llvm-6502/lib/Target/X86/X86InstrInfo.cpp
Bill Wendling 3100afaf3f Machine LICM will check that operands are defined outside of the loop. Also
check that register isn't 0 before going further.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@45498 91177308-0d34-0410-b5e6-96231b3b80d8
2008-01-02 21:10:40 +00:00

1000 lines
36 KiB
C++

//===- X86InstrInfo.cpp - X86 Instruction Information -----------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the X86 implementation of the TargetInstrInfo class.
//
//===----------------------------------------------------------------------===//
#include "X86InstrInfo.h"
#include "X86.h"
#include "X86GenInstrInfo.inc"
#include "X86InstrBuilder.h"
#include "X86Subtarget.h"
#include "X86TargetMachine.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/LiveVariables.h"
#include "llvm/Target/TargetOptions.h"
using namespace llvm;
X86InstrInfo::X86InstrInfo(X86TargetMachine &tm)
: TargetInstrInfoImpl(X86Insts, array_lengthof(X86Insts)),
TM(tm), RI(tm, *this) {
}
bool X86InstrInfo::isMoveInstr(const MachineInstr& MI,
unsigned& sourceReg,
unsigned& destReg) const {
MachineOpCode oc = MI.getOpcode();
if (oc == X86::MOV8rr || oc == X86::MOV16rr ||
oc == X86::MOV32rr || oc == X86::MOV64rr ||
oc == X86::MOV16to16_ || oc == X86::MOV32to32_ ||
oc == X86::MOV_Fp3232 || oc == X86::MOVSSrr || oc == X86::MOVSDrr ||
oc == X86::MOV_Fp3264 || oc == X86::MOV_Fp6432 || oc == X86::MOV_Fp6464 ||
oc == X86::FsMOVAPSrr || oc == X86::FsMOVAPDrr ||
oc == X86::MOVAPSrr || oc == X86::MOVAPDrr ||
oc == X86::MOVSS2PSrr || oc == X86::MOVSD2PDrr ||
oc == X86::MOVPS2SSrr || oc == X86::MOVPD2SDrr ||
oc == X86::MMX_MOVD64rr || oc == X86::MMX_MOVQ64rr) {
assert(MI.getNumOperands() >= 2 &&
MI.getOperand(0).isRegister() &&
MI.getOperand(1).isRegister() &&
"invalid register-register move instruction");
sourceReg = MI.getOperand(1).getReg();
destReg = MI.getOperand(0).getReg();
return true;
}
return false;
}
unsigned X86InstrInfo::isLoadFromStackSlot(MachineInstr *MI,
int &FrameIndex) const {
switch (MI->getOpcode()) {
default: break;
case X86::MOV8rm:
case X86::MOV16rm:
case X86::MOV16_rm:
case X86::MOV32rm:
case X86::MOV32_rm:
case X86::MOV64rm:
case X86::LD_Fp64m:
case X86::MOVSSrm:
case X86::MOVSDrm:
case X86::MOVAPSrm:
case X86::MOVAPDrm:
case X86::MMX_MOVD64rm:
case X86::MMX_MOVQ64rm:
if (MI->getOperand(1).isFI() && MI->getOperand(2).isImm() &&
MI->getOperand(3).isReg() && MI->getOperand(4).isImm() &&
MI->getOperand(2).getImm() == 1 &&
MI->getOperand(3).getReg() == 0 &&
MI->getOperand(4).getImm() == 0) {
FrameIndex = MI->getOperand(1).getIndex();
return MI->getOperand(0).getReg();
}
break;
}
return 0;
}
unsigned X86InstrInfo::isStoreToStackSlot(MachineInstr *MI,
int &FrameIndex) const {
switch (MI->getOpcode()) {
default: break;
case X86::MOV8mr:
case X86::MOV16mr:
case X86::MOV16_mr:
case X86::MOV32mr:
case X86::MOV32_mr:
case X86::MOV64mr:
case X86::ST_FpP64m:
case X86::MOVSSmr:
case X86::MOVSDmr:
case X86::MOVAPSmr:
case X86::MOVAPDmr:
case X86::MMX_MOVD64mr:
case X86::MMX_MOVQ64mr:
case X86::MMX_MOVNTQmr:
if (MI->getOperand(0).isFI() && MI->getOperand(1).isImm() &&
MI->getOperand(2).isReg() && MI->getOperand(3).isImm() &&
MI->getOperand(1).getImm() == 1 &&
MI->getOperand(2).getReg() == 0 &&
MI->getOperand(3).getImm() == 0) {
FrameIndex = MI->getOperand(0).getIndex();
return MI->getOperand(4).getReg();
}
break;
}
return 0;
}
bool X86InstrInfo::isReallyTriviallyReMaterializable(MachineInstr *MI) const {
switch (MI->getOpcode()) {
default: break;
case X86::MOV8rm:
case X86::MOV16rm:
case X86::MOV16_rm:
case X86::MOV32rm:
case X86::MOV32_rm:
case X86::MOV64rm:
case X86::LD_Fp64m:
case X86::MOVSSrm:
case X86::MOVSDrm:
case X86::MOVAPSrm:
case X86::MOVAPDrm:
case X86::MMX_MOVD64rm:
case X86::MMX_MOVQ64rm:
// Loads from constant pools are trivially rematerializable.
return MI->getOperand(1).isRegister() && MI->getOperand(2).isImmediate() &&
MI->getOperand(3).isRegister() && MI->getOperand(4).isConstantPoolIndex() &&
MI->getOperand(1).getReg() == 0 &&
MI->getOperand(2).getImm() == 1 &&
MI->getOperand(3).getReg() == 0;
}
// All other instructions marked M_REMATERIALIZABLE are always trivially
// rematerializable.
return true;
}
/// isReallySideEffectFree - If the M_MAY_HAVE_SIDE_EFFECTS flag is set, this
/// method is called to determine if the specific instance of this instruction
/// has side effects. This is useful in cases of instructions, like loads, which
/// generally always have side effects. A load from a constant pool doesn't have
/// side effects, though. So we need to differentiate it from the general case.
bool X86InstrInfo::isReallySideEffectFree(MachineInstr *MI) const {
switch (MI->getOpcode()) {
default: break;
case X86::MOV32rm:
if (MI->getOperand(1).isRegister()) {
unsigned Reg = MI->getOperand(1).getReg();
// Loads from global addresses which aren't redefined in the function are
// side effect free.
if (Reg != 0 && MRegisterInfo::isVirtualRegister(Reg) &&
MI->getOperand(2).isImmediate() &&
MI->getOperand(3).isRegister() &&
MI->getOperand(4).isGlobalAddress() &&
MI->getOperand(2).getImm() == 1 &&
MI->getOperand(3).getReg() == 0)
return true;
}
// FALLTHROUGH
case X86::MOV8rm:
case X86::MOV16rm:
case X86::MOV16_rm:
case X86::MOV32_rm:
case X86::MOV64rm:
case X86::LD_Fp64m:
case X86::MOVSSrm:
case X86::MOVSDrm:
case X86::MOVAPSrm:
case X86::MOVAPDrm:
case X86::MMX_MOVD64rm:
case X86::MMX_MOVQ64rm:
// Loads from constant pools have no side effects
return MI->getOperand(1).isRegister() &&
MI->getOperand(2).isImmediate() &&
MI->getOperand(3).isRegister() &&
MI->getOperand(4).isConstantPoolIndex() &&
MI->getOperand(1).getReg() == 0 &&
MI->getOperand(2).getImm() == 1 &&
MI->getOperand(3).getReg() == 0;
}
// All other instances of these instructions are presumed to have side
// effects.
return false;
}
/// hasLiveCondCodeDef - True if MI has a condition code def, e.g. EFLAGS, that
/// is not marked dead.
static bool hasLiveCondCodeDef(MachineInstr *MI) {
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
MachineOperand &MO = MI->getOperand(i);
if (MO.isRegister() && MO.isDef() &&
MO.getReg() == X86::EFLAGS && !MO.isDead()) {
return true;
}
}
return false;
}
/// convertToThreeAddress - This method must be implemented by targets that
/// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
/// may be able to convert a two-address instruction into a true
/// three-address instruction on demand. This allows the X86 target (for
/// example) to convert ADD and SHL instructions into LEA instructions if they
/// would require register copies due to two-addressness.
///
/// This method returns a null pointer if the transformation cannot be
/// performed, otherwise it returns the new instruction.
///
MachineInstr *
X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
MachineBasicBlock::iterator &MBBI,
LiveVariables &LV) const {
MachineInstr *MI = MBBI;
// All instructions input are two-addr instructions. Get the known operands.
unsigned Dest = MI->getOperand(0).getReg();
unsigned Src = MI->getOperand(1).getReg();
MachineInstr *NewMI = NULL;
// FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's. When
// we have better subtarget support, enable the 16-bit LEA generation here.
bool DisableLEA16 = true;
unsigned MIOpc = MI->getOpcode();
switch (MIOpc) {
case X86::SHUFPSrri: {
assert(MI->getNumOperands() == 4 && "Unknown shufps instruction!");
if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0;
unsigned A = MI->getOperand(0).getReg();
unsigned B = MI->getOperand(1).getReg();
unsigned C = MI->getOperand(2).getReg();
unsigned M = MI->getOperand(3).getImm();
if (B != C) return 0;
NewMI = BuildMI(get(X86::PSHUFDri), A).addReg(B).addImm(M);
break;
}
case X86::SHL64ri: {
assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
// NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
// the flags produced by a shift yet, so this is safe.
unsigned Dest = MI->getOperand(0).getReg();
unsigned Src = MI->getOperand(1).getReg();
unsigned ShAmt = MI->getOperand(2).getImm();
if (ShAmt == 0 || ShAmt >= 4) return 0;
NewMI = BuildMI(get(X86::LEA64r), Dest)
.addReg(0).addImm(1 << ShAmt).addReg(Src).addImm(0);
break;
}
case X86::SHL32ri: {
assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
// NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
// the flags produced by a shift yet, so this is safe.
unsigned Dest = MI->getOperand(0).getReg();
unsigned Src = MI->getOperand(1).getReg();
unsigned ShAmt = MI->getOperand(2).getImm();
if (ShAmt == 0 || ShAmt >= 4) return 0;
unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit() ?
X86::LEA64_32r : X86::LEA32r;
NewMI = BuildMI(get(Opc), Dest)
.addReg(0).addImm(1 << ShAmt).addReg(Src).addImm(0);
break;
}
case X86::SHL16ri: {
assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
// NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
// the flags produced by a shift yet, so this is safe.
unsigned Dest = MI->getOperand(0).getReg();
unsigned Src = MI->getOperand(1).getReg();
unsigned ShAmt = MI->getOperand(2).getImm();
if (ShAmt == 0 || ShAmt >= 4) return 0;
if (DisableLEA16) {
// If 16-bit LEA is disabled, use 32-bit LEA via subregisters.
MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo();
unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit()
? X86::LEA64_32r : X86::LEA32r;
unsigned leaInReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
MachineInstr *Ins =
BuildMI(get(X86::INSERT_SUBREG), leaInReg).addReg(Src).addImm(2);
Ins->copyKillDeadInfo(MI);
NewMI = BuildMI(get(Opc), leaOutReg)
.addReg(0).addImm(1 << ShAmt).addReg(leaInReg).addImm(0);
MachineInstr *Ext =
BuildMI(get(X86::EXTRACT_SUBREG), Dest).addReg(leaOutReg).addImm(2);
Ext->copyKillDeadInfo(MI);
MFI->insert(MBBI, Ins); // Insert the insert_subreg
LV.instructionChanged(MI, NewMI); // Update live variables
LV.addVirtualRegisterKilled(leaInReg, NewMI);
MFI->insert(MBBI, NewMI); // Insert the new inst
LV.addVirtualRegisterKilled(leaOutReg, Ext);
MFI->insert(MBBI, Ext); // Insert the extract_subreg
return Ext;
} else {
NewMI = BuildMI(get(X86::LEA16r), Dest)
.addReg(0).addImm(1 << ShAmt).addReg(Src).addImm(0);
}
break;
}
default: {
// The following opcodes also sets the condition code register(s). Only
// convert them to equivalent lea if the condition code register def's
// are dead!
if (hasLiveCondCodeDef(MI))
return 0;
bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
switch (MIOpc) {
default: return 0;
case X86::INC64r:
case X86::INC32r: {
assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r
: (is64Bit ? X86::LEA64_32r : X86::LEA32r);
NewMI = addRegOffset(BuildMI(get(Opc), Dest), Src, 1);
break;
}
case X86::INC16r:
case X86::INC64_16r:
if (DisableLEA16) return 0;
assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
NewMI = addRegOffset(BuildMI(get(X86::LEA16r), Dest), Src, 1);
break;
case X86::DEC64r:
case X86::DEC32r: {
assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
: (is64Bit ? X86::LEA64_32r : X86::LEA32r);
NewMI = addRegOffset(BuildMI(get(Opc), Dest), Src, -1);
break;
}
case X86::DEC16r:
case X86::DEC64_16r:
if (DisableLEA16) return 0;
assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
NewMI = addRegOffset(BuildMI(get(X86::LEA16r), Dest), Src, -1);
break;
case X86::ADD64rr:
case X86::ADD32rr: {
assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
unsigned Opc = MIOpc == X86::ADD64rr ? X86::LEA64r
: (is64Bit ? X86::LEA64_32r : X86::LEA32r);
NewMI = addRegReg(BuildMI(get(Opc), Dest), Src,
MI->getOperand(2).getReg());
break;
}
case X86::ADD16rr:
if (DisableLEA16) return 0;
assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
NewMI = addRegReg(BuildMI(get(X86::LEA16r), Dest), Src,
MI->getOperand(2).getReg());
break;
case X86::ADD64ri32:
case X86::ADD64ri8:
assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
if (MI->getOperand(2).isImmediate())
NewMI = addRegOffset(BuildMI(get(X86::LEA64r), Dest), Src,
MI->getOperand(2).getImm());
break;
case X86::ADD32ri:
case X86::ADD32ri8:
assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
if (MI->getOperand(2).isImmediate()) {
unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
NewMI = addRegOffset(BuildMI(get(Opc), Dest), Src,
MI->getOperand(2).getImm());
}
break;
case X86::ADD16ri:
case X86::ADD16ri8:
if (DisableLEA16) return 0;
assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
if (MI->getOperand(2).isImmediate())
NewMI = addRegOffset(BuildMI(get(X86::LEA16r), Dest), Src,
MI->getOperand(2).getImm());
break;
case X86::SHL16ri:
if (DisableLEA16) return 0;
case X86::SHL32ri:
case X86::SHL64ri: {
assert(MI->getNumOperands() >= 3 && MI->getOperand(2).isImmediate() &&
"Unknown shl instruction!");
unsigned ShAmt = MI->getOperand(2).getImm();
if (ShAmt == 1 || ShAmt == 2 || ShAmt == 3) {
X86AddressMode AM;
AM.Scale = 1 << ShAmt;
AM.IndexReg = Src;
unsigned Opc = MIOpc == X86::SHL64ri ? X86::LEA64r
: (MIOpc == X86::SHL32ri
? (is64Bit ? X86::LEA64_32r : X86::LEA32r) : X86::LEA16r);
NewMI = addFullAddress(BuildMI(get(Opc), Dest), AM);
}
break;
}
}
}
}
NewMI->copyKillDeadInfo(MI);
LV.instructionChanged(MI, NewMI); // Update live variables
MFI->insert(MBBI, NewMI); // Insert the new inst
return NewMI;
}
/// commuteInstruction - We have a few instructions that must be hacked on to
/// commute them.
///
MachineInstr *X86InstrInfo::commuteInstruction(MachineInstr *MI) const {
switch (MI->getOpcode()) {
case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
unsigned Opc;
unsigned Size;
switch (MI->getOpcode()) {
default: assert(0 && "Unreachable!");
case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
}
unsigned Amt = MI->getOperand(3).getImm();
unsigned A = MI->getOperand(0).getReg();
unsigned B = MI->getOperand(1).getReg();
unsigned C = MI->getOperand(2).getReg();
bool BisKill = MI->getOperand(1).isKill();
bool CisKill = MI->getOperand(2).isKill();
return BuildMI(get(Opc), A).addReg(C, false, false, CisKill)
.addReg(B, false, false, BisKill).addImm(Size-Amt);
}
case X86::CMOVB16rr:
case X86::CMOVB32rr:
case X86::CMOVB64rr:
case X86::CMOVAE16rr:
case X86::CMOVAE32rr:
case X86::CMOVAE64rr:
case X86::CMOVE16rr:
case X86::CMOVE32rr:
case X86::CMOVE64rr:
case X86::CMOVNE16rr:
case X86::CMOVNE32rr:
case X86::CMOVNE64rr:
case X86::CMOVBE16rr:
case X86::CMOVBE32rr:
case X86::CMOVBE64rr:
case X86::CMOVA16rr:
case X86::CMOVA32rr:
case X86::CMOVA64rr:
case X86::CMOVL16rr:
case X86::CMOVL32rr:
case X86::CMOVL64rr:
case X86::CMOVGE16rr:
case X86::CMOVGE32rr:
case X86::CMOVGE64rr:
case X86::CMOVLE16rr:
case X86::CMOVLE32rr:
case X86::CMOVLE64rr:
case X86::CMOVG16rr:
case X86::CMOVG32rr:
case X86::CMOVG64rr:
case X86::CMOVS16rr:
case X86::CMOVS32rr:
case X86::CMOVS64rr:
case X86::CMOVNS16rr:
case X86::CMOVNS32rr:
case X86::CMOVNS64rr:
case X86::CMOVP16rr:
case X86::CMOVP32rr:
case X86::CMOVP64rr:
case X86::CMOVNP16rr:
case X86::CMOVNP32rr:
case X86::CMOVNP64rr: {
unsigned Opc = 0;
switch (MI->getOpcode()) {
default: break;
case X86::CMOVB16rr: Opc = X86::CMOVAE16rr; break;
case X86::CMOVB32rr: Opc = X86::CMOVAE32rr; break;
case X86::CMOVB64rr: Opc = X86::CMOVAE64rr; break;
case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break;
case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break;
case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break;
case X86::CMOVE16rr: Opc = X86::CMOVNE16rr; break;
case X86::CMOVE32rr: Opc = X86::CMOVNE32rr; break;
case X86::CMOVE64rr: Opc = X86::CMOVNE64rr; break;
case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break;
case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break;
case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break;
case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break;
case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break;
case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break;
case X86::CMOVA16rr: Opc = X86::CMOVBE16rr; break;
case X86::CMOVA32rr: Opc = X86::CMOVBE32rr; break;
case X86::CMOVA64rr: Opc = X86::CMOVBE64rr; break;
case X86::CMOVL16rr: Opc = X86::CMOVGE16rr; break;
case X86::CMOVL32rr: Opc = X86::CMOVGE32rr; break;
case X86::CMOVL64rr: Opc = X86::CMOVGE64rr; break;
case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break;
case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break;
case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break;
case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break;
case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break;
case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break;
case X86::CMOVG16rr: Opc = X86::CMOVLE16rr; break;
case X86::CMOVG32rr: Opc = X86::CMOVLE32rr; break;
case X86::CMOVG64rr: Opc = X86::CMOVLE64rr; break;
case X86::CMOVS16rr: Opc = X86::CMOVNS16rr; break;
case X86::CMOVS32rr: Opc = X86::CMOVNS32rr; break;
case X86::CMOVS64rr: Opc = X86::CMOVNS32rr; break;
case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break;
case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break;
case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break;
case X86::CMOVP16rr: Opc = X86::CMOVNP16rr; break;
case X86::CMOVP32rr: Opc = X86::CMOVNP32rr; break;
case X86::CMOVP64rr: Opc = X86::CMOVNP32rr; break;
case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break;
case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break;
case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break;
}
MI->setInstrDescriptor(get(Opc));
// Fallthrough intended.
}
default:
return TargetInstrInfoImpl::commuteInstruction(MI);
}
}
static X86::CondCode GetCondFromBranchOpc(unsigned BrOpc) {
switch (BrOpc) {
default: return X86::COND_INVALID;
case X86::JE: return X86::COND_E;
case X86::JNE: return X86::COND_NE;
case X86::JL: return X86::COND_L;
case X86::JLE: return X86::COND_LE;
case X86::JG: return X86::COND_G;
case X86::JGE: return X86::COND_GE;
case X86::JB: return X86::COND_B;
case X86::JBE: return X86::COND_BE;
case X86::JA: return X86::COND_A;
case X86::JAE: return X86::COND_AE;
case X86::JS: return X86::COND_S;
case X86::JNS: return X86::COND_NS;
case X86::JP: return X86::COND_P;
case X86::JNP: return X86::COND_NP;
case X86::JO: return X86::COND_O;
case X86::JNO: return X86::COND_NO;
}
}
unsigned X86::GetCondBranchFromCond(X86::CondCode CC) {
switch (CC) {
default: assert(0 && "Illegal condition code!");
case X86::COND_E: return X86::JE;
case X86::COND_NE: return X86::JNE;
case X86::COND_L: return X86::JL;
case X86::COND_LE: return X86::JLE;
case X86::COND_G: return X86::JG;
case X86::COND_GE: return X86::JGE;
case X86::COND_B: return X86::JB;
case X86::COND_BE: return X86::JBE;
case X86::COND_A: return X86::JA;
case X86::COND_AE: return X86::JAE;
case X86::COND_S: return X86::JS;
case X86::COND_NS: return X86::JNS;
case X86::COND_P: return X86::JP;
case X86::COND_NP: return X86::JNP;
case X86::COND_O: return X86::JO;
case X86::COND_NO: return X86::JNO;
}
}
/// GetOppositeBranchCondition - Return the inverse of the specified condition,
/// e.g. turning COND_E to COND_NE.
X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
switch (CC) {
default: assert(0 && "Illegal condition code!");
case X86::COND_E: return X86::COND_NE;
case X86::COND_NE: return X86::COND_E;
case X86::COND_L: return X86::COND_GE;
case X86::COND_LE: return X86::COND_G;
case X86::COND_G: return X86::COND_LE;
case X86::COND_GE: return X86::COND_L;
case X86::COND_B: return X86::COND_AE;
case X86::COND_BE: return X86::COND_A;
case X86::COND_A: return X86::COND_BE;
case X86::COND_AE: return X86::COND_B;
case X86::COND_S: return X86::COND_NS;
case X86::COND_NS: return X86::COND_S;
case X86::COND_P: return X86::COND_NP;
case X86::COND_NP: return X86::COND_P;
case X86::COND_O: return X86::COND_NO;
case X86::COND_NO: return X86::COND_O;
}
}
bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
const TargetInstrDescriptor *TID = MI->getInstrDescriptor();
if (TID->Flags & M_TERMINATOR_FLAG) {
// Conditional branch is a special case.
if ((TID->Flags & M_BRANCH_FLAG) != 0 && (TID->Flags & M_BARRIER_FLAG) == 0)
return true;
if ((TID->Flags & M_PREDICABLE) == 0)
return true;
return !isPredicated(MI);
}
return false;
}
// For purposes of branch analysis do not count FP_REG_KILL as a terminator.
static bool isBrAnalysisUnpredicatedTerminator(const MachineInstr *MI,
const X86InstrInfo &TII) {
if (MI->getOpcode() == X86::FP_REG_KILL)
return false;
return TII.isUnpredicatedTerminator(MI);
}
bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
MachineBasicBlock *&TBB,
MachineBasicBlock *&FBB,
std::vector<MachineOperand> &Cond) const {
// If the block has no terminators, it just falls into the block after it.
MachineBasicBlock::iterator I = MBB.end();
if (I == MBB.begin() || !isBrAnalysisUnpredicatedTerminator(--I, *this))
return false;
// Get the last instruction in the block.
MachineInstr *LastInst = I;
// If there is only one terminator instruction, process it.
if (I == MBB.begin() || !isBrAnalysisUnpredicatedTerminator(--I, *this)) {
if (!isBranch(LastInst->getOpcode()))
return true;
// If the block ends with a branch there are 3 possibilities:
// it's an unconditional, conditional, or indirect branch.
if (LastInst->getOpcode() == X86::JMP) {
TBB = LastInst->getOperand(0).getMBB();
return false;
}
X86::CondCode BranchCode = GetCondFromBranchOpc(LastInst->getOpcode());
if (BranchCode == X86::COND_INVALID)
return true; // Can't handle indirect branch.
// Otherwise, block ends with fall-through condbranch.
TBB = LastInst->getOperand(0).getMBB();
Cond.push_back(MachineOperand::CreateImm(BranchCode));
return false;
}
// Get the instruction before it if it's a terminator.
MachineInstr *SecondLastInst = I;
// If there are three terminators, we don't know what sort of block this is.
if (SecondLastInst && I != MBB.begin() &&
isBrAnalysisUnpredicatedTerminator(--I, *this))
return true;
// If the block ends with X86::JMP and a conditional branch, handle it.
X86::CondCode BranchCode = GetCondFromBranchOpc(SecondLastInst->getOpcode());
if (BranchCode != X86::COND_INVALID && LastInst->getOpcode() == X86::JMP) {
TBB = SecondLastInst->getOperand(0).getMBB();
Cond.push_back(MachineOperand::CreateImm(BranchCode));
FBB = LastInst->getOperand(0).getMBB();
return false;
}
// If the block ends with two X86::JMPs, handle it. The second one is not
// executed, so remove it.
if (SecondLastInst->getOpcode() == X86::JMP &&
LastInst->getOpcode() == X86::JMP) {
TBB = SecondLastInst->getOperand(0).getMBB();
I = LastInst;
I->eraseFromParent();
return false;
}
// Otherwise, can't handle this.
return true;
}
unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
MachineBasicBlock::iterator I = MBB.end();
if (I == MBB.begin()) return 0;
--I;
if (I->getOpcode() != X86::JMP &&
GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
return 0;
// Remove the branch.
I->eraseFromParent();
I = MBB.end();
if (I == MBB.begin()) return 1;
--I;
if (GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
return 1;
// Remove the branch.
I->eraseFromParent();
return 2;
}
static const MachineInstrBuilder &X86InstrAddOperand(MachineInstrBuilder &MIB,
MachineOperand &MO) {
if (MO.isRegister())
MIB = MIB.addReg(MO.getReg(), MO.isDef(), MO.isImplicit(),
false, false, MO.getSubReg());
else if (MO.isImmediate())
MIB = MIB.addImm(MO.getImm());
else if (MO.isFrameIndex())
MIB = MIB.addFrameIndex(MO.getIndex());
else if (MO.isGlobalAddress())
MIB = MIB.addGlobalAddress(MO.getGlobal(), MO.getOffset());
else if (MO.isConstantPoolIndex())
MIB = MIB.addConstantPoolIndex(MO.getIndex(), MO.getOffset());
else if (MO.isJumpTableIndex())
MIB = MIB.addJumpTableIndex(MO.getIndex());
else if (MO.isExternalSymbol())
MIB = MIB.addExternalSymbol(MO.getSymbolName());
else
assert(0 && "Unknown operand for X86InstrAddOperand!");
return MIB;
}
unsigned
X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
MachineBasicBlock *FBB,
const std::vector<MachineOperand> &Cond) const {
// Shouldn't be a fall through.
assert(TBB && "InsertBranch must not be told to insert a fallthrough");
assert((Cond.size() == 1 || Cond.size() == 0) &&
"X86 branch conditions have one component!");
if (FBB == 0) { // One way branch.
if (Cond.empty()) {
// Unconditional branch?
BuildMI(&MBB, get(X86::JMP)).addMBB(TBB);
} else {
// Conditional branch.
unsigned Opc = GetCondBranchFromCond((X86::CondCode)Cond[0].getImm());
BuildMI(&MBB, get(Opc)).addMBB(TBB);
}
return 1;
}
// Two-way Conditional branch.
unsigned Opc = GetCondBranchFromCond((X86::CondCode)Cond[0].getImm());
BuildMI(&MBB, get(Opc)).addMBB(TBB);
BuildMI(&MBB, get(X86::JMP)).addMBB(FBB);
return 2;
}
void X86InstrInfo::copyRegToReg(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
unsigned DestReg, unsigned SrcReg,
const TargetRegisterClass *DestRC,
const TargetRegisterClass *SrcRC) const {
if (DestRC != SrcRC) {
// Moving EFLAGS to / from another register requires a push and a pop.
if (SrcRC == &X86::CCRRegClass) {
assert(SrcReg == X86::EFLAGS);
if (DestRC == &X86::GR64RegClass) {
BuildMI(MBB, MI, get(X86::PUSHFQ));
BuildMI(MBB, MI, get(X86::POP64r), DestReg);
return;
} else if (DestRC == &X86::GR32RegClass) {
BuildMI(MBB, MI, get(X86::PUSHFD));
BuildMI(MBB, MI, get(X86::POP32r), DestReg);
return;
}
} else if (DestRC == &X86::CCRRegClass) {
assert(DestReg == X86::EFLAGS);
if (SrcRC == &X86::GR64RegClass) {
BuildMI(MBB, MI, get(X86::PUSH64r)).addReg(SrcReg);
BuildMI(MBB, MI, get(X86::POPFQ));
return;
} else if (SrcRC == &X86::GR32RegClass) {
BuildMI(MBB, MI, get(X86::PUSH32r)).addReg(SrcReg);
BuildMI(MBB, MI, get(X86::POPFD));
return;
}
}
cerr << "Not yet supported!";
abort();
}
unsigned Opc;
if (DestRC == &X86::GR64RegClass) {
Opc = X86::MOV64rr;
} else if (DestRC == &X86::GR32RegClass) {
Opc = X86::MOV32rr;
} else if (DestRC == &X86::GR16RegClass) {
Opc = X86::MOV16rr;
} else if (DestRC == &X86::GR8RegClass) {
Opc = X86::MOV8rr;
} else if (DestRC == &X86::GR32_RegClass) {
Opc = X86::MOV32_rr;
} else if (DestRC == &X86::GR16_RegClass) {
Opc = X86::MOV16_rr;
} else if (DestRC == &X86::RFP32RegClass) {
Opc = X86::MOV_Fp3232;
} else if (DestRC == &X86::RFP64RegClass || DestRC == &X86::RSTRegClass) {
Opc = X86::MOV_Fp6464;
} else if (DestRC == &X86::RFP80RegClass) {
Opc = X86::MOV_Fp8080;
} else if (DestRC == &X86::FR32RegClass) {
Opc = X86::FsMOVAPSrr;
} else if (DestRC == &X86::FR64RegClass) {
Opc = X86::FsMOVAPDrr;
} else if (DestRC == &X86::VR128RegClass) {
Opc = X86::MOVAPSrr;
} else if (DestRC == &X86::VR64RegClass) {
Opc = X86::MMX_MOVQ64rr;
} else {
assert(0 && "Unknown regclass");
abort();
}
BuildMI(MBB, MI, get(Opc), DestReg).addReg(SrcReg);
}
static unsigned getStoreRegOpcode(const TargetRegisterClass *RC,
unsigned StackAlign) {
unsigned Opc = 0;
if (RC == &X86::GR64RegClass) {
Opc = X86::MOV64mr;
} else if (RC == &X86::GR32RegClass) {
Opc = X86::MOV32mr;
} else if (RC == &X86::GR16RegClass) {
Opc = X86::MOV16mr;
} else if (RC == &X86::GR8RegClass) {
Opc = X86::MOV8mr;
} else if (RC == &X86::GR32_RegClass) {
Opc = X86::MOV32_mr;
} else if (RC == &X86::GR16_RegClass) {
Opc = X86::MOV16_mr;
} else if (RC == &X86::RFP80RegClass) {
Opc = X86::ST_FpP80m; // pops
} else if (RC == &X86::RFP64RegClass) {
Opc = X86::ST_Fp64m;
} else if (RC == &X86::RFP32RegClass) {
Opc = X86::ST_Fp32m;
} else if (RC == &X86::FR32RegClass) {
Opc = X86::MOVSSmr;
} else if (RC == &X86::FR64RegClass) {
Opc = X86::MOVSDmr;
} else if (RC == &X86::VR128RegClass) {
// FIXME: Use movaps once we are capable of selectively
// aligning functions that spill SSE registers on 16-byte boundaries.
Opc = StackAlign >= 16 ? X86::MOVAPSmr : X86::MOVUPSmr;
} else if (RC == &X86::VR64RegClass) {
Opc = X86::MMX_MOVQ64mr;
} else {
assert(0 && "Unknown regclass");
abort();
}
return Opc;
}
void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
unsigned SrcReg, bool isKill, int FrameIdx,
const TargetRegisterClass *RC) const {
unsigned Opc = getStoreRegOpcode(RC, RI.getStackAlignment());
addFrameReference(BuildMI(MBB, MI, get(Opc)), FrameIdx)
.addReg(SrcReg, false, false, isKill);
}
void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
bool isKill,
SmallVectorImpl<MachineOperand> &Addr,
const TargetRegisterClass *RC,
SmallVectorImpl<MachineInstr*> &NewMIs) const {
unsigned Opc = getStoreRegOpcode(RC, RI.getStackAlignment());
MachineInstrBuilder MIB = BuildMI(get(Opc));
for (unsigned i = 0, e = Addr.size(); i != e; ++i)
MIB = X86InstrAddOperand(MIB, Addr[i]);
MIB.addReg(SrcReg, false, false, isKill);
NewMIs.push_back(MIB);
}
static unsigned getLoadRegOpcode(const TargetRegisterClass *RC,
unsigned StackAlign) {
unsigned Opc = 0;
if (RC == &X86::GR64RegClass) {
Opc = X86::MOV64rm;
} else if (RC == &X86::GR32RegClass) {
Opc = X86::MOV32rm;
} else if (RC == &X86::GR16RegClass) {
Opc = X86::MOV16rm;
} else if (RC == &X86::GR8RegClass) {
Opc = X86::MOV8rm;
} else if (RC == &X86::GR32_RegClass) {
Opc = X86::MOV32_rm;
} else if (RC == &X86::GR16_RegClass) {
Opc = X86::MOV16_rm;
} else if (RC == &X86::RFP80RegClass) {
Opc = X86::LD_Fp80m;
} else if (RC == &X86::RFP64RegClass) {
Opc = X86::LD_Fp64m;
} else if (RC == &X86::RFP32RegClass) {
Opc = X86::LD_Fp32m;
} else if (RC == &X86::FR32RegClass) {
Opc = X86::MOVSSrm;
} else if (RC == &X86::FR64RegClass) {
Opc = X86::MOVSDrm;
} else if (RC == &X86::VR128RegClass) {
// FIXME: Use movaps once we are capable of selectively
// aligning functions that spill SSE registers on 16-byte boundaries.
Opc = StackAlign >= 16 ? X86::MOVAPSrm : X86::MOVUPSrm;
} else if (RC == &X86::VR64RegClass) {
Opc = X86::MMX_MOVQ64rm;
} else {
assert(0 && "Unknown regclass");
abort();
}
return Opc;
}
void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
unsigned DestReg, int FrameIdx,
const TargetRegisterClass *RC) const{
unsigned Opc = getLoadRegOpcode(RC, RI.getStackAlignment());
addFrameReference(BuildMI(MBB, MI, get(Opc), DestReg), FrameIdx);
}
void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
SmallVectorImpl<MachineOperand> &Addr,
const TargetRegisterClass *RC,
SmallVectorImpl<MachineInstr*> &NewMIs) const {
unsigned Opc = getLoadRegOpcode(RC, RI.getStackAlignment());
MachineInstrBuilder MIB = BuildMI(get(Opc), DestReg);
for (unsigned i = 0, e = Addr.size(); i != e; ++i)
MIB = X86InstrAddOperand(MIB, Addr[i]);
NewMIs.push_back(MIB);
}
bool X86InstrInfo::BlockHasNoFallThrough(MachineBasicBlock &MBB) const {
if (MBB.empty()) return false;
switch (MBB.back().getOpcode()) {
case X86::TCRETURNri:
case X86::TCRETURNdi:
case X86::RET: // Return.
case X86::RETI:
case X86::TAILJMPd:
case X86::TAILJMPr:
case X86::TAILJMPm:
case X86::JMP: // Uncond branch.
case X86::JMP32r: // Indirect branch.
case X86::JMP64r: // Indirect branch (64-bit).
case X86::JMP32m: // Indirect branch through mem.
case X86::JMP64m: // Indirect branch through mem (64-bit).
return true;
default: return false;
}
}
bool X86InstrInfo::
ReverseBranchCondition(std::vector<MachineOperand> &Cond) const {
assert(Cond.size() == 1 && "Invalid X86 branch condition!");
Cond[0].setImm(GetOppositeBranchCondition((X86::CondCode)Cond[0].getImm()));
return false;
}
const TargetRegisterClass *X86InstrInfo::getPointerRegClass() const {
const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
if (Subtarget->is64Bit())
return &X86::GR64RegClass;
else
return &X86::GR32RegClass;
}