llvm-6502/lib/Target/R600/AMDGPUTargetMachine.cpp
Eric Christopher b793348a99 Grab a subtarget off of an AMDGPUTargetMachine rather than a
bare target machine in preparation for the TargetMachine bare
getSubtarget/getSubtargetImpl calls going away.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@232880 91177308-0d34-0410-b5e6-96231b3b80d8
2015-03-21 03:17:25 +00:00

284 lines
9.5 KiB
C++

//===-- AMDGPUTargetMachine.cpp - TargetMachine for hw codegen targets-----===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file
/// \brief The AMDGPU target machine contains all of the hardware specific
/// information needed to emit code for R600 and SI GPUs.
//
//===----------------------------------------------------------------------===//
#include "AMDGPUTargetMachine.h"
#include "AMDGPU.h"
#include "AMDGPUTargetTransformInfo.h"
#include "R600ISelLowering.h"
#include "R600InstrInfo.h"
#include "R600MachineScheduler.h"
#include "SIISelLowering.h"
#include "SIInstrInfo.h"
#include "llvm/Analysis/Passes.h"
#include "llvm/CodeGen/MachineFunctionAnalysis.h"
#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/IR/Verifier.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/raw_os_ostream.h"
#include "llvm/Transforms/IPO.h"
#include "llvm/Transforms/Scalar.h"
#include <llvm/CodeGen/Passes.h>
using namespace llvm;
extern "C" void LLVMInitializeR600Target() {
// Register the target
RegisterTargetMachine<R600TargetMachine> X(TheAMDGPUTarget);
RegisterTargetMachine<GCNTargetMachine> Y(TheGCNTarget);
}
static ScheduleDAGInstrs *createR600MachineScheduler(MachineSchedContext *C) {
return new ScheduleDAGMILive(C, make_unique<R600SchedStrategy>());
}
static MachineSchedRegistry
SchedCustomRegistry("r600", "Run R600's custom scheduler",
createR600MachineScheduler);
static std::string computeDataLayout(StringRef TT) {
Triple Triple(TT);
std::string Ret = "e-p:32:32";
if (Triple.getArch() == Triple::amdgcn) {
// 32-bit private, local, and region pointers. 64-bit global and constant.
Ret += "-p1:64:64-p2:64:64-p3:32:32-p4:64:64-p5:32:32-p24:64:64";
}
Ret += "-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128-v192:256-v256:256"
"-v512:512-v1024:1024-v2048:2048-n32:64";
return Ret;
}
AMDGPUTargetMachine::AMDGPUTargetMachine(const Target &T, StringRef TT,
StringRef CPU, StringRef FS,
TargetOptions Options, Reloc::Model RM,
CodeModel::Model CM,
CodeGenOpt::Level OptLevel)
: LLVMTargetMachine(T, computeDataLayout(TT), TT, CPU, FS, Options, RM, CM,
OptLevel),
TLOF(new TargetLoweringObjectFileELF()), Subtarget(TT, CPU, FS, *this),
IntrinsicInfo() {
setRequiresStructuredCFG(true);
initAsmInfo();
}
AMDGPUTargetMachine::~AMDGPUTargetMachine() {
delete TLOF;
}
//===----------------------------------------------------------------------===//
// R600 Target Machine (R600 -> Cayman)
//===----------------------------------------------------------------------===//
R600TargetMachine::R600TargetMachine(const Target &T, StringRef TT, StringRef FS,
StringRef CPU, TargetOptions Options, Reloc::Model RM,
CodeModel::Model CM, CodeGenOpt::Level OL) :
AMDGPUTargetMachine(T, TT, FS, CPU, Options, RM, CM, OL) { }
//===----------------------------------------------------------------------===//
// GCN Target Machine (SI+)
//===----------------------------------------------------------------------===//
GCNTargetMachine::GCNTargetMachine(const Target &T, StringRef TT, StringRef FS,
StringRef CPU, TargetOptions Options, Reloc::Model RM,
CodeModel::Model CM, CodeGenOpt::Level OL) :
AMDGPUTargetMachine(T, TT, FS, CPU, Options, RM, CM, OL) { }
//===----------------------------------------------------------------------===//
// AMDGPU Pass Setup
//===----------------------------------------------------------------------===//
namespace {
class AMDGPUPassConfig : public TargetPassConfig {
public:
AMDGPUPassConfig(TargetMachine *TM, PassManagerBase &PM)
: TargetPassConfig(TM, PM) {}
AMDGPUTargetMachine &getAMDGPUTargetMachine() const {
return getTM<AMDGPUTargetMachine>();
}
ScheduleDAGInstrs *
createMachineScheduler(MachineSchedContext *C) const override {
const AMDGPUSubtarget &ST = *getAMDGPUTargetMachine().getSubtargetImpl();
if (ST.getGeneration() <= AMDGPUSubtarget::NORTHERN_ISLANDS)
return createR600MachineScheduler(C);
return nullptr;
}
void addIRPasses() override;
void addCodeGenPrepare() override;
virtual bool addPreISel() override;
virtual bool addInstSelector() override;
};
class R600PassConfig : public AMDGPUPassConfig {
public:
R600PassConfig(TargetMachine *TM, PassManagerBase &PM)
: AMDGPUPassConfig(TM, PM) { }
bool addPreISel() override;
void addPreRegAlloc() override;
void addPreSched2() override;
void addPreEmitPass() override;
};
class GCNPassConfig : public AMDGPUPassConfig {
public:
GCNPassConfig(TargetMachine *TM, PassManagerBase &PM)
: AMDGPUPassConfig(TM, PM) { }
bool addPreISel() override;
bool addInstSelector() override;
void addPreRegAlloc() override;
void addPostRegAlloc() override;
void addPreSched2() override;
void addPreEmitPass() override;
};
} // End of anonymous namespace
TargetIRAnalysis AMDGPUTargetMachine::getTargetIRAnalysis() {
return TargetIRAnalysis(
[this](Function &F) { return TargetTransformInfo(AMDGPUTTIImpl(this)); });
}
void AMDGPUPassConfig::addIRPasses() {
// Function calls are not supported, so make sure we inline everything.
addPass(createAMDGPUAlwaysInlinePass());
addPass(createAlwaysInlinerPass());
// We need to add the barrier noop pass, otherwise adding the function
// inlining pass will cause all of the PassConfigs passes to be run
// one function at a time, which means if we have a nodule with two
// functions, then we will generate code for the first function
// without ever running any passes on the second.
addPass(createBarrierNoopPass());
TargetPassConfig::addIRPasses();
}
void AMDGPUPassConfig::addCodeGenPrepare() {
const AMDGPUSubtarget &ST = *getAMDGPUTargetMachine().getSubtargetImpl();
if (ST.isPromoteAllocaEnabled()) {
addPass(createAMDGPUPromoteAlloca(ST));
addPass(createSROAPass());
}
TargetPassConfig::addCodeGenPrepare();
}
bool
AMDGPUPassConfig::addPreISel() {
const AMDGPUSubtarget &ST = *getAMDGPUTargetMachine().getSubtargetImpl();
addPass(createFlattenCFGPass());
if (ST.IsIRStructurizerEnabled())
addPass(createStructurizeCFGPass());
return false;
}
bool AMDGPUPassConfig::addInstSelector() {
addPass(createAMDGPUISelDag(getAMDGPUTargetMachine()));
return false;
}
//===----------------------------------------------------------------------===//
// R600 Pass Setup
//===----------------------------------------------------------------------===//
bool R600PassConfig::addPreISel() {
AMDGPUPassConfig::addPreISel();
addPass(createR600TextureIntrinsicsReplacer());
return false;
}
void R600PassConfig::addPreRegAlloc() {
addPass(createR600VectorRegMerger(*TM));
}
void R600PassConfig::addPreSched2() {
const AMDGPUSubtarget &ST = *getAMDGPUTargetMachine().getSubtargetImpl();
addPass(createR600EmitClauseMarkers(), false);
if (ST.isIfCvtEnabled())
addPass(&IfConverterID, false);
addPass(createR600ClauseMergePass(*TM), false);
}
void R600PassConfig::addPreEmitPass() {
addPass(createAMDGPUCFGStructurizerPass(), false);
addPass(createR600ExpandSpecialInstrsPass(*TM), false);
addPass(&FinalizeMachineBundlesID, false);
addPass(createR600Packetizer(*TM), false);
addPass(createR600ControlFlowFinalizer(*TM), false);
}
TargetPassConfig *R600TargetMachine::createPassConfig(PassManagerBase &PM) {
return new R600PassConfig(this, PM);
}
//===----------------------------------------------------------------------===//
// GCN Pass Setup
//===----------------------------------------------------------------------===//
bool GCNPassConfig::addPreISel() {
AMDGPUPassConfig::addPreISel();
addPass(createSinkingPass());
addPass(createSITypeRewriter());
addPass(createSIAnnotateControlFlowPass());
return false;
}
bool GCNPassConfig::addInstSelector() {
AMDGPUPassConfig::addInstSelector();
addPass(createSILowerI1CopiesPass());
addPass(createSIFixSGPRCopiesPass(*TM));
addPass(createSIFoldOperandsPass());
return false;
}
void GCNPassConfig::addPreRegAlloc() {
const AMDGPUSubtarget &ST = *getAMDGPUTargetMachine().getSubtargetImpl();
if (getOptLevel() > CodeGenOpt::None && ST.loadStoreOptEnabled()) {
// Don't do this with no optimizations since it throws away debug info by
// merging nonadjacent loads.
// This should be run after scheduling, but before register allocation. It
// also need extra copies to the address operand to be eliminated.
initializeSILoadStoreOptimizerPass(*PassRegistry::getPassRegistry());
insertPass(&MachineSchedulerID, &SILoadStoreOptimizerID);
}
addPass(createSIShrinkInstructionsPass(), false);
addPass(createSIFixSGPRLiveRangesPass(), false);
}
void GCNPassConfig::addPostRegAlloc() {
addPass(createSIPrepareScratchRegs(), false);
addPass(createSIShrinkInstructionsPass(), false);
}
void GCNPassConfig::addPreSched2() {
addPass(createSIInsertWaits(*TM), false);
}
void GCNPassConfig::addPreEmitPass() {
addPass(createSILowerControlFlowPass(*TM), false);
}
TargetPassConfig *GCNTargetMachine::createPassConfig(PassManagerBase &PM) {
return new GCNPassConfig(this, PM);
}