empty", we can replace uses of it with uses of the successor and make
|
|
// this dead.
|
|
if (BI && BI->isUnconditional() &&
|
|
BB != &BB->getParent()->getEntryBlock() &&
|
|
// If the terminator is the only non-phi instruction, try to nuke it.
|
|
BB->getFirstNonPHIOrDbg()->isTerminator()) {
|
|
// Since TryToSimplifyUncondBranchFromEmptyBlock may delete the
|
|
// block, we have to make sure it isn't in the LoopHeaders set. We
|
|
// reinsert afterward if needed.
|
|
bool ErasedFromLoopHeaders = LoopHeaders.erase(BB);
|
|
BasicBlock *Succ = BI->getSuccessor(0);
|
|
|
|
// FIXME: It is always conservatively correct to drop the info
|
|
// for a block even if it doesn't get erased. This isn't totally
|
|
// awesome, but it allows us to use AssertingVH to prevent nasty
|
|
// dangling pointer issues within LazyValueInfo.
|
|
LVI->eraseBlock(BB);
|
|
if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) {
|
|
Changed = true;
|
|
// If we deleted BB and BB was the header of a loop, then the
|
|
// successor is now the header of the loop.
|
|
BB = Succ;
|
|
}
|
|
|
|
if (ErasedFromLoopHeaders)
|
|
LoopHeaders.insert(BB);
|
|
}
|
|
}
|
|
EverChanged |= Changed;
|
|
} while (Changed);
|
|
|
|
LoopHeaders.clear();
|
|
return EverChanged;
|
|
}
|
|
|
|
/// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
|
|
/// thread across it. Stop scanning the block when passing the threshold.
|
|
static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB,
|
|
unsigned Threshold) {
|
|
/// Ignore PHI nodes, these will be flattened when duplication happens.
|
|
BasicBlock::const_iterator I = BB->getFirstNonPHI();
|
|
|
|
// FIXME: THREADING will delete values that are just used to compute the
|
|
// branch, so they shouldn't count against the duplication cost.
|
|
|
|
// Sum up the cost of each instruction until we get to the terminator. Don't
|
|
// include the terminator because the copy won't include it.
|
|
unsigned Size = 0;
|
|
for (; !isa<TerminatorInst>(I); ++I) {
|
|
|
|
// Stop scanning the block if we've reached the threshold.
|
|
if (Size > Threshold)
|
|
return Size;
|
|
|
|
// Debugger intrinsics don't incur code size.
|
|
if (isa<DbgInfoIntrinsic>(I)) continue;
|
|
|
|
// If this is a pointer->pointer bitcast, it is free.
|
|
if (isa<BitCastInst>(I) && I->getType()->isPointerTy())
|
|
continue;
|
|
|
|
// All other instructions count for at least one unit.
|
|
++Size;
|
|
|
|
// Calls are more expensive. If they are non-intrinsic calls, we model them
|
|
// as having cost of 4. If they are a non-vector intrinsic, we model them
|
|
// as having cost of 2 total, and if they are a vector intrinsic, we model
|
|
// them as having cost 1.
|
|
if (const CallInst *CI = dyn_cast<CallInst>(I)) {
|
|
if (CI->cannotDuplicate())
|
|
// Blocks with NoDuplicate are modelled as having infinite cost, so they
|
|
// are never duplicated.
|
|
return ~0U;
|
|
else if (!isa<IntrinsicInst>(CI))
|
|
Size += 3;
|
|
else if (!CI->getType()->isVectorTy())
|
|
Size += 1;
|
|
}
|
|
}
|
|
|
|
// Threading through a switch statement is particularly profitable. If this
|
|
// block ends in a switch, decrease its cost to make it more likely to happen.
|
|
if (isa<SwitchInst>(I))
|
|
Size = Size > 6 ? Size-6 : 0;
|
|
|
|
// The same holds for indirect branches, but slightly more so.
|
|
if (isa<IndirectBrInst>(I))
|
|
Size = Size > 8 ? Size-8 : 0;
|
|
|
|
return Size;
|
|
}
|
|
|
|
/// FindLoopHeaders - We do not want jump threading to turn proper loop
|
|
/// structures into irreducible loops. Doing this breaks up the loop nesting
|
|
/// hierarchy and pessimizes later transformations. To prevent this from
|
|
/// happening, we first have to find the loop headers. Here we approximate this
|
|
/// by finding targets of backedges in the CFG.
|
|
///
|
|
/// Note that there definitely are cases when we want to allow threading of
|
|
/// edges across a loop header. For example, threading a jump from outside the
|
|
/// loop (the preheader) to an exit block of the loop is definitely profitable.
|
|
/// It is also almost always profitable to thread backedges from within the loop
|
|
/// to exit blocks, and is often profitable to thread backedges to other blocks
|
|
/// within the loop (forming a nested loop). This simple analysis is not rich
|
|
/// enough to track all of these properties and keep it up-to-date as the CFG
|
|
/// mutates, so we don't allow any of these transformations.
|
|
///
|
|
void JumpThreading::FindLoopHeaders(Function &F) {
|
|
SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
|
|
FindFunctionBackedges(F, Edges);
|
|
|
|
for (unsigned i = 0, e = Edges.size(); i != e; ++i)
|
|
LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second));
|
|
}
|
|
|
|
/// getKnownConstant - Helper method to determine if we can thread over a
|
|
/// terminator with the given value as its condition, and if so what value to
|
|
/// use for that. What kind of value this is depends on whether we want an
|
|
/// integer or a block address, but an undef is always accepted.
|
|
/// Returns null if Val is null or not an appropriate constant.
|
|
static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) {
|
|
if (!Val)
|
|
return nullptr;
|
|
|
|
// Undef is "known" enough.
|
|
if (UndefValue *U = dyn_cast<UndefValue>(Val))
|
|
return U;
|
|
|
|
if (Preference == WantBlockAddress)
|
|
return dyn_cast<BlockAddress>(Val->stripPointerCasts());
|
|
|
|
return dyn_cast<ConstantInt>(Val);
|
|
}
|
|
|
|
/// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
|
|
/// if we can infer that the value is a known ConstantInt/BlockAddress or undef
|
|
/// in any of our predecessors. If so, return the known list of value and pred
|
|
/// BB in the result vector.
|
|
///
|
|
/// This returns true if there were any known values.
|
|
///
|
|
bool JumpThreading::
|
|
ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result,
|
|
ConstantPreference Preference) {
|
|
// This method walks up use-def chains recursively. Because of this, we could
|
|
// get into an infinite loop going around loops in the use-def chain. To
|
|
// prevent this, keep track of what (value, block) pairs we've already visited
|
|
// and terminate the search if we loop back to them
|
|
if (!RecursionSet.insert(std::make_pair(V, BB)).second)
|
|
return false;
|
|
|
|
// An RAII help to remove this pair from the recursion set once the recursion
|
|
// stack pops back out again.
|
|
RecursionSetRemover remover(RecursionSet, std::make_pair(V, BB));
|
|
|
|
// If V is a constant, then it is known in all predecessors.
|
|
if (Constant *KC = getKnownConstant(V, Preference)) {
|
|
for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
|
|
Result.push_back(std::make_pair(KC, *PI));
|
|
|
|
return true;
|
|
}
|
|
|
|
// If V is a non-instruction value, or an instruction in a different block,
|
|
// then it can't be derived from a PHI.
|
|
Instruction *I = dyn_cast<Instruction>(V);
|
|
if (!I || I->getParent() != BB) {
|
|
|
|
// Okay, if this is a live-in value, see if it has a known value at the end
|
|
// of any of our predecessors.
|
|
//
|
|
// FIXME: This should be an edge property, not a block end property.
|
|
/// TODO: Per PR2563, we could infer value range information about a
|
|
/// predecessor based on its terminator.
|
|
//
|
|
// FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
|
|
// "I" is a non-local compare-with-a-constant instruction. This would be
|
|
// able to handle value inequalities better, for example if the compare is
|
|
// "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
|
|
// Perhaps getConstantOnEdge should be smart enough to do this?
|
|
|
|
for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
|
|
BasicBlock *P = *PI;
|
|
// If the value is known by LazyValueInfo to be a constant in a
|
|
// predecessor, use that information to try to thread this block.
|
|
Constant *PredCst = LVI->getConstantOnEdge(V, P, BB);
|
|
if (Constant *KC = getKnownConstant(PredCst, Preference))
|
|
Result.push_back(std::make_pair(KC, P));
|
|
}
|
|
|
|
return !Result.empty();
|
|
}
|
|
|
|
/// If I is a PHI node, then we know the incoming values for any constants.
|
|
if (PHINode *PN = dyn_cast<PHINode>(I)) {
|
|
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
|
|
Value *InVal = PN->getIncomingValue(i);
|
|
if (Constant *KC = getKnownConstant(InVal, Preference)) {
|
|
Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
|
|
} else {
|
|
Constant *CI = LVI->getConstantOnEdge(InVal,
|
|
PN->getIncomingBlock(i), BB);
|
|
if (Constant *KC = getKnownConstant(CI, Preference))
|
|
Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
|
|
}
|
|
}
|
|
|
|
return !Result.empty();
|
|
}
|
|
|
|
PredValueInfoTy LHSVals, RHSVals;
|
|
|
|
// Handle some boolean conditions.
|
|
if (I->getType()->getPrimitiveSizeInBits() == 1) {
|
|
assert(Preference == WantInteger && "One-bit non-integer type?");
|
|
// X | true -> true
|
|
// X & false -> false
|
|
if (I->getOpcode() == Instruction::Or ||
|
|
I->getOpcode() == Instruction::And) {
|
|
ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals,
|
|
WantInteger);
|
|
ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals,
|
|
WantInteger);
|
|
|
|
if (LHSVals.empty() && RHSVals.empty())
|
|
return false;
|
|
|
|
ConstantInt *InterestingVal;
|
|
if (I->getOpcode() == Instruction::Or)
|
|
InterestingVal = ConstantInt::getTrue(I->getContext());
|
|
else
|
|
InterestingVal = ConstantInt::getFalse(I->getContext());
|
|
|
|
SmallPtrSet<BasicBlock*, 4> LHSKnownBBs;
|
|
|
|
// Scan for the sentinel. If we find an undef, force it to the
|
|
// interesting value: x|undef -> true and x&undef -> false.
|
|
for (unsigned i = 0, e = LHSVals.size(); i != e; ++i)
|
|
if (LHSVals[i].first == InterestingVal ||
|
|
isa<UndefValue>(LHSVals[i].first)) {
|
|
Result.push_back(LHSVals[i]);
|
|
Result.back().first = InterestingVal;
|
|
LHSKnownBBs.insert(LHSVals[i].second);
|
|
}
|
|
for (unsigned i = 0, e = RHSVals.size(); i != e; ++i)
|
|
if (RHSVals[i].first == InterestingVal ||
|
|
isa<UndefValue>(RHSVals[i].first)) {
|
|
// If we already inferred a value for this block on the LHS, don't
|
|
// re-add it.
|
|
if (!LHSKnownBBs.count(RHSVals[i].second)) {
|
|
Result.push_back(RHSVals[i]);
|
|
Result.back().first = InterestingVal;
|
|
}
|
|
}
|
|
|
|
return !Result.empty();
|
|
}
|
|
|
|
// Handle the NOT form of XOR.
|
|
if (I->getOpcode() == Instruction::Xor &&
|
|
isa<ConstantInt>(I->getOperand(1)) &&
|
|
cast<ConstantInt>(I->getOperand(1))->isOne()) {
|
|
ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result,
|
|
WantInteger);
|
|
if (Result.empty())
|
|
return false;
|
|
|
|
// Invert the known values.
|
|
for (unsigned i = 0, e = Result.size(); i != e; ++i)
|
|
Result[i].first = ConstantExpr::getNot(Result[i].first);
|
|
|
|
return true;
|
|
}
|
|
|
|
// Try to simplify some other binary operator values.
|
|
} else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
|
|
assert(Preference != WantBlockAddress
|
|
&& "A binary operator creating a block address?");
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
|
|
PredValueInfoTy LHSVals;
|
|
ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals,
|
|
WantInteger);
|
|
|
|
// Try to use constant folding to simplify the binary operator.
|
|
for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) {
|
|
Constant *V = LHSVals[i].first;
|
|
Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI);
|
|
|
|
if (Constant *KC = getKnownConstant(Folded, WantInteger))
|
|
Result.push_back(std::make_pair(KC, LHSVals[i].second));
|
|
}
|
|
}
|
|
|
|
return !Result.empty();
|
|
}
|
|
|
|
// Handle compare with phi operand, where the PHI is defined in this block.
|
|
if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
|
|
assert(Preference == WantInteger && "Compares only produce integers");
|
|
PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0));
|
|
if (PN && PN->getParent() == BB) {
|
|
// We can do this simplification if any comparisons fold to true or false.
|
|
// See if any do.
|
|
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
|
|
BasicBlock *PredBB = PN->getIncomingBlock(i);
|
|
Value *LHS = PN->getIncomingValue(i);
|
|
Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB);
|
|
|
|
Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, DL);
|
|
if (!Res) {
|
|
if (!isa<Constant>(RHS))
|
|
continue;
|
|
|
|
LazyValueInfo::Tristate
|
|
ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS,
|
|
cast<Constant>(RHS), PredBB, BB);
|
|
if (ResT == LazyValueInfo::Unknown)
|
|
continue;
|
|
Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
|
|
}
|
|
|
|
if (Constant *KC = getKnownConstant(Res, WantInteger))
|
|
Result.push_back(std::make_pair(KC, PredBB));
|
|
}
|
|
|
|
return !Result.empty();
|
|
}
|
|
|
|
|
|
// If comparing a live-in value against a constant, see if we know the
|
|
// live-in value on any predecessors.
|
|
if (isa<Constant>(Cmp->getOperand(1)) && Cmp->getType()->isIntegerTy()) {
|
|
if (!isa<Instruction>(Cmp->getOperand(0)) ||
|
|
cast<Instruction>(Cmp->getOperand(0))->getParent() != BB) {
|
|
Constant *RHSCst = cast<Constant>(Cmp->getOperand(1));
|
|
|
|
for (pred_iterator PI = pred_begin(BB), E = pred_end(BB);PI != E; ++PI){
|
|
BasicBlock *P = *PI;
|
|
// If the value is known by LazyValueInfo to be a constant in a
|
|
// predecessor, use that information to try to thread this block.
|
|
LazyValueInfo::Tristate Res =
|
|
LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0),
|
|
RHSCst, P, BB);
|
|
if (Res == LazyValueInfo::Unknown)
|
|
continue;
|
|
|
|
Constant *ResC = ConstantInt::get(Cmp->getType(), Res);
|
|
Result.push_back(std::make_pair(ResC, P));
|
|
}
|
|
|
|
return !Result.empty();
|
|
}
|
|
|
|
// Try to find a constant value for the LHS of a comparison,
|
|
// and evaluate it statically if we can.
|
|
if (Constant *CmpConst = dyn_cast<Constant>(Cmp->getOperand(1))) {
|
|
PredValueInfoTy LHSVals;
|
|
ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals,
|
|
WantInteger);
|
|
|
|
for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) {
|
|
Constant *V = LHSVals[i].first;
|
|
Constant *Folded = ConstantExpr::getCompare(Cmp->getPredicate(),
|
|
V, CmpConst);
|
|
if (Constant *KC = getKnownConstant(Folded, WantInteger))
|
|
Result.push_back(std::make_pair(KC, LHSVals[i].second));
|
|
}
|
|
|
|
return !Result.empty();
|
|
}
|
|
}
|
|
}
|
|
|
|
if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
|
|
// Handle select instructions where at least one operand is a known constant
|
|
// and we can figure out the condition value for any predecessor block.
|
|
Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference);
|
|
Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference);
|
|
PredValueInfoTy Conds;
|
|
if ((TrueVal || FalseVal) &&
|
|
ComputeValueKnownInPredecessors(SI->getCondition(), BB, Conds,
|
|
WantInteger)) {
|
|
for (unsigned i = 0, e = Conds.size(); i != e; ++i) {
|
|
Constant *Cond = Conds[i].first;
|
|
|
|
// Figure out what value to use for the condition.
|
|
bool KnownCond;
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) {
|
|
// A known boolean.
|
|
KnownCond = CI->isOne();
|
|
} else {
|
|
assert(isa<UndefValue>(Cond) && "Unexpected condition value");
|
|
// Either operand will do, so be sure to pick the one that's a known
|
|
// constant.
|
|
// FIXME: Do this more cleverly if both values are known constants?
|
|
KnownCond = (TrueVal != nullptr);
|
|
}
|
|
|
|
// See if the select has a known constant value for this predecessor.
|
|
if (Constant *Val = KnownCond ? TrueVal : FalseVal)
|
|
Result.push_back(std::make_pair(Val, Conds[i].second));
|
|
}
|
|
|
|
return !Result.empty();
|
|
}
|
|
}
|
|
|
|
// If all else fails, see if LVI can figure out a constant value for us.
|
|
Constant *CI = LVI->getConstant(V, BB);
|
|
if (Constant *KC = getKnownConstant(CI, Preference)) {
|
|
for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
|
|
Result.push_back(std::make_pair(KC, *PI));
|
|
}
|
|
|
|
return !Result.empty();
|
|
}
|
|
|
|
|
|
|
|
/// GetBestDestForBranchOnUndef - If we determine that the specified block ends
|
|
/// in an undefined jump, decide which block is best to revector to.
|
|
///
|
|
/// Since we can pick an arbitrary destination, we pick the successor with the
|
|
/// fewest predecessors. This should reduce the in-degree of the others.
|
|
///
|
|
static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
|
|
TerminatorInst *BBTerm = BB->getTerminator();
|
|
unsigned MinSucc = 0;
|
|
BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
|
|
// Compute the successor with the minimum number of predecessors.
|
|
unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
|
|
for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
|
|
TestBB = BBTerm->getSuccessor(i);
|
|
unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
|
|
if (NumPreds < MinNumPreds) {
|
|
MinSucc = i;
|
|
MinNumPreds = NumPreds;
|
|
}
|
|
}
|
|
|
|
return MinSucc;
|
|
}
|
|
|
|
static bool hasAddressTakenAndUsed(BasicBlock *BB) {
|
|
if (!BB->hasAddressTaken()) return false;
|
|
|
|
// If the block has its address taken, it may be a tree of dead constants
|
|
// hanging off of it. These shouldn't keep the block alive.
|
|
BlockAddress *BA = BlockAddress::get(BB);
|
|
BA->removeDeadConstantUsers();
|
|
return !BA->use_empty();
|
|
}
|
|
|
|
/// ProcessBlock - If there are any predecessors whose control can be threaded
|
|
/// through to a successor, transform them now.
|
|
bool JumpThreading::ProcessBlock(BasicBlock *BB) {
|
|
// If the block is trivially dead, just return and let the caller nuke it.
|
|
// This simplifies other transformations.
|
|
if (pred_begin(BB) == pred_end(BB) &&
|
|
BB != &BB->getParent()->getEntryBlock())
|
|
return false;
|
|
|
|
// If this block has a single predecessor, and if that pred has a single
|
|
// successor, merge the blocks. This encourages recursive jump threading
|
|
// because now the condition in this block can be threaded through
|
|
// predecessors of our predecessor block.
|
|
if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
|
|
if (SinglePred->getTerminator()->getNumSuccessors() == 1 &&
|
|
SinglePred != BB && !hasAddressTakenAndUsed(BB)) {
|
|
// If SinglePred was a loop header, BB becomes one.
|
|
if (LoopHeaders.erase(SinglePred))
|
|
LoopHeaders.insert(BB);
|
|
|
|
LVI->eraseBlock(SinglePred);
|
|
MergeBasicBlockIntoOnlyPred(BB);
|
|
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// What kind of constant we're looking for.
|
|
ConstantPreference Preference = WantInteger;
|
|
|
|
// Look to see if the terminator is a conditional branch, switch or indirect
|
|
// branch, if not we can't thread it.
|
|
Value *Condition;
|
|
Instruction *Terminator = BB->getTerminator();
|
|
if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) {
|
|
// Can't thread an unconditional jump.
|
|
if (BI->isUnconditional()) return false;
|
|
Condition = BI->getCondition();
|
|
} else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) {
|
|
Condition = SI->getCondition();
|
|
} else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) {
|
|
// Can't thread indirect branch with no successors.
|
|
if (IB->getNumSuccessors() == 0) return false;
|
|
Condition = IB->getAddress()->stripPointerCasts();
|
|
Preference = WantBlockAddress;
|
|
} else {
|
|
return false; // Must be an invoke.
|
|
}
|
|
|
|
// Run constant folding to see if we can reduce the condition to a simple
|
|
// constant.
|
|
if (Instruction *I = dyn_cast<Instruction>(Condition)) {
|
|
Value *SimpleVal = ConstantFoldInstruction(I, DL, TLI);
|
|
if (SimpleVal) {
|
|
I->replaceAllUsesWith(SimpleVal);
|
|
I->eraseFromParent();
|
|
Condition = SimpleVal;
|
|
}
|
|
}
|
|
|
|
// If the terminator is branching on an undef, we can pick any of the
|
|
// successors to branch to. Let GetBestDestForJumpOnUndef decide.
|
|
if (isa<UndefValue>(Condition)) {
|
|
unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
|
|
|
|
// Fold the branch/switch.
|
|
TerminatorInst *BBTerm = BB->getTerminator();
|
|
for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
|
|
if (i == BestSucc) continue;
|
|
BBTerm->getSuccessor(i)->removePredecessor(BB, true);
|
|
}
|
|
|
|
DEBUG(dbgs() << " In block '" << BB->getName()
|
|
<< "' folding undef terminator: " << *BBTerm << '\n');
|
|
BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
|
|
BBTerm->eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
// If the terminator of this block is branching on a constant, simplify the
|
|
// terminator to an unconditional branch. This can occur due to threading in
|
|
// other blocks.
|
|
if (getKnownConstant(Condition, Preference)) {
|
|
DEBUG(dbgs() << " In block '" << BB->getName()
|
|
<< "' folding terminator: " << *BB->getTerminator() << '\n');
|
|
++NumFolds;
|
|
ConstantFoldTerminator(BB, true);
|
|
return true;
|
|
}
|
|
|
|
Instruction *CondInst = dyn_cast<Instruction>(Condition);
|
|
|
|
// All the rest of our checks depend on the condition being an instruction.
|
|
if (!CondInst) {
|
|
// FIXME: Unify this with code below.
|
|
if (ProcessThreadableEdges(Condition, BB, Preference))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
|
|
if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
|
|
// For a comparison where the LHS is outside this block, it's possible
|
|
// that we've branched on it before. Used LVI to see if we can simplify
|
|
// the branch based on that.
|
|
BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
|
|
Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1));
|
|
pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
|
|
if (CondBr && CondConst && CondBr->isConditional() && PI != PE &&
|
|
(!isa<Instruction>(CondCmp->getOperand(0)) ||
|
|
cast<Instruction>(CondCmp->getOperand(0))->getParent() != BB)) {
|
|
// For predecessor edge, determine if the comparison is true or false
|
|
// on that edge. If they're all true or all false, we can simplify the
|
|
// branch.
|
|
// FIXME: We could handle mixed true/false by duplicating code.
|
|
LazyValueInfo::Tristate Baseline =
|
|
LVI->getPredicateOnEdge(CondCmp->getPredicate(), CondCmp->getOperand(0),
|
|
CondConst, *PI, BB);
|
|
if (Baseline != LazyValueInfo::Unknown) {
|
|
// Check that all remaining incoming values match the first one.
|
|
while (++PI != PE) {
|
|
LazyValueInfo::Tristate Ret =
|
|
LVI->getPredicateOnEdge(CondCmp->getPredicate(),
|
|
CondCmp->getOperand(0), CondConst, *PI, BB);
|
|
if (Ret != Baseline) break;
|
|
}
|
|
|
|
// If we terminated early, then one of the values didn't match.
|
|
if (PI == PE) {
|
|
unsigned ToRemove = Baseline == LazyValueInfo::True ? 1 : 0;
|
|
unsigned ToKeep = Baseline == LazyValueInfo::True ? 0 : 1;
|
|
CondBr->getSuccessor(ToRemove)->removePredecessor(BB, true);
|
|
BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr);
|
|
CondBr->eraseFromParent();
|
|
return true;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
if (CondBr && CondConst && TryToUnfoldSelect(CondCmp, BB))
|
|
return true;
|
|
}
|
|
|
|
// Check for some cases that are worth simplifying. Right now we want to look
|
|
// for loads that are used by a switch or by the condition for the branch. If
|
|
// we see one, check to see if it's partially redundant. If so, insert a PHI
|
|
// which can then be used to thread the values.
|
|
//
|
|
Value *SimplifyValue = CondInst;
|
|
if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
|
|
if (isa<Constant>(CondCmp->getOperand(1)))
|
|
SimplifyValue = CondCmp->getOperand(0);
|
|
|
|
// TODO: There are other places where load PRE would be profitable, such as
|
|
// more complex comparisons.
|
|
if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue))
|
|
if (SimplifyPartiallyRedundantLoad(LI))
|
|
return true;
|
|
|
|
|
|
// Handle a variety of cases where we are branching on something derived from
|
|
// a PHI node in the current block. If we can prove that any predecessors
|
|
// compute a predictable value based on a PHI node, thread those predecessors.
|
|
//
|
|
if (ProcessThreadableEdges(CondInst, BB, Preference))
|
|
return true;
|
|
|
|
// If this is an otherwise-unfoldable branch on a phi node in the current
|
|
// block, see if we can simplify.
|
|
if (PHINode *PN = dyn_cast<PHINode>(CondInst))
|
|
if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
|
|
return ProcessBranchOnPHI(PN);
|
|
|
|
|
|
// If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
|
|
if (CondInst->getOpcode() == Instruction::Xor &&
|
|
CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
|
|
return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst));
|
|
|
|
|
|
// TODO: If we have: "br (X > 0)" and we have a predecessor where we know
|
|
// "(X == 4)", thread through this block.
|
|
|
|
return false;
|
|
}
|
|
|
|
/// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant
|
|
/// load instruction, eliminate it by replacing it with a PHI node. This is an
|
|
/// important optimization that encourages jump threading, and needs to be run
|
|
/// interlaced with other jump threading tasks.
|
|
bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
|
|
// Don't hack volatile/atomic loads.
|
|
if (!LI->isSimple()) return false;
|
|
|
|
// If the load is defined in a block with exactly one predecessor, it can't be
|
|
// partially redundant.
|
|
BasicBlock *LoadBB = LI->getParent();
|
|
if (LoadBB->getSinglePredecessor())
|
|
return false;
|
|
|
|
// If the load is defined in a landing pad, it can't be partially redundant,
|
|
// because the edges between the invoke and the landing pad cannot have other
|
|
// instructions between them.
|
|
if (LoadBB->isLandingPad())
|
|
return false;
|
|
|
|
Value *LoadedPtr = LI->getOperand(0);
|
|
|
|
// If the loaded operand is defined in the LoadBB, it can't be available.
|
|
// TODO: Could do simple PHI translation, that would be fun :)
|
|
if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr))
|
|
if (PtrOp->getParent() == LoadBB)
|
|
return false;
|
|
|
|
// Scan a few instructions up from the load, to see if it is obviously live at
|
|
// the entry to its block.
|
|
BasicBlock::iterator BBIt = LI;
|
|
|
|
if (Value *AvailableVal =
|
|
FindAvailableLoadedValue(LoadedPtr, LoadBB, BBIt, 6)) {
|
|
// If the value if the load is locally available within the block, just use
|
|
// it. This frequently occurs for reg2mem'd allocas.
|
|
//cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n";
|
|
|
|
// If the returned value is the load itself, replace with an undef. This can
|
|
// only happen in dead loops.
|
|
if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType());
|
|
LI->replaceAllUsesWith(AvailableVal);
|
|
LI->eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
// Otherwise, if we scanned the whole block and got to the top of the block,
|
|
// we know the block is locally transparent to the load. If not, something
|
|
// might clobber its value.
|
|
if (BBIt != LoadBB->begin())
|
|
return false;
|
|
|
|
// If all of the loads and stores that feed the value have the same AA tags,
|
|
// then we can propagate them onto any newly inserted loads.
|
|
AAMDNodes AATags;
|
|
LI->getAAMetadata(AATags);
|
|
|
|
SmallPtrSet<BasicBlock*, 8> PredsScanned;
|
|
typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy;
|
|
AvailablePredsTy AvailablePreds;
|
|
BasicBlock *OneUnavailablePred = nullptr;
|
|
|
|
// If we got here, the loaded value is transparent through to the start of the
|
|
// block. Check to see if it is available in any of the predecessor blocks.
|
|
for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
|
|
PI != PE; ++PI) {
|
|
BasicBlock *PredBB = *PI;
|
|
|
|
// If we already scanned this predecessor, skip it.
|
|
if (!PredsScanned.insert(PredBB))
|
|
continue;
|
|
|
|
// Scan the predecessor to see if the value is available in the pred.
|
|
BBIt = PredBB->end();
|
|
AAMDNodes ThisAATags;
|
|
Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6,
|
|
nullptr, &ThisAATags);
|
|
if (!PredAvailable) {
|
|
OneUnavailablePred = PredBB;
|
|
continue;
|
|
}
|
|
|
|
// If AA tags disagree or are not present, forget about them.
|
|
if (AATags != ThisAATags) AATags = AAMDNodes();
|
|
|
|
// If so, this load is partially redundant. Remember this info so that we
|
|
// can create a PHI node.
|
|
AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
|
|
}
|
|
|
|
// If the loaded value isn't available in any predecessor, it isn't partially
|
|
// redundant.
|
|
if (AvailablePreds.empty()) return false;
|
|
|
|
// Okay, the loaded value is available in at least one (and maybe all!)
|
|
// predecessors. If the value is unavailable in more than one unique
|
|
// predecessor, we want to insert a merge block for those common predecessors.
|
|
// This ensures that we only have to insert one reload, thus not increasing
|
|
// code size.
|
|
BasicBlock *UnavailablePred = nullptr;
|
|
|
|
// If there is exactly one predecessor where the value is unavailable, the
|
|
// already computed 'OneUnavailablePred' block is it. If it ends in an
|
|
// unconditional branch, we know that it isn't a critical edge.
|
|
if (PredsScanned.size() == AvailablePreds.size()+1 &&
|
|
OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
|
|
UnavailablePred = OneUnavailablePred;
|
|
} else if (PredsScanned.size() != AvailablePreds.size()) {
|
|
// Otherwise, we had multiple unavailable predecessors or we had a critical
|
|
// edge from the one.
|
|
SmallVector<BasicBlock*, 8> PredsToSplit;
|
|
SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
|
|
|
|
for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i)
|
|
AvailablePredSet.insert(AvailablePreds[i].first);
|
|
|
|
// Add all the unavailable predecessors to the PredsToSplit list.
|
|
for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
|
|
PI != PE; ++PI) {
|
|
BasicBlock *P = *PI;
|
|
// If the predecessor is an indirect goto, we can't split the edge.
|
|
if (isa<IndirectBrInst>(P->getTerminator()))
|
|
return false;
|
|
|
|
if (!AvailablePredSet.count(P))
|
|
PredsToSplit.push_back(P);
|
|
}
|
|
|
|
// Split them out to their own block.
|
|
UnavailablePred =
|
|
SplitBlockPredecessors(LoadBB, PredsToSplit, "thread-pre-split", this);
|
|
}
|
|
|
|
// If the value isn't available in all predecessors, then there will be
|
|
// exactly one where it isn't available. Insert a load on that edge and add
|
|
// it to the AvailablePreds list.
|
|
if (UnavailablePred) {
|
|
assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
|
|
"Can't handle critical edge here!");
|
|
LoadInst *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", false,
|
|
LI->getAlignment(),
|
|
UnavailablePred->getTerminator());
|
|
NewVal->setDebugLoc(LI->getDebugLoc());
|
|
if (AATags)
|
|
NewVal->setAAMetadata(AATags);
|
|
|
|
AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
|
|
}
|
|
|
|
// Now we know that each predecessor of this block has a value in
|
|
// AvailablePreds, sort them for efficient access as we're walking the preds.
|
|
array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
|
|
|
|
// Create a PHI node at the start of the block for the PRE'd load value.
|
|
pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB);
|
|
PHINode *PN = PHINode::Create(LI->getType(), std::distance(PB, PE), "",
|
|
LoadBB->begin());
|
|
PN->takeName(LI);
|
|
PN->setDebugLoc(LI->getDebugLoc());
|
|
|
|
// Insert new entries into the PHI for each predecessor. A single block may
|
|
// have multiple entries here.
|
|
for (pred_iterator PI = PB; PI != PE; ++PI) {
|
|
BasicBlock *P = *PI;
|
|
AvailablePredsTy::iterator I =
|
|
std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
|
|
std::make_pair(P, (Value*)nullptr));
|
|
|
|
assert(I != AvailablePreds.end() && I->first == P &&
|
|
"Didn't find entry for predecessor!");
|
|
|
|
PN->addIncoming(I->second, I->first);
|
|
}
|
|
|
|
//cerr << "PRE: " << *LI << *PN << "\n";
|
|
|
|
LI->replaceAllUsesWith(PN);
|
|
LI->eraseFromParent();
|
|
|
|
return true;
|
|
}
|
|
|
|
/// FindMostPopularDest - The specified list contains multiple possible
|
|
/// threadable destinations. Pick the one that occurs the most frequently in
|
|
/// the list.
|
|
static BasicBlock *
|
|
FindMostPopularDest(BasicBlock *BB,
|
|
const SmallVectorImpl<std::pair<BasicBlock*,
|
|
BasicBlock*> > &PredToDestList) {
|
|
assert(!PredToDestList.empty());
|
|
|
|
// Determine popularity. If there are multiple possible destinations, we
|
|
// explicitly choose to ignore 'undef' destinations. We prefer to thread
|
|
// blocks with known and real destinations to threading undef. We'll handle
|
|
// them later if interesting.
|
|
DenseMap<BasicBlock*, unsigned> DestPopularity;
|
|
for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
|
|
if (PredToDestList[i].second)
|
|
DestPopularity[PredToDestList[i].second]++;
|
|
|
|
// Find the most popular dest.
|
|
DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
|
|
BasicBlock *MostPopularDest = DPI->first;
|
|
unsigned Popularity = DPI->second;
|
|
SmallVector<BasicBlock*, 4> SamePopularity;
|
|
|
|
for (++DPI; DPI != DestPopularity.end(); ++DPI) {
|
|
// If the popularity of this entry isn't higher than the popularity we've
|
|
// seen so far, ignore it.
|
|
if (DPI->second < Popularity)
|
|
; // ignore.
|
|
else if (DPI->second == Popularity) {
|
|
// If it is the same as what we've seen so far, keep track of it.
|
|
SamePopularity.push_back(DPI->first);
|
|
} else {
|
|
// If it is more popular, remember it.
|
|
SamePopularity.clear();
|
|
MostPopularDest = DPI->first;
|
|
Popularity = DPI->second;
|
|
}
|
|
}
|
|
|
|
// Okay, now we know the most popular destination. If there is more than one
|
|
// destination, we need to determine one. This is arbitrary, but we need
|
|
// to make a deterministic decision. Pick the first one that appears in the
|
|
// successor list.
|
|
if (!SamePopularity.empty()) {
|
|
SamePopularity.push_back(MostPopularDest);
|
|
TerminatorInst *TI = BB->getTerminator();
|
|
for (unsigned i = 0; ; ++i) {
|
|
assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
|
|
|
|
if (std::find(SamePopularity.begin(), SamePopularity.end(),
|
|
TI->getSuccessor(i)) == SamePopularity.end())
|
|
continue;
|
|
|
|
MostPopularDest = TI->getSuccessor(i);
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Okay, we have finally picked the most popular destination.
|
|
return MostPopularDest;
|
|
}
|
|
|
|
bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB,
|
|
ConstantPreference Preference) {
|
|
// If threading this would thread across a loop header, don't even try to
|
|
// thread the edge.
|
|
if (LoopHeaders.count(BB))
|
|
return false;
|
|
|
|
PredValueInfoTy PredValues;
|
|
if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference))
|
|
return false;
|
|
|
|
assert(!PredValues.empty() &&
|
|
"ComputeValueKnownInPredecessors returned true with no values");
|
|
|
|
DEBUG(dbgs() << "IN BB: " << *BB;
|
|
for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
|
|
dbgs() << " BB '" << BB->getName() << "': FOUND condition = "
|
|
<< *PredValues[i].first
|
|
<< " for pred '" << PredValues[i].second->getName() << "'.\n";
|
|
});
|
|
|
|
// Decide what we want to thread through. Convert our list of known values to
|
|
// a list of known destinations for each pred. This also discards duplicate
|
|
// predecessors and keeps track of the undefined inputs (which are represented
|
|
// as a null dest in the PredToDestList).
|
|
SmallPtrSet<BasicBlock*, 16> SeenPreds;
|
|
SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
|
|
|
|
BasicBlock *OnlyDest = nullptr;
|
|
BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
|
|
|
|
for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
|
|
BasicBlock *Pred = PredValues[i].second;
|
|
if (!SeenPreds.insert(Pred))
|
|
continue; // Duplicate predecessor entry.
|
|
|
|
// If the predecessor ends with an indirect goto, we can't change its
|
|
// destination.
|
|
if (isa<IndirectBrInst>(Pred->getTerminator()))
|
|
continue;
|
|
|
|
Constant *Val = PredValues[i].first;
|
|
|
|
BasicBlock *DestBB;
|
|
if (isa<UndefValue>(Val))
|
|
DestBB = nullptr;
|
|
else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
|
|
DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero());
|
|
else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
|
|
DestBB = SI->findCaseValue(cast<ConstantInt>(Val)).getCaseSuccessor();
|
|
} else {
|
|
assert(isa<IndirectBrInst>(BB->getTerminator())
|
|
&& "Unexpected terminator");
|
|
DestBB = cast<BlockAddress>(Val)->getBasicBlock();
|
|
}
|
|
|
|
// If we have exactly one destination, remember it for efficiency below.
|
|
if (PredToDestList.empty())
|
|
OnlyDest = DestBB;
|
|
else if (OnlyDest != DestBB)
|
|
OnlyDest = MultipleDestSentinel;
|
|
|
|
PredToDestList.push_back(std::make_pair(Pred, DestBB));
|
|
}
|
|
|
|
// If all edges were unthreadable, we fail.
|
|
if (PredToDestList.empty())
|
|
return false;
|
|
|
|
// Determine which is the most common successor. If we have many inputs and
|
|
// this block is a switch, we want to start by threading the batch that goes
|
|
// to the most popular destination first. If we only know about one
|
|
// threadable destination (the common case) we can avoid this.
|
|
BasicBlock *MostPopularDest = OnlyDest;
|
|
|
|
if (MostPopularDest == MultipleDestSentinel)
|
|
MostPopularDest = FindMostPopularDest(BB, PredToDestList);
|
|
|
|
// Now that we know what the most popular destination is, factor all
|
|
// predecessors that will jump to it into a single predecessor.
|
|
SmallVector<BasicBlock*, 16> PredsToFactor;
|
|
for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
|
|
if (PredToDestList[i].second == MostPopularDest) {
|
|
BasicBlock *Pred = PredToDestList[i].first;
|
|
|
|
// This predecessor may be a switch or something else that has multiple
|
|
// edges to the block. Factor each of these edges by listing them
|
|
// according to # occurrences in PredsToFactor.
|
|
TerminatorInst *PredTI = Pred->getTerminator();
|
|
for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i)
|
|
if (PredTI->getSuccessor(i) == BB)
|
|
PredsToFactor.push_back(Pred);
|
|
}
|
|
|
|
// If the threadable edges are branching on an undefined value, we get to pick
|
|
// the destination that these predecessors should get to.
|
|
if (!MostPopularDest)
|
|
MostPopularDest = BB->getTerminator()->
|
|
getSuccessor(GetBestDestForJumpOnUndef(BB));
|
|
|
|
// Ok, try to thread it!
|
|
return ThreadEdge(BB, PredsToFactor, MostPopularDest);
|
|
}
|
|
|
|
/// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on
|
|
/// a PHI node in the current block. See if there are any simplifications we
|
|
/// can do based on inputs to the phi node.
|
|
///
|
|
bool JumpThreading::ProcessBranchOnPHI(PHINode *PN) {
|
|
BasicBlock *BB = PN->getParent();
|
|
|
|
// TODO: We could make use of this to do it once for blocks with common PHI
|
|
// values.
|
|
SmallVector<BasicBlock*, 1> PredBBs;
|
|
PredBBs.resize(1);
|
|
|
|
// If any of the predecessor blocks end in an unconditional branch, we can
|
|
// *duplicate* the conditional branch into that block in order to further
|
|
// encourage jump threading and to eliminate cases where we have branch on a
|
|
// phi of an icmp (branch on icmp is much better).
|
|
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
|
|
BasicBlock *PredBB = PN->getIncomingBlock(i);
|
|
if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
|
|
if (PredBr->isUnconditional()) {
|
|
PredBBs[0] = PredBB;
|
|
// Try to duplicate BB into PredBB.
|
|
if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs))
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on
|
|
/// a xor instruction in the current block. See if there are any
|
|
/// simplifications we can do based on inputs to the xor.
|
|
///
|
|
bool JumpThreading::ProcessBranchOnXOR(BinaryOperator *BO) {
|
|
BasicBlock *BB = BO->getParent();
|
|
|
|
// If either the LHS or RHS of the xor is a constant, don't do this
|
|
// optimization.
|
|
if (isa<ConstantInt>(BO->getOperand(0)) ||
|
|
isa<ConstantInt>(BO->getOperand(1)))
|
|
return false;
|
|
|
|
// If the first instruction in BB isn't a phi, we won't be able to infer
|
|
// anything special about any particular predecessor.
|
|
if (!isa<PHINode>(BB->front()))
|
|
return false;
|
|
|
|
// If we have a xor as the branch input to this block, and we know that the
|
|
// LHS or RHS of the xor in any predecessor is true/false, then we can clone
|
|
// the condition into the predecessor and fix that value to true, saving some
|
|
// logical ops on that path and encouraging other paths to simplify.
|
|
//
|
|
// This copies something like this:
|
|
//
|
|
// BB:
|
|
// %X = phi i1 [1], [%X']
|
|
// %Y = icmp eq i32 %A, %B
|
|
// %Z = xor i1 %X, %Y
|
|
// br i1 %Z, ...
|
|
//
|
|
// Into:
|
|
// BB':
|
|
// %Y = icmp ne i32 %A, %B
|
|
// br i1 %Z, ...
|
|
|
|
PredValueInfoTy XorOpValues;
|
|
bool isLHS = true;
|
|
if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues,
|
|
WantInteger)) {
|
|
assert(XorOpValues.empty());
|
|
if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues,
|
|
WantInteger))
|
|
return false;
|
|
isLHS = false;
|
|
}
|
|
|
|
assert(!XorOpValues.empty() &&
|
|
"ComputeValueKnownInPredecessors returned true with no values");
|
|
|
|
// Scan the information to see which is most popular: true or false. The
|
|
// predecessors can be of the set true, false, or undef.
|
|
unsigned NumTrue = 0, NumFalse = 0;
|
|
for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) {
|
|
if (isa<UndefValue>(XorOpValues[i].first))
|
|
// Ignore undefs for the count.
|
|
continue;
|
|
if (cast<ConstantInt>(XorOpValues[i].first)->isZero())
|
|
++NumFalse;
|
|
else
|
|
++NumTrue;
|
|
}
|
|
|
|
// Determine which value to split on, true, false, or undef if neither.
|
|
ConstantInt *SplitVal = nullptr;
|
|
if (NumTrue > NumFalse)
|
|
SplitVal = ConstantInt::getTrue(BB->getContext());
|
|
else if (NumTrue != 0 || NumFalse != 0)
|
|
SplitVal = ConstantInt::getFalse(BB->getContext());
|
|
|
|
// Collect all of the blocks that this can be folded into so that we can
|
|
// factor this once and clone it once.
|
|
SmallVector<BasicBlock*, 8> BlocksToFoldInto;
|
|
for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) {
|
|
if (XorOpValues[i].first != SplitVal &&
|
|
!isa<UndefValue>(XorOpValues[i].first))
|
|
continue;
|
|
|
|
BlocksToFoldInto.push_back(XorOpValues[i].second);
|
|
}
|
|
|
|
// If we inferred a value for all of the predecessors, then duplication won't
|
|
// help us. However, we can just replace the LHS or RHS with the constant.
|
|
if (BlocksToFoldInto.size() ==
|
|
cast<PHINode>(BB->front()).getNumIncomingValues()) {
|
|
if (!SplitVal) {
|
|
// If all preds provide undef, just nuke the xor, because it is undef too.
|
|
BO->replaceAllUsesWith(UndefValue::get(BO->getType()));
|
|
BO->eraseFromParent();
|
|
} else if (SplitVal->isZero()) {
|
|
// If all preds provide 0, replace the xor with the other input.
|
|
BO->replaceAllUsesWith(BO->getOperand(isLHS));
|
|
BO->eraseFromParent();
|
|
} else {
|
|
// If all preds provide 1, set the computed value to 1.
|
|
BO->setOperand(!isLHS, SplitVal);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Try to duplicate BB into PredBB.
|
|
return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
|
|
}
|
|
|
|
|
|
/// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
|
|
/// predecessor to the PHIBB block. If it has PHI nodes, add entries for
|
|
/// NewPred using the entries from OldPred (suitably mapped).
|
|
static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
|
|
BasicBlock *OldPred,
|
|
BasicBlock *NewPred,
|
|
DenseMap<Instruction*, Value*> &ValueMap) {
|
|
for (BasicBlock::iterator PNI = PHIBB->begin();
|
|
PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) {
|
|
// Ok, we have a PHI node. Figure out what the incoming value was for the
|
|
// DestBlock.
|
|
Value *IV = PN->getIncomingValueForBlock(OldPred);
|
|
|
|
// Remap the value if necessary.
|
|
if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
|
|
DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
|
|
if (I != ValueMap.end())
|
|
IV = I->second;
|
|
}
|
|
|
|
PN->addIncoming(IV, NewPred);
|
|
}
|
|
}
|
|
|
|
/// ThreadEdge - We have decided that it is safe and profitable to factor the
|
|
/// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
|
|
/// across BB. Transform the IR to reflect this change.
|
|
bool JumpThreading::ThreadEdge(BasicBlock *BB,
|
|
const SmallVectorImpl<BasicBlock*> &PredBBs,
|
|
BasicBlock *SuccBB) {
|
|
// If threading to the same block as we come from, we would infinite loop.
|
|
if (SuccBB == BB) {
|
|
DEBUG(dbgs() << " Not threading across BB '" << BB->getName()
|
|
<< "' - would thread to self!\n");
|
|
return false;
|
|
}
|
|
|
|
// If threading this would thread across a loop header, don't thread the edge.
|
|
// See the comments above FindLoopHeaders for justifications and caveats.
|
|
if (LoopHeaders.count(BB)) {
|
|
DEBUG(dbgs() << " Not threading across loop header BB '" << BB->getName()
|
|
<< "' to dest BB '" << SuccBB->getName()
|
|
<< "' - it might create an irreducible loop!\n");
|
|
return false;
|
|
}
|
|
|
|
unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB, Threshold);
|
|
if (JumpThreadCost > Threshold) {
|
|
DEBUG(dbgs() << " Not threading BB '" << BB->getName()
|
|
<< "' - Cost is too high: " << JumpThreadCost << "\n");
|
|
return false;
|
|
}
|
|
|
|
// And finally, do it! Start by factoring the predecessors is needed.
|
|
BasicBlock *PredBB;
|
|
if (PredBBs.size() == 1)
|
|
PredBB = PredBBs[0];
|
|
else {
|
|
DEBUG(dbgs() << " Factoring out " << PredBBs.size()
|
|
<< " common predecessors.\n");
|
|
PredBB = SplitBlockPredecessors(BB, PredBBs, ".thr_comm", this);
|
|
}
|
|
|
|
// And finally, do it!
|
|
DEBUG(dbgs() << " Threading edge from '" << PredBB->getName() << "' to '"
|
|
<< SuccBB->getName() << "' with cost: " << JumpThreadCost
|
|
<< ", across block:\n "
|
|
<< *BB << "\n");
|
|
|
|
LVI->threadEdge(PredBB, BB, SuccBB);
|
|
|
|
// We are going to have to map operands from the original BB block to the new
|
|
// copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to
|
|
// account for entry from PredBB.
|
|
DenseMap<Instruction*, Value*> ValueMapping;
|
|
|
|
BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
|
|
BB->getName()+".thread",
|
|
BB->getParent(), BB);
|
|
NewBB->moveAfter(PredBB);
|
|
|
|
BasicBlock::iterator BI = BB->begin();
|
|
for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
|
|
ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
|
|
|
|
// Clone the non-phi instructions of BB into NewBB, keeping track of the
|
|
// mapping and using it to remap operands in the cloned instructions.
|
|
for (; !isa<TerminatorInst>(BI); ++BI) {
|
|
Instruction *New = BI->clone();
|
|
New->setName(BI->getName());
|
|
NewBB->getInstList().push_back(New);
|
|
ValueMapping[BI] = New;
|
|
|
|
// Remap operands to patch up intra-block references.
|
|
for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
|
|
if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
|
|
DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
|
|
if (I != ValueMapping.end())
|
|
New->setOperand(i, I->second);
|
|
}
|
|
}
|
|
|
|
// We didn't copy the terminator from BB over to NewBB, because there is now
|
|
// an unconditional jump to SuccBB. Insert the unconditional jump.
|
|
BranchInst *NewBI =BranchInst::Create(SuccBB, NewBB);
|
|
NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc());
|
|
|
|
// Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
|
|
// PHI nodes for NewBB now.
|
|
AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
|
|
|
|
// If there were values defined in BB that are used outside the block, then we
|
|
// now have to update all uses of the value to use either the original value,
|
|
// the cloned value, or some PHI derived value. This can require arbitrary
|
|
// PHI insertion, of which we are prepared to do, clean these up now.
|
|
SSAUpdater SSAUpdate;
|
|
SmallVector<Use*, 16> UsesToRename;
|
|
for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
|
|
// Scan all uses of this instruction to see if it is used outside of its
|
|
// block, and if so, record them in UsesToRename.
|
|
for (Use &U : I->uses()) {
|
|
Instruction *User = cast<Instruction>(U.getUser());
|
|
if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
|
|
if (UserPN->getIncomingBlock(U) == BB)
|
|
continue;
|
|
} else if (User->getParent() == BB)
|
|
continue;
|
|
|
|
UsesToRename.push_back(&U);
|
|
}
|
|
|
|
// If there are no uses outside the block, we're done with this instruction.
|
|
if (UsesToRename.empty())
|
|
continue;
|
|
|
|
DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n");
|
|
|
|
// We found a use of I outside of BB. Rename all uses of I that are outside
|
|
// its block to be uses of the appropriate PHI node etc. See ValuesInBlocks
|
|
// with the two values we know.
|
|
SSAUpdate.Initialize(I->getType(), I->getName());
|
|
SSAUpdate.AddAvailableValue(BB, I);
|
|
SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]);
|
|
|
|
while (!UsesToRename.empty())
|
|
SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
|
|
DEBUG(dbgs() << "\n");
|
|
}
|
|
|
|
|
|
// Ok, NewBB is good to go. Update the terminator of PredBB to jump to
|
|
// NewBB instead of BB. This eliminates predecessors from BB, which requires
|
|
// us to simplify any PHI nodes in BB.
|
|
TerminatorInst *PredTerm = PredBB->getTerminator();
|
|
for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
|
|
if (PredTerm->getSuccessor(i) == BB) {
|
|
BB->removePredecessor(PredBB, true);
|
|
PredTerm->setSuccessor(i, NewBB);
|
|
}
|
|
|
|
// At this point, the IR is fully up to date and consistent. Do a quick scan
|
|
// over the new instructions and zap any that are constants or dead. This
|
|
// frequently happens because of phi translation.
|
|
SimplifyInstructionsInBlock(NewBB, DL, TLI);
|
|
|
|
// Threaded an edge!
|
|
++NumThreads;
|
|
return true;
|
|
}
|
|
|
|
/// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
|
|
/// to BB which contains an i1 PHI node and a conditional branch on that PHI.
|
|
/// If we can duplicate the contents of BB up into PredBB do so now, this
|
|
/// improves the odds that the branch will be on an analyzable instruction like
|
|
/// a compare.
|
|
bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
|
|
const SmallVectorImpl<BasicBlock *> &PredBBs) {
|
|
assert(!PredBBs.empty() && "Can't handle an empty set");
|
|
|
|
// If BB is a loop header, then duplicating this block outside the loop would
|
|
// cause us to transform this into an irreducible loop, don't do this.
|
|
// See the comments above FindLoopHeaders for justifications and caveats.
|
|
if (LoopHeaders.count(BB)) {
|
|
DEBUG(dbgs() << " Not duplicating loop header '" << BB->getName()
|
|
<< "' into predecessor block '" << PredBBs[0]->getName()
|
|
<< "' - it might create an irreducible loop!\n");
|
|
return false;
|
|
}
|
|
|
|
unsigned DuplicationCost = getJumpThreadDuplicationCost(BB, Threshold);
|
|
if (DuplicationCost > Threshold) {
|
|
DEBUG(dbgs() << " Not duplicating BB '" << BB->getName()
|
|
<< "' - Cost is too high: " << DuplicationCost << "\n");
|
|
return false;
|
|
}
|
|
|
|
// And finally, do it! Start by factoring the predecessors is needed.
|
|
BasicBlock *PredBB;
|
|
if (PredBBs.size() == 1)
|
|
PredBB = PredBBs[0];
|
|
else {
|
|
DEBUG(dbgs() << " Factoring out " << PredBBs.size()
|
|
<< " common predecessors.\n");
|
|
PredBB = SplitBlockPredecessors(BB, PredBBs, ".thr_comm", this);
|
|
}
|
|
|
|
// Okay, we decided to do this! Clone all the instructions in BB onto the end
|
|
// of PredBB.
|
|
DEBUG(dbgs() << " Duplicating block '" << BB->getName() << "' into end of '"
|
|
<< PredBB->getName() << "' to eliminate branch on phi. Cost: "
|
|
<< DuplicationCost << " block is:" << *BB << "\n");
|
|
|
|
// Unless PredBB ends with an unconditional branch, split the edge so that we
|
|
// can just clone the bits from BB into the end of the new PredBB.
|
|
BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
|
|
|
|
if (!OldPredBranch || !OldPredBranch->isUnconditional()) {
|
|
PredBB = SplitEdge(PredBB, BB, this);
|
|
OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
|
|
}
|
|
|
|
// We are going to have to map operands from the original BB block into the
|
|
// PredBB block. Evaluate PHI nodes in BB.
|
|
DenseMap<Instruction*, Value*> ValueMapping;
|
|
|
|
BasicBlock::iterator BI = BB->begin();
|
|
for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
|
|
ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
|
|
|
|
// Clone the non-phi instructions of BB into PredBB, keeping track of the
|
|
// mapping and using it to remap operands in the cloned instructions.
|
|
for (; BI != BB->end(); ++BI) {
|
|
Instruction *New = BI->clone();
|
|
|
|
// Remap operands to patch up intra-block references.
|
|
for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
|
|
if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
|
|
DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
|
|
if (I != ValueMapping.end())
|
|
New->setOperand(i, I->second);
|
|
}
|
|
|
|
// If this instruction can be simplified after the operands are updated,
|
|
// just use the simplified value instead. This frequently happens due to
|
|
// phi translation.
|
|
if (Value *IV = SimplifyInstruction(New, DL)) {
|
|
delete New;
|
|
ValueMapping[BI] = IV;
|
|
} else {
|
|
// Otherwise, insert the new instruction into the block.
|
|
New->setName(BI->getName());
|
|
PredBB->getInstList().insert(OldPredBranch, New);
|
|
ValueMapping[BI] = New;
|
|
}
|
|
}
|
|
|
|
// Check to see if the targets of the branch had PHI nodes. If so, we need to
|
|
// add entries to the PHI nodes for branch from PredBB now.
|
|
BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
|
|
AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
|
|
ValueMapping);
|
|
AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
|
|
ValueMapping);
|
|
|
|
// If there were values defined in BB that are used outside the block, then we
|
|
// now have to update all uses of the value to use either the original value,
|
|
// the cloned value, or some PHI derived value. This can require arbitrary
|
|
// PHI insertion, of which we are prepared to do, clean these up now.
|
|
SSAUpdater SSAUpdate;
|
|
SmallVector<Use*, 16> UsesToRename;
|
|
for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
|
|
// Scan all uses of this instruction to see if it is used outside of its
|
|
// block, and if so, record them in UsesToRename.
|
|
for (Use &U : I->uses()) {
|
|
Instruction *User = cast<Instruction>(U.getUser());
|
|
if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
|
|
if (UserPN->getIncomingBlock(U) == BB)
|
|
continue;
|
|
} else if (User->getParent() == BB)
|
|
continue;
|
|
|
|
UsesToRename.push_back(&U);
|
|
}
|
|
|
|
// If there are no uses outside the block, we're done with this instruction.
|
|
if (UsesToRename.empty())
|
|
continue;
|
|
|
|
DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n");
|
|
|
|
// We found a use of I outside of BB. Rename all uses of I that are outside
|
|
// its block to be uses of the appropriate PHI node etc. See ValuesInBlocks
|
|
// with the two values we know.
|
|
SSAUpdate.Initialize(I->getType(), I->getName());
|
|
SSAUpdate.AddAvailableValue(BB, I);
|
|
SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]);
|
|
|
|
while (!UsesToRename.empty())
|
|
SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
|
|
DEBUG(dbgs() << "\n");
|
|
}
|
|
|
|
// PredBB no longer jumps to BB, remove entries in the PHI node for the edge
|
|
// that we nuked.
|
|
BB->removePredecessor(PredBB, true);
|
|
|
|
// Remove the unconditional branch at the end of the PredBB block.
|
|
OldPredBranch->eraseFromParent();
|
|
|
|
++NumDupes;
|
|
return true;
|
|
}
|
|
|
|
/// TryToUnfoldSelect - Look for blocks of the form
|
|
/// bb1:
|
|
/// %a = select
|
|
/// br bb
|
|
///
|
|
/// bb2:
|
|
/// %p = phi [%a, %bb] ...
|
|
/// %c = icmp %p
|
|
/// br i1 %c
|
|
///
|
|
/// And expand the select into a branch structure if one of its arms allows %c
|
|
/// to be folded. This later enables threading from bb1 over bb2.
|
|
bool JumpThreading::TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) {
|
|
BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
|
|
PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0));
|
|
Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1));
|
|
|
|
if (!CondBr || !CondBr->isConditional() || !CondLHS ||
|
|
CondLHS->getParent() != BB)
|
|
return false;
|
|
|
|
for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) {
|
|
BasicBlock *Pred = CondLHS->getIncomingBlock(I);
|
|
SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I));
|
|
|
|
// Look if one of the incoming values is a select in the corresponding
|
|
// predecessor.
|
|
if (!SI || SI->getParent() != Pred || !SI->hasOneUse())
|
|
continue;
|
|
|
|
BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
|
|
if (!PredTerm || !PredTerm->isUnconditional())
|
|
continue;
|
|
|
|
// Now check if one of the select values would allow us to constant fold the
|
|
// terminator in BB. We don't do the transform if both sides fold, those
|
|
// cases will be threaded in any case.
|
|
LazyValueInfo::Tristate LHSFolds =
|
|
LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1),
|
|
CondRHS, Pred, BB);
|
|
LazyValueInfo::Tristate RHSFolds =
|
|
LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2),
|
|
CondRHS, Pred, BB);
|
|
if ((LHSFolds != LazyValueInfo::Unknown ||
|
|
RHSFolds != LazyValueInfo::Unknown) &&
|
|
LHSFolds != RHSFolds) {
|
|
// Expand the select.
|
|
//
|
|
// Pred --
|
|
// | v
|
|
// | NewBB
|
|
// | |
|
|
// |-----
|
|
// v
|
|
// BB
|
|
BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold",
|
|
BB->getParent(), BB);
|
|
// Move the unconditional branch to NewBB.
|
|
PredTerm->removeFromParent();
|
|
NewBB->getInstList().insert(NewBB->end(), PredTerm);
|
|
// Create a conditional branch and update PHI nodes.
|
|
BranchInst::Create(NewBB, BB, SI->getCondition(), Pred);
|
|
CondLHS->setIncomingValue(I, SI->getFalseValue());
|
|
CondLHS->addIncoming(SI->getTrueValue(), NewBB);
|
|
// The select is now dead.
|
|
SI->eraseFromParent();
|
|
|
|
// Update any other PHI nodes in BB.
|
|
for (BasicBlock::iterator BI = BB->begin();
|
|
PHINode *Phi = dyn_cast<PHINode>(BI); ++BI)
|
|
if (Phi != CondLHS)
|
|
Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB);
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|