llvm-6502/lib/Transforms/Scalar/GVN.cpp
Duncan Sands d32c4a1756 Remove dead code in GVN: now that SimplifyInstruction is called
systematically, CollapsePhi will always return null here.  Note
that CollapsePhi did an extra check, isSafeReplacement, which
the SimplifyInstruction logic does not do.  I think that check
was bogus - I guess we will soon find out!  (It was originally
added in commit 41998 without a testcase).


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119456 91177308-0d34-0410-b5e6-96231b3b80d8
2010-11-17 04:05:21 +00:00

2277 lines
79 KiB
C++

//===- GVN.cpp - Eliminate redundant values and loads ---------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass performs global value numbering to eliminate fully redundant
// instructions. It also performs simple dead load elimination.
//
// Note that this pass does the value numbering itself; it does not use the
// ValueNumbering analysis passes.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "gvn"
#include "llvm/Transforms/Scalar.h"
#include "llvm/BasicBlock.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/GlobalVariable.h"
#include "llvm/Function.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/LLVMContext.h"
#include "llvm/Operator.h"
#include "llvm/Value.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/Loads.h"
#include "llvm/Analysis/MemoryBuiltins.h"
#include "llvm/Analysis/MemoryDependenceAnalysis.h"
#include "llvm/Analysis/PHITransAddr.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Support/IRBuilder.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/SSAUpdater.h"
using namespace llvm;
STATISTIC(NumGVNInstr, "Number of instructions deleted");
STATISTIC(NumGVNLoad, "Number of loads deleted");
STATISTIC(NumGVNPRE, "Number of instructions PRE'd");
STATISTIC(NumGVNBlocks, "Number of blocks merged");
STATISTIC(NumPRELoad, "Number of loads PRE'd");
static cl::opt<bool> EnablePRE("enable-pre",
cl::init(true), cl::Hidden);
static cl::opt<bool> EnableLoadPRE("enable-load-pre", cl::init(true));
//===----------------------------------------------------------------------===//
// ValueTable Class
//===----------------------------------------------------------------------===//
/// This class holds the mapping between values and value numbers. It is used
/// as an efficient mechanism to determine the expression-wise equivalence of
/// two values.
namespace {
struct Expression {
enum ExpressionOpcode {
ADD = Instruction::Add,
FADD = Instruction::FAdd,
SUB = Instruction::Sub,
FSUB = Instruction::FSub,
MUL = Instruction::Mul,
FMUL = Instruction::FMul,
UDIV = Instruction::UDiv,
SDIV = Instruction::SDiv,
FDIV = Instruction::FDiv,
UREM = Instruction::URem,
SREM = Instruction::SRem,
FREM = Instruction::FRem,
SHL = Instruction::Shl,
LSHR = Instruction::LShr,
ASHR = Instruction::AShr,
AND = Instruction::And,
OR = Instruction::Or,
XOR = Instruction::Xor,
TRUNC = Instruction::Trunc,
ZEXT = Instruction::ZExt,
SEXT = Instruction::SExt,
FPTOUI = Instruction::FPToUI,
FPTOSI = Instruction::FPToSI,
UITOFP = Instruction::UIToFP,
SITOFP = Instruction::SIToFP,
FPTRUNC = Instruction::FPTrunc,
FPEXT = Instruction::FPExt,
PTRTOINT = Instruction::PtrToInt,
INTTOPTR = Instruction::IntToPtr,
BITCAST = Instruction::BitCast,
ICMPEQ, ICMPNE, ICMPUGT, ICMPUGE, ICMPULT, ICMPULE,
ICMPSGT, ICMPSGE, ICMPSLT, ICMPSLE, FCMPOEQ,
FCMPOGT, FCMPOGE, FCMPOLT, FCMPOLE, FCMPONE,
FCMPORD, FCMPUNO, FCMPUEQ, FCMPUGT, FCMPUGE,
FCMPULT, FCMPULE, FCMPUNE, EXTRACT, INSERT,
SHUFFLE, SELECT, GEP, CALL, CONSTANT,
INSERTVALUE, EXTRACTVALUE, EMPTY, TOMBSTONE };
ExpressionOpcode opcode;
const Type* type;
SmallVector<uint32_t, 4> varargs;
Value *function;
Expression() { }
Expression(ExpressionOpcode o) : opcode(o) { }
bool operator==(const Expression &other) const {
if (opcode != other.opcode)
return false;
else if (opcode == EMPTY || opcode == TOMBSTONE)
return true;
else if (type != other.type)
return false;
else if (function != other.function)
return false;
else {
if (varargs.size() != other.varargs.size())
return false;
for (size_t i = 0; i < varargs.size(); ++i)
if (varargs[i] != other.varargs[i])
return false;
return true;
}
}
/*bool operator!=(const Expression &other) const {
return !(*this == other);
}*/
};
class ValueTable {
private:
DenseMap<Value*, uint32_t> valueNumbering;
DenseMap<Expression, uint32_t> expressionNumbering;
AliasAnalysis* AA;
MemoryDependenceAnalysis* MD;
DominatorTree* DT;
uint32_t nextValueNumber;
Expression::ExpressionOpcode getOpcode(CmpInst* C);
Expression create_expression(BinaryOperator* BO);
Expression create_expression(CmpInst* C);
Expression create_expression(ShuffleVectorInst* V);
Expression create_expression(ExtractElementInst* C);
Expression create_expression(InsertElementInst* V);
Expression create_expression(SelectInst* V);
Expression create_expression(CastInst* C);
Expression create_expression(GetElementPtrInst* G);
Expression create_expression(CallInst* C);
Expression create_expression(ExtractValueInst* C);
Expression create_expression(InsertValueInst* C);
uint32_t lookup_or_add_call(CallInst* C);
public:
ValueTable() : nextValueNumber(1) { }
uint32_t lookup_or_add(Value *V);
uint32_t lookup(Value *V) const;
void add(Value *V, uint32_t num);
void clear();
void erase(Value *v);
void setAliasAnalysis(AliasAnalysis* A) { AA = A; }
AliasAnalysis *getAliasAnalysis() const { return AA; }
void setMemDep(MemoryDependenceAnalysis* M) { MD = M; }
void setDomTree(DominatorTree* D) { DT = D; }
uint32_t getNextUnusedValueNumber() { return nextValueNumber; }
void verifyRemoved(const Value *) const;
};
}
namespace llvm {
template <> struct DenseMapInfo<Expression> {
static inline Expression getEmptyKey() {
return Expression(Expression::EMPTY);
}
static inline Expression getTombstoneKey() {
return Expression(Expression::TOMBSTONE);
}
static unsigned getHashValue(const Expression e) {
unsigned hash = e.opcode;
hash = ((unsigned)((uintptr_t)e.type >> 4) ^
(unsigned)((uintptr_t)e.type >> 9));
for (SmallVector<uint32_t, 4>::const_iterator I = e.varargs.begin(),
E = e.varargs.end(); I != E; ++I)
hash = *I + hash * 37;
hash = ((unsigned)((uintptr_t)e.function >> 4) ^
(unsigned)((uintptr_t)e.function >> 9)) +
hash * 37;
return hash;
}
static bool isEqual(const Expression &LHS, const Expression &RHS) {
return LHS == RHS;
}
};
template <>
struct isPodLike<Expression> { static const bool value = true; };
}
//===----------------------------------------------------------------------===//
// ValueTable Internal Functions
//===----------------------------------------------------------------------===//
Expression::ExpressionOpcode ValueTable::getOpcode(CmpInst* C) {
if (isa<ICmpInst>(C)) {
switch (C->getPredicate()) {
default: // THIS SHOULD NEVER HAPPEN
llvm_unreachable("Comparison with unknown predicate?");
case ICmpInst::ICMP_EQ: return Expression::ICMPEQ;
case ICmpInst::ICMP_NE: return Expression::ICMPNE;
case ICmpInst::ICMP_UGT: return Expression::ICMPUGT;
case ICmpInst::ICMP_UGE: return Expression::ICMPUGE;
case ICmpInst::ICMP_ULT: return Expression::ICMPULT;
case ICmpInst::ICMP_ULE: return Expression::ICMPULE;
case ICmpInst::ICMP_SGT: return Expression::ICMPSGT;
case ICmpInst::ICMP_SGE: return Expression::ICMPSGE;
case ICmpInst::ICMP_SLT: return Expression::ICMPSLT;
case ICmpInst::ICMP_SLE: return Expression::ICMPSLE;
}
} else {
switch (C->getPredicate()) {
default: // THIS SHOULD NEVER HAPPEN
llvm_unreachable("Comparison with unknown predicate?");
case FCmpInst::FCMP_OEQ: return Expression::FCMPOEQ;
case FCmpInst::FCMP_OGT: return Expression::FCMPOGT;
case FCmpInst::FCMP_OGE: return Expression::FCMPOGE;
case FCmpInst::FCMP_OLT: return Expression::FCMPOLT;
case FCmpInst::FCMP_OLE: return Expression::FCMPOLE;
case FCmpInst::FCMP_ONE: return Expression::FCMPONE;
case FCmpInst::FCMP_ORD: return Expression::FCMPORD;
case FCmpInst::FCMP_UNO: return Expression::FCMPUNO;
case FCmpInst::FCMP_UEQ: return Expression::FCMPUEQ;
case FCmpInst::FCMP_UGT: return Expression::FCMPUGT;
case FCmpInst::FCMP_UGE: return Expression::FCMPUGE;
case FCmpInst::FCMP_ULT: return Expression::FCMPULT;
case FCmpInst::FCMP_ULE: return Expression::FCMPULE;
case FCmpInst::FCMP_UNE: return Expression::FCMPUNE;
}
}
}
Expression ValueTable::create_expression(CallInst* C) {
Expression e;
e.type = C->getType();
e.function = C->getCalledFunction();
e.opcode = Expression::CALL;
CallSite CS(C);
for (CallInst::op_iterator I = CS.arg_begin(), E = CS.arg_end();
I != E; ++I)
e.varargs.push_back(lookup_or_add(*I));
return e;
}
Expression ValueTable::create_expression(BinaryOperator* BO) {
Expression e;
e.varargs.push_back(lookup_or_add(BO->getOperand(0)));
e.varargs.push_back(lookup_or_add(BO->getOperand(1)));
e.function = 0;
e.type = BO->getType();
e.opcode = static_cast<Expression::ExpressionOpcode>(BO->getOpcode());
return e;
}
Expression ValueTable::create_expression(CmpInst* C) {
Expression e;
e.varargs.push_back(lookup_or_add(C->getOperand(0)));
e.varargs.push_back(lookup_or_add(C->getOperand(1)));
e.function = 0;
e.type = C->getType();
e.opcode = getOpcode(C);
return e;
}
Expression ValueTable::create_expression(CastInst* C) {
Expression e;
e.varargs.push_back(lookup_or_add(C->getOperand(0)));
e.function = 0;
e.type = C->getType();
e.opcode = static_cast<Expression::ExpressionOpcode>(C->getOpcode());
return e;
}
Expression ValueTable::create_expression(ShuffleVectorInst* S) {
Expression e;
e.varargs.push_back(lookup_or_add(S->getOperand(0)));
e.varargs.push_back(lookup_or_add(S->getOperand(1)));
e.varargs.push_back(lookup_or_add(S->getOperand(2)));
e.function = 0;
e.type = S->getType();
e.opcode = Expression::SHUFFLE;
return e;
}
Expression ValueTable::create_expression(ExtractElementInst* E) {
Expression e;
e.varargs.push_back(lookup_or_add(E->getOperand(0)));
e.varargs.push_back(lookup_or_add(E->getOperand(1)));
e.function = 0;
e.type = E->getType();
e.opcode = Expression::EXTRACT;
return e;
}
Expression ValueTable::create_expression(InsertElementInst* I) {
Expression e;
e.varargs.push_back(lookup_or_add(I->getOperand(0)));
e.varargs.push_back(lookup_or_add(I->getOperand(1)));
e.varargs.push_back(lookup_or_add(I->getOperand(2)));
e.function = 0;
e.type = I->getType();
e.opcode = Expression::INSERT;
return e;
}
Expression ValueTable::create_expression(SelectInst* I) {
Expression e;
e.varargs.push_back(lookup_or_add(I->getCondition()));
e.varargs.push_back(lookup_or_add(I->getTrueValue()));
e.varargs.push_back(lookup_or_add(I->getFalseValue()));
e.function = 0;
e.type = I->getType();
e.opcode = Expression::SELECT;
return e;
}
Expression ValueTable::create_expression(GetElementPtrInst* G) {
Expression e;
e.varargs.push_back(lookup_or_add(G->getPointerOperand()));
e.function = 0;
e.type = G->getType();
e.opcode = Expression::GEP;
for (GetElementPtrInst::op_iterator I = G->idx_begin(), E = G->idx_end();
I != E; ++I)
e.varargs.push_back(lookup_or_add(*I));
return e;
}
Expression ValueTable::create_expression(ExtractValueInst* E) {
Expression e;
e.varargs.push_back(lookup_or_add(E->getAggregateOperand()));
for (ExtractValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end();
II != IE; ++II)
e.varargs.push_back(*II);
e.function = 0;
e.type = E->getType();
e.opcode = Expression::EXTRACTVALUE;
return e;
}
Expression ValueTable::create_expression(InsertValueInst* E) {
Expression e;
e.varargs.push_back(lookup_or_add(E->getAggregateOperand()));
e.varargs.push_back(lookup_or_add(E->getInsertedValueOperand()));
for (InsertValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end();
II != IE; ++II)
e.varargs.push_back(*II);
e.function = 0;
e.type = E->getType();
e.opcode = Expression::INSERTVALUE;
return e;
}
//===----------------------------------------------------------------------===//
// ValueTable External Functions
//===----------------------------------------------------------------------===//
/// add - Insert a value into the table with a specified value number.
void ValueTable::add(Value *V, uint32_t num) {
valueNumbering.insert(std::make_pair(V, num));
}
uint32_t ValueTable::lookup_or_add_call(CallInst* C) {
if (AA->doesNotAccessMemory(C)) {
Expression exp = create_expression(C);
uint32_t& e = expressionNumbering[exp];
if (!e) e = nextValueNumber++;
valueNumbering[C] = e;
return e;
} else if (AA->onlyReadsMemory(C)) {
Expression exp = create_expression(C);
uint32_t& e = expressionNumbering[exp];
if (!e) {
e = nextValueNumber++;
valueNumbering[C] = e;
return e;
}
if (!MD) {
e = nextValueNumber++;
valueNumbering[C] = e;
return e;
}
MemDepResult local_dep = MD->getDependency(C);
if (!local_dep.isDef() && !local_dep.isNonLocal()) {
valueNumbering[C] = nextValueNumber;
return nextValueNumber++;
}
if (local_dep.isDef()) {
CallInst* local_cdep = cast<CallInst>(local_dep.getInst());
if (local_cdep->getNumArgOperands() != C->getNumArgOperands()) {
valueNumbering[C] = nextValueNumber;
return nextValueNumber++;
}
for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
uint32_t c_vn = lookup_or_add(C->getArgOperand(i));
uint32_t cd_vn = lookup_or_add(local_cdep->getArgOperand(i));
if (c_vn != cd_vn) {
valueNumbering[C] = nextValueNumber;
return nextValueNumber++;
}
}
uint32_t v = lookup_or_add(local_cdep);
valueNumbering[C] = v;
return v;
}
// Non-local case.
const MemoryDependenceAnalysis::NonLocalDepInfo &deps =
MD->getNonLocalCallDependency(CallSite(C));
// FIXME: call/call dependencies for readonly calls should return def, not
// clobber! Move the checking logic to MemDep!
CallInst* cdep = 0;
// Check to see if we have a single dominating call instruction that is
// identical to C.
for (unsigned i = 0, e = deps.size(); i != e; ++i) {
const NonLocalDepEntry *I = &deps[i];
// Ignore non-local dependencies.
if (I->getResult().isNonLocal())
continue;
// We don't handle non-depedencies. If we already have a call, reject
// instruction dependencies.
if (I->getResult().isClobber() || cdep != 0) {
cdep = 0;
break;
}
CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->getResult().getInst());
// FIXME: All duplicated with non-local case.
if (NonLocalDepCall && DT->properlyDominates(I->getBB(), C->getParent())){
cdep = NonLocalDepCall;
continue;
}
cdep = 0;
break;
}
if (!cdep) {
valueNumbering[C] = nextValueNumber;
return nextValueNumber++;
}
if (cdep->getNumArgOperands() != C->getNumArgOperands()) {
valueNumbering[C] = nextValueNumber;
return nextValueNumber++;
}
for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
uint32_t c_vn = lookup_or_add(C->getArgOperand(i));
uint32_t cd_vn = lookup_or_add(cdep->getArgOperand(i));
if (c_vn != cd_vn) {
valueNumbering[C] = nextValueNumber;
return nextValueNumber++;
}
}
uint32_t v = lookup_or_add(cdep);
valueNumbering[C] = v;
return v;
} else {
valueNumbering[C] = nextValueNumber;
return nextValueNumber++;
}
}
/// lookup_or_add - Returns the value number for the specified value, assigning
/// it a new number if it did not have one before.
uint32_t ValueTable::lookup_or_add(Value *V) {
DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
if (VI != valueNumbering.end())
return VI->second;
if (!isa<Instruction>(V)) {
valueNumbering[V] = nextValueNumber;
return nextValueNumber++;
}
Instruction* I = cast<Instruction>(V);
Expression exp;
switch (I->getOpcode()) {
case Instruction::Call:
return lookup_or_add_call(cast<CallInst>(I));
case Instruction::Add:
case Instruction::FAdd:
case Instruction::Sub:
case Instruction::FSub:
case Instruction::Mul:
case Instruction::FMul:
case Instruction::UDiv:
case Instruction::SDiv:
case Instruction::FDiv:
case Instruction::URem:
case Instruction::SRem:
case Instruction::FRem:
case Instruction::Shl:
case Instruction::LShr:
case Instruction::AShr:
case Instruction::And:
case Instruction::Or :
case Instruction::Xor:
exp = create_expression(cast<BinaryOperator>(I));
break;
case Instruction::ICmp:
case Instruction::FCmp:
exp = create_expression(cast<CmpInst>(I));
break;
case Instruction::Trunc:
case Instruction::ZExt:
case Instruction::SExt:
case Instruction::FPToUI:
case Instruction::FPToSI:
case Instruction::UIToFP:
case Instruction::SIToFP:
case Instruction::FPTrunc:
case Instruction::FPExt:
case Instruction::PtrToInt:
case Instruction::IntToPtr:
case Instruction::BitCast:
exp = create_expression(cast<CastInst>(I));
break;
case Instruction::Select:
exp = create_expression(cast<SelectInst>(I));
break;
case Instruction::ExtractElement:
exp = create_expression(cast<ExtractElementInst>(I));
break;
case Instruction::InsertElement:
exp = create_expression(cast<InsertElementInst>(I));
break;
case Instruction::ShuffleVector:
exp = create_expression(cast<ShuffleVectorInst>(I));
break;
case Instruction::ExtractValue:
exp = create_expression(cast<ExtractValueInst>(I));
break;
case Instruction::InsertValue:
exp = create_expression(cast<InsertValueInst>(I));
break;
case Instruction::GetElementPtr:
exp = create_expression(cast<GetElementPtrInst>(I));
break;
default:
valueNumbering[V] = nextValueNumber;
return nextValueNumber++;
}
uint32_t& e = expressionNumbering[exp];
if (!e) e = nextValueNumber++;
valueNumbering[V] = e;
return e;
}
/// lookup - Returns the value number of the specified value. Fails if
/// the value has not yet been numbered.
uint32_t ValueTable::lookup(Value *V) const {
DenseMap<Value*, uint32_t>::const_iterator VI = valueNumbering.find(V);
assert(VI != valueNumbering.end() && "Value not numbered?");
return VI->second;
}
/// clear - Remove all entries from the ValueTable
void ValueTable::clear() {
valueNumbering.clear();
expressionNumbering.clear();
nextValueNumber = 1;
}
/// erase - Remove a value from the value numbering
void ValueTable::erase(Value *V) {
valueNumbering.erase(V);
}
/// verifyRemoved - Verify that the value is removed from all internal data
/// structures.
void ValueTable::verifyRemoved(const Value *V) const {
for (DenseMap<Value*, uint32_t>::const_iterator
I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) {
assert(I->first != V && "Inst still occurs in value numbering map!");
}
}
//===----------------------------------------------------------------------===//
// GVN Pass
//===----------------------------------------------------------------------===//
namespace {
struct ValueNumberScope {
ValueNumberScope* parent;
DenseMap<uint32_t, Value*> table;
ValueNumberScope(ValueNumberScope* p) : parent(p) { }
};
}
namespace {
class GVN : public FunctionPass {
bool runOnFunction(Function &F);
public:
static char ID; // Pass identification, replacement for typeid
explicit GVN(bool noloads = false)
: FunctionPass(ID), NoLoads(noloads), MD(0) {
initializeGVNPass(*PassRegistry::getPassRegistry());
}
private:
bool NoLoads;
MemoryDependenceAnalysis *MD;
DominatorTree *DT;
const TargetData* TD;
ValueTable VN;
DenseMap<BasicBlock*, ValueNumberScope*> localAvail;
// List of critical edges to be split between iterations.
SmallVector<std::pair<TerminatorInst*, unsigned>, 4> toSplit;
// This transformation requires dominator postdominator info
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<DominatorTree>();
if (!NoLoads)
AU.addRequired<MemoryDependenceAnalysis>();
AU.addRequired<AliasAnalysis>();
AU.addPreserved<DominatorTree>();
AU.addPreserved<AliasAnalysis>();
}
// Helper fuctions
// FIXME: eliminate or document these better
bool processLoad(LoadInst* L,
SmallVectorImpl<Instruction*> &toErase);
bool processInstruction(Instruction *I,
SmallVectorImpl<Instruction*> &toErase);
bool processNonLocalLoad(LoadInst* L,
SmallVectorImpl<Instruction*> &toErase);
bool processBlock(BasicBlock *BB);
void dump(DenseMap<uint32_t, Value*>& d);
bool iterateOnFunction(Function &F);
bool performPRE(Function& F);
Value *lookupNumber(BasicBlock *BB, uint32_t num);
void cleanupGlobalSets();
void verifyRemoved(const Instruction *I) const;
bool splitCriticalEdges();
};
char GVN::ID = 0;
}
// createGVNPass - The public interface to this file...
FunctionPass *llvm::createGVNPass(bool NoLoads) {
return new GVN(NoLoads);
}
INITIALIZE_PASS_BEGIN(GVN, "gvn", "Global Value Numbering", false, false)
INITIALIZE_PASS_DEPENDENCY(MemoryDependenceAnalysis)
INITIALIZE_PASS_DEPENDENCY(DominatorTree)
INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
INITIALIZE_PASS_END(GVN, "gvn", "Global Value Numbering", false, false)
void GVN::dump(DenseMap<uint32_t, Value*>& d) {
errs() << "{\n";
for (DenseMap<uint32_t, Value*>::iterator I = d.begin(),
E = d.end(); I != E; ++I) {
errs() << I->first << "\n";
I->second->dump();
}
errs() << "}\n";
}
/// IsValueFullyAvailableInBlock - Return true if we can prove that the value
/// we're analyzing is fully available in the specified block. As we go, keep
/// track of which blocks we know are fully alive in FullyAvailableBlocks. This
/// map is actually a tri-state map with the following values:
/// 0) we know the block *is not* fully available.
/// 1) we know the block *is* fully available.
/// 2) we do not know whether the block is fully available or not, but we are
/// currently speculating that it will be.
/// 3) we are speculating for this block and have used that to speculate for
/// other blocks.
static bool IsValueFullyAvailableInBlock(BasicBlock *BB,
DenseMap<BasicBlock*, char> &FullyAvailableBlocks) {
// Optimistically assume that the block is fully available and check to see
// if we already know about this block in one lookup.
std::pair<DenseMap<BasicBlock*, char>::iterator, char> IV =
FullyAvailableBlocks.insert(std::make_pair(BB, 2));
// If the entry already existed for this block, return the precomputed value.
if (!IV.second) {
// If this is a speculative "available" value, mark it as being used for
// speculation of other blocks.
if (IV.first->second == 2)
IV.first->second = 3;
return IV.first->second != 0;
}
// Otherwise, see if it is fully available in all predecessors.
pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
// If this block has no predecessors, it isn't live-in here.
if (PI == PE)
goto SpeculationFailure;
for (; PI != PE; ++PI)
// If the value isn't fully available in one of our predecessors, then it
// isn't fully available in this block either. Undo our previous
// optimistic assumption and bail out.
if (!IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks))
goto SpeculationFailure;
return true;
// SpeculationFailure - If we get here, we found out that this is not, after
// all, a fully-available block. We have a problem if we speculated on this and
// used the speculation to mark other blocks as available.
SpeculationFailure:
char &BBVal = FullyAvailableBlocks[BB];
// If we didn't speculate on this, just return with it set to false.
if (BBVal == 2) {
BBVal = 0;
return false;
}
// If we did speculate on this value, we could have blocks set to 1 that are
// incorrect. Walk the (transitive) successors of this block and mark them as
// 0 if set to one.
SmallVector<BasicBlock*, 32> BBWorklist;
BBWorklist.push_back(BB);
do {
BasicBlock *Entry = BBWorklist.pop_back_val();
// Note that this sets blocks to 0 (unavailable) if they happen to not
// already be in FullyAvailableBlocks. This is safe.
char &EntryVal = FullyAvailableBlocks[Entry];
if (EntryVal == 0) continue; // Already unavailable.
// Mark as unavailable.
EntryVal = 0;
for (succ_iterator I = succ_begin(Entry), E = succ_end(Entry); I != E; ++I)
BBWorklist.push_back(*I);
} while (!BBWorklist.empty());
return false;
}
/// CanCoerceMustAliasedValueToLoad - Return true if
/// CoerceAvailableValueToLoadType will succeed.
static bool CanCoerceMustAliasedValueToLoad(Value *StoredVal,
const Type *LoadTy,
const TargetData &TD) {
// If the loaded or stored value is an first class array or struct, don't try
// to transform them. We need to be able to bitcast to integer.
if (LoadTy->isStructTy() || LoadTy->isArrayTy() ||
StoredVal->getType()->isStructTy() ||
StoredVal->getType()->isArrayTy())
return false;
// The store has to be at least as big as the load.
if (TD.getTypeSizeInBits(StoredVal->getType()) <
TD.getTypeSizeInBits(LoadTy))
return false;
return true;
}
/// CoerceAvailableValueToLoadType - If we saw a store of a value to memory, and
/// then a load from a must-aliased pointer of a different type, try to coerce
/// the stored value. LoadedTy is the type of the load we want to replace and
/// InsertPt is the place to insert new instructions.
///
/// If we can't do it, return null.
static Value *CoerceAvailableValueToLoadType(Value *StoredVal,
const Type *LoadedTy,
Instruction *InsertPt,
const TargetData &TD) {
if (!CanCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, TD))
return 0;
const Type *StoredValTy = StoredVal->getType();
uint64_t StoreSize = TD.getTypeStoreSizeInBits(StoredValTy);
uint64_t LoadSize = TD.getTypeSizeInBits(LoadedTy);
// If the store and reload are the same size, we can always reuse it.
if (StoreSize == LoadSize) {
if (StoredValTy->isPointerTy() && LoadedTy->isPointerTy()) {
// Pointer to Pointer -> use bitcast.
return new BitCastInst(StoredVal, LoadedTy, "", InsertPt);
}
// Convert source pointers to integers, which can be bitcast.
if (StoredValTy->isPointerTy()) {
StoredValTy = TD.getIntPtrType(StoredValTy->getContext());
StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
}
const Type *TypeToCastTo = LoadedTy;
if (TypeToCastTo->isPointerTy())
TypeToCastTo = TD.getIntPtrType(StoredValTy->getContext());
if (StoredValTy != TypeToCastTo)
StoredVal = new BitCastInst(StoredVal, TypeToCastTo, "", InsertPt);
// Cast to pointer if the load needs a pointer type.
if (LoadedTy->isPointerTy())
StoredVal = new IntToPtrInst(StoredVal, LoadedTy, "", InsertPt);
return StoredVal;
}
// If the loaded value is smaller than the available value, then we can
// extract out a piece from it. If the available value is too small, then we
// can't do anything.
assert(StoreSize >= LoadSize && "CanCoerceMustAliasedValueToLoad fail");
// Convert source pointers to integers, which can be manipulated.
if (StoredValTy->isPointerTy()) {
StoredValTy = TD.getIntPtrType(StoredValTy->getContext());
StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
}
// Convert vectors and fp to integer, which can be manipulated.
if (!StoredValTy->isIntegerTy()) {
StoredValTy = IntegerType::get(StoredValTy->getContext(), StoreSize);
StoredVal = new BitCastInst(StoredVal, StoredValTy, "", InsertPt);
}
// If this is a big-endian system, we need to shift the value down to the low
// bits so that a truncate will work.
if (TD.isBigEndian()) {
Constant *Val = ConstantInt::get(StoredVal->getType(), StoreSize-LoadSize);
StoredVal = BinaryOperator::CreateLShr(StoredVal, Val, "tmp", InsertPt);
}
// Truncate the integer to the right size now.
const Type *NewIntTy = IntegerType::get(StoredValTy->getContext(), LoadSize);
StoredVal = new TruncInst(StoredVal, NewIntTy, "trunc", InsertPt);
if (LoadedTy == NewIntTy)
return StoredVal;
// If the result is a pointer, inttoptr.
if (LoadedTy->isPointerTy())
return new IntToPtrInst(StoredVal, LoadedTy, "inttoptr", InsertPt);
// Otherwise, bitcast.
return new BitCastInst(StoredVal, LoadedTy, "bitcast", InsertPt);
}
/// GetBaseWithConstantOffset - Analyze the specified pointer to see if it can
/// be expressed as a base pointer plus a constant offset. Return the base and
/// offset to the caller.
static Value *GetBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
const TargetData &TD) {
Operator *PtrOp = dyn_cast<Operator>(Ptr);
if (PtrOp == 0) return Ptr;
// Just look through bitcasts.
if (PtrOp->getOpcode() == Instruction::BitCast)
return GetBaseWithConstantOffset(PtrOp->getOperand(0), Offset, TD);
// If this is a GEP with constant indices, we can look through it.
GEPOperator *GEP = dyn_cast<GEPOperator>(PtrOp);
if (GEP == 0 || !GEP->hasAllConstantIndices()) return Ptr;
gep_type_iterator GTI = gep_type_begin(GEP);
for (User::op_iterator I = GEP->idx_begin(), E = GEP->idx_end(); I != E;
++I, ++GTI) {
ConstantInt *OpC = cast<ConstantInt>(*I);
if (OpC->isZero()) continue;
// Handle a struct and array indices which add their offset to the pointer.
if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
Offset += TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
} else {
uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
Offset += OpC->getSExtValue()*Size;
}
}
// Re-sign extend from the pointer size if needed to get overflow edge cases
// right.
unsigned PtrSize = TD.getPointerSizeInBits();
if (PtrSize < 64)
Offset = (Offset << (64-PtrSize)) >> (64-PtrSize);
return GetBaseWithConstantOffset(GEP->getPointerOperand(), Offset, TD);
}
/// AnalyzeLoadFromClobberingWrite - This function is called when we have a
/// memdep query of a load that ends up being a clobbering memory write (store,
/// memset, memcpy, memmove). This means that the write *may* provide bits used
/// by the load but we can't be sure because the pointers don't mustalias.
///
/// Check this case to see if there is anything more we can do before we give
/// up. This returns -1 if we have to give up, or a byte number in the stored
/// value of the piece that feeds the load.
static int AnalyzeLoadFromClobberingWrite(const Type *LoadTy, Value *LoadPtr,
Value *WritePtr,
uint64_t WriteSizeInBits,
const TargetData &TD) {
// If the loaded or stored value is an first class array or struct, don't try
// to transform them. We need to be able to bitcast to integer.
if (LoadTy->isStructTy() || LoadTy->isArrayTy())
return -1;
int64_t StoreOffset = 0, LoadOffset = 0;
Value *StoreBase = GetBaseWithConstantOffset(WritePtr, StoreOffset, TD);
Value *LoadBase =
GetBaseWithConstantOffset(LoadPtr, LoadOffset, TD);
if (StoreBase != LoadBase)
return -1;
// If the load and store are to the exact same address, they should have been
// a must alias. AA must have gotten confused.
// FIXME: Study to see if/when this happens. One case is forwarding a memset
// to a load from the base of the memset.
#if 0
if (LoadOffset == StoreOffset) {
dbgs() << "STORE/LOAD DEP WITH COMMON POINTER MISSED:\n"
<< "Base = " << *StoreBase << "\n"
<< "Store Ptr = " << *WritePtr << "\n"
<< "Store Offs = " << StoreOffset << "\n"
<< "Load Ptr = " << *LoadPtr << "\n";
abort();
}
#endif
// If the load and store don't overlap at all, the store doesn't provide
// anything to the load. In this case, they really don't alias at all, AA
// must have gotten confused.
// FIXME: Investigate cases where this bails out, e.g. rdar://7238614. Then
// remove this check, as it is duplicated with what we have below.
uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy);
if ((WriteSizeInBits & 7) | (LoadSize & 7))
return -1;
uint64_t StoreSize = WriteSizeInBits >> 3; // Convert to bytes.
LoadSize >>= 3;
bool isAAFailure = false;
if (StoreOffset < LoadOffset)
isAAFailure = StoreOffset+int64_t(StoreSize) <= LoadOffset;
else
isAAFailure = LoadOffset+int64_t(LoadSize) <= StoreOffset;
if (isAAFailure) {
#if 0
dbgs() << "STORE LOAD DEP WITH COMMON BASE:\n"
<< "Base = " << *StoreBase << "\n"
<< "Store Ptr = " << *WritePtr << "\n"
<< "Store Offs = " << StoreOffset << "\n"
<< "Load Ptr = " << *LoadPtr << "\n";
abort();
#endif
return -1;
}
// If the Load isn't completely contained within the stored bits, we don't
// have all the bits to feed it. We could do something crazy in the future
// (issue a smaller load then merge the bits in) but this seems unlikely to be
// valuable.
if (StoreOffset > LoadOffset ||
StoreOffset+StoreSize < LoadOffset+LoadSize)
return -1;
// Okay, we can do this transformation. Return the number of bytes into the
// store that the load is.
return LoadOffset-StoreOffset;
}
/// AnalyzeLoadFromClobberingStore - This function is called when we have a
/// memdep query of a load that ends up being a clobbering store.
static int AnalyzeLoadFromClobberingStore(const Type *LoadTy, Value *LoadPtr,
StoreInst *DepSI,
const TargetData &TD) {
// Cannot handle reading from store of first-class aggregate yet.
if (DepSI->getValueOperand()->getType()->isStructTy() ||
DepSI->getValueOperand()->getType()->isArrayTy())
return -1;
Value *StorePtr = DepSI->getPointerOperand();
uint64_t StoreSize =TD.getTypeSizeInBits(DepSI->getValueOperand()->getType());
return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
StorePtr, StoreSize, TD);
}
static int AnalyzeLoadFromClobberingMemInst(const Type *LoadTy, Value *LoadPtr,
MemIntrinsic *MI,
const TargetData &TD) {
// If the mem operation is a non-constant size, we can't handle it.
ConstantInt *SizeCst = dyn_cast<ConstantInt>(MI->getLength());
if (SizeCst == 0) return -1;
uint64_t MemSizeInBits = SizeCst->getZExtValue()*8;
// If this is memset, we just need to see if the offset is valid in the size
// of the memset..
if (MI->getIntrinsicID() == Intrinsic::memset)
return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(),
MemSizeInBits, TD);
// If we have a memcpy/memmove, the only case we can handle is if this is a
// copy from constant memory. In that case, we can read directly from the
// constant memory.
MemTransferInst *MTI = cast<MemTransferInst>(MI);
Constant *Src = dyn_cast<Constant>(MTI->getSource());
if (Src == 0) return -1;
GlobalVariable *GV = dyn_cast<GlobalVariable>(Src->getUnderlyingObject());
if (GV == 0 || !GV->isConstant()) return -1;
// See if the access is within the bounds of the transfer.
int Offset = AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
MI->getDest(), MemSizeInBits, TD);
if (Offset == -1)
return Offset;
// Otherwise, see if we can constant fold a load from the constant with the
// offset applied as appropriate.
Src = ConstantExpr::getBitCast(Src,
llvm::Type::getInt8PtrTy(Src->getContext()));
Constant *OffsetCst =
ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
Src = ConstantExpr::getGetElementPtr(Src, &OffsetCst, 1);
Src = ConstantExpr::getBitCast(Src, PointerType::getUnqual(LoadTy));
if (ConstantFoldLoadFromConstPtr(Src, &TD))
return Offset;
return -1;
}
/// GetStoreValueForLoad - This function is called when we have a
/// memdep query of a load that ends up being a clobbering store. This means
/// that the store *may* provide bits used by the load but we can't be sure
/// because the pointers don't mustalias. Check this case to see if there is
/// anything more we can do before we give up.
static Value *GetStoreValueForLoad(Value *SrcVal, unsigned Offset,
const Type *LoadTy,
Instruction *InsertPt, const TargetData &TD){
LLVMContext &Ctx = SrcVal->getType()->getContext();
uint64_t StoreSize = (TD.getTypeSizeInBits(SrcVal->getType()) + 7) / 8;
uint64_t LoadSize = (TD.getTypeSizeInBits(LoadTy) + 7) / 8;
IRBuilder<> Builder(InsertPt->getParent(), InsertPt);
// Compute which bits of the stored value are being used by the load. Convert
// to an integer type to start with.
if (SrcVal->getType()->isPointerTy())
SrcVal = Builder.CreatePtrToInt(SrcVal, TD.getIntPtrType(Ctx), "tmp");
if (!SrcVal->getType()->isIntegerTy())
SrcVal = Builder.CreateBitCast(SrcVal, IntegerType::get(Ctx, StoreSize*8),
"tmp");
// Shift the bits to the least significant depending on endianness.
unsigned ShiftAmt;
if (TD.isLittleEndian())
ShiftAmt = Offset*8;
else
ShiftAmt = (StoreSize-LoadSize-Offset)*8;
if (ShiftAmt)
SrcVal = Builder.CreateLShr(SrcVal, ShiftAmt, "tmp");
if (LoadSize != StoreSize)
SrcVal = Builder.CreateTrunc(SrcVal, IntegerType::get(Ctx, LoadSize*8),
"tmp");
return CoerceAvailableValueToLoadType(SrcVal, LoadTy, InsertPt, TD);
}
/// GetMemInstValueForLoad - This function is called when we have a
/// memdep query of a load that ends up being a clobbering mem intrinsic.
static Value *GetMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset,
const Type *LoadTy, Instruction *InsertPt,
const TargetData &TD){
LLVMContext &Ctx = LoadTy->getContext();
uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy)/8;
IRBuilder<> Builder(InsertPt->getParent(), InsertPt);
// We know that this method is only called when the mem transfer fully
// provides the bits for the load.
if (MemSetInst *MSI = dyn_cast<MemSetInst>(SrcInst)) {
// memset(P, 'x', 1234) -> splat('x'), even if x is a variable, and
// independently of what the offset is.
Value *Val = MSI->getValue();
if (LoadSize != 1)
Val = Builder.CreateZExt(Val, IntegerType::get(Ctx, LoadSize*8));
Value *OneElt = Val;
// Splat the value out to the right number of bits.
for (unsigned NumBytesSet = 1; NumBytesSet != LoadSize; ) {
// If we can double the number of bytes set, do it.
if (NumBytesSet*2 <= LoadSize) {
Value *ShVal = Builder.CreateShl(Val, NumBytesSet*8);
Val = Builder.CreateOr(Val, ShVal);
NumBytesSet <<= 1;
continue;
}
// Otherwise insert one byte at a time.
Value *ShVal = Builder.CreateShl(Val, 1*8);
Val = Builder.CreateOr(OneElt, ShVal);
++NumBytesSet;
}
return CoerceAvailableValueToLoadType(Val, LoadTy, InsertPt, TD);
}
// Otherwise, this is a memcpy/memmove from a constant global.
MemTransferInst *MTI = cast<MemTransferInst>(SrcInst);
Constant *Src = cast<Constant>(MTI->getSource());
// Otherwise, see if we can constant fold a load from the constant with the
// offset applied as appropriate.
Src = ConstantExpr::getBitCast(Src,
llvm::Type::getInt8PtrTy(Src->getContext()));
Constant *OffsetCst =
ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
Src = ConstantExpr::getGetElementPtr(Src, &OffsetCst, 1);
Src = ConstantExpr::getBitCast(Src, PointerType::getUnqual(LoadTy));
return ConstantFoldLoadFromConstPtr(Src, &TD);
}
namespace {
struct AvailableValueInBlock {
/// BB - The basic block in question.
BasicBlock *BB;
enum ValType {
SimpleVal, // A simple offsetted value that is accessed.
MemIntrin // A memory intrinsic which is loaded from.
};
/// V - The value that is live out of the block.
PointerIntPair<Value *, 1, ValType> Val;
/// Offset - The byte offset in Val that is interesting for the load query.
unsigned Offset;
static AvailableValueInBlock get(BasicBlock *BB, Value *V,
unsigned Offset = 0) {
AvailableValueInBlock Res;
Res.BB = BB;
Res.Val.setPointer(V);
Res.Val.setInt(SimpleVal);
Res.Offset = Offset;
return Res;
}
static AvailableValueInBlock getMI(BasicBlock *BB, MemIntrinsic *MI,
unsigned Offset = 0) {
AvailableValueInBlock Res;
Res.BB = BB;
Res.Val.setPointer(MI);
Res.Val.setInt(MemIntrin);
Res.Offset = Offset;
return Res;
}
bool isSimpleValue() const { return Val.getInt() == SimpleVal; }
Value *getSimpleValue() const {
assert(isSimpleValue() && "Wrong accessor");
return Val.getPointer();
}
MemIntrinsic *getMemIntrinValue() const {
assert(!isSimpleValue() && "Wrong accessor");
return cast<MemIntrinsic>(Val.getPointer());
}
/// MaterializeAdjustedValue - Emit code into this block to adjust the value
/// defined here to the specified type. This handles various coercion cases.
Value *MaterializeAdjustedValue(const Type *LoadTy,
const TargetData *TD) const {
Value *Res;
if (isSimpleValue()) {
Res = getSimpleValue();
if (Res->getType() != LoadTy) {
assert(TD && "Need target data to handle type mismatch case");
Res = GetStoreValueForLoad(Res, Offset, LoadTy, BB->getTerminator(),
*TD);
DEBUG(errs() << "GVN COERCED NONLOCAL VAL:\nOffset: " << Offset << " "
<< *getSimpleValue() << '\n'
<< *Res << '\n' << "\n\n\n");
}
} else {
Res = GetMemInstValueForLoad(getMemIntrinValue(), Offset,
LoadTy, BB->getTerminator(), *TD);
DEBUG(errs() << "GVN COERCED NONLOCAL MEM INTRIN:\nOffset: " << Offset
<< " " << *getMemIntrinValue() << '\n'
<< *Res << '\n' << "\n\n\n");
}
return Res;
}
};
}
/// ConstructSSAForLoadSet - Given a set of loads specified by ValuesPerBlock,
/// construct SSA form, allowing us to eliminate LI. This returns the value
/// that should be used at LI's definition site.
static Value *ConstructSSAForLoadSet(LoadInst *LI,
SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock,
const TargetData *TD,
const DominatorTree &DT,
AliasAnalysis *AA) {
// Check for the fully redundant, dominating load case. In this case, we can
// just use the dominating value directly.
if (ValuesPerBlock.size() == 1 &&
DT.properlyDominates(ValuesPerBlock[0].BB, LI->getParent()))
return ValuesPerBlock[0].MaterializeAdjustedValue(LI->getType(), TD);
// Otherwise, we have to construct SSA form.
SmallVector<PHINode*, 8> NewPHIs;
SSAUpdater SSAUpdate(&NewPHIs);
SSAUpdate.Initialize(LI->getType(), LI->getName());
const Type *LoadTy = LI->getType();
for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
const AvailableValueInBlock &AV = ValuesPerBlock[i];
BasicBlock *BB = AV.BB;
if (SSAUpdate.HasValueForBlock(BB))
continue;
SSAUpdate.AddAvailableValue(BB, AV.MaterializeAdjustedValue(LoadTy, TD));
}
// Perform PHI construction.
Value *V = SSAUpdate.GetValueInMiddleOfBlock(LI->getParent());
// If new PHI nodes were created, notify alias analysis.
if (V->getType()->isPointerTy())
for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i)
AA->copyValue(LI, NewPHIs[i]);
return V;
}
static bool isLifetimeStart(const Instruction *Inst) {
if (const IntrinsicInst* II = dyn_cast<IntrinsicInst>(Inst))
return II->getIntrinsicID() == Intrinsic::lifetime_start;
return false;
}
/// processNonLocalLoad - Attempt to eliminate a load whose dependencies are
/// non-local by performing PHI construction.
bool GVN::processNonLocalLoad(LoadInst *LI,
SmallVectorImpl<Instruction*> &toErase) {
// Find the non-local dependencies of the load.
SmallVector<NonLocalDepResult, 64> Deps;
AliasAnalysis::Location Loc = VN.getAliasAnalysis()->getLocation(LI);
MD->getNonLocalPointerDependency(Loc, true, LI->getParent(), Deps);
//DEBUG(dbgs() << "INVESTIGATING NONLOCAL LOAD: "
// << Deps.size() << *LI << '\n');
// If we had to process more than one hundred blocks to find the
// dependencies, this load isn't worth worrying about. Optimizing
// it will be too expensive.
if (Deps.size() > 100)
return false;
// If we had a phi translation failure, we'll have a single entry which is a
// clobber in the current block. Reject this early.
if (Deps.size() == 1 && Deps[0].getResult().isClobber()) {
DEBUG(
dbgs() << "GVN: non-local load ";
WriteAsOperand(dbgs(), LI);
dbgs() << " is clobbered by " << *Deps[0].getResult().getInst() << '\n';
);
return false;
}
// Filter out useless results (non-locals, etc). Keep track of the blocks
// where we have a value available in repl, also keep track of whether we see
// dependencies that produce an unknown value for the load (such as a call
// that could potentially clobber the load).
SmallVector<AvailableValueInBlock, 16> ValuesPerBlock;
SmallVector<BasicBlock*, 16> UnavailableBlocks;
for (unsigned i = 0, e = Deps.size(); i != e; ++i) {
BasicBlock *DepBB = Deps[i].getBB();
MemDepResult DepInfo = Deps[i].getResult();
if (DepInfo.isClobber()) {
// The address being loaded in this non-local block may not be the same as
// the pointer operand of the load if PHI translation occurs. Make sure
// to consider the right address.
Value *Address = Deps[i].getAddress();
// If the dependence is to a store that writes to a superset of the bits
// read by the load, we can extract the bits we need for the load from the
// stored value.
if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInfo.getInst())) {
if (TD && Address) {
int Offset = AnalyzeLoadFromClobberingStore(LI->getType(), Address,
DepSI, *TD);
if (Offset != -1) {
ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
DepSI->getValueOperand(),
Offset));
continue;
}
}
}
// If the clobbering value is a memset/memcpy/memmove, see if we can
// forward a value on from it.
if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInfo.getInst())) {
if (TD && Address) {
int Offset = AnalyzeLoadFromClobberingMemInst(LI->getType(), Address,
DepMI, *TD);
if (Offset != -1) {
ValuesPerBlock.push_back(AvailableValueInBlock::getMI(DepBB, DepMI,
Offset));
continue;
}
}
}
UnavailableBlocks.push_back(DepBB);
continue;
}
Instruction *DepInst = DepInfo.getInst();
// Loading the allocation -> undef.
if (isa<AllocaInst>(DepInst) || isMalloc(DepInst) ||
// Loading immediately after lifetime begin -> undef.
isLifetimeStart(DepInst)) {
ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
UndefValue::get(LI->getType())));
continue;
}
if (StoreInst *S = dyn_cast<StoreInst>(DepInst)) {
// Reject loads and stores that are to the same address but are of
// different types if we have to.
if (S->getValueOperand()->getType() != LI->getType()) {
// If the stored value is larger or equal to the loaded value, we can
// reuse it.
if (TD == 0 || !CanCoerceMustAliasedValueToLoad(S->getValueOperand(),
LI->getType(), *TD)) {
UnavailableBlocks.push_back(DepBB);
continue;
}
}
ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
S->getValueOperand()));
continue;
}
if (LoadInst *LD = dyn_cast<LoadInst>(DepInst)) {
// If the types mismatch and we can't handle it, reject reuse of the load.
if (LD->getType() != LI->getType()) {
// If the stored value is larger or equal to the loaded value, we can
// reuse it.
if (TD == 0 || !CanCoerceMustAliasedValueToLoad(LD, LI->getType(),*TD)){
UnavailableBlocks.push_back(DepBB);
continue;
}
}
ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB, LD));
continue;
}
UnavailableBlocks.push_back(DepBB);
continue;
}
// If we have no predecessors that produce a known value for this load, exit
// early.
if (ValuesPerBlock.empty()) return false;
// If all of the instructions we depend on produce a known value for this
// load, then it is fully redundant and we can use PHI insertion to compute
// its value. Insert PHIs and remove the fully redundant value now.
if (UnavailableBlocks.empty()) {
DEBUG(dbgs() << "GVN REMOVING NONLOCAL LOAD: " << *LI << '\n');
// Perform PHI construction.
Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, TD, *DT,
VN.getAliasAnalysis());
LI->replaceAllUsesWith(V);
if (isa<PHINode>(V))
V->takeName(LI);
if (V->getType()->isPointerTy())
MD->invalidateCachedPointerInfo(V);
VN.erase(LI);
toErase.push_back(LI);
++NumGVNLoad;
return true;
}
if (!EnablePRE || !EnableLoadPRE)
return false;
// Okay, we have *some* definitions of the value. This means that the value
// is available in some of our (transitive) predecessors. Lets think about
// doing PRE of this load. This will involve inserting a new load into the
// predecessor when it's not available. We could do this in general, but
// prefer to not increase code size. As such, we only do this when we know
// that we only have to insert *one* load (which means we're basically moving
// the load, not inserting a new one).
SmallPtrSet<BasicBlock *, 4> Blockers;
for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
Blockers.insert(UnavailableBlocks[i]);
// Lets find first basic block with more than one predecessor. Walk backwards
// through predecessors if needed.
BasicBlock *LoadBB = LI->getParent();
BasicBlock *TmpBB = LoadBB;
bool isSinglePred = false;
bool allSingleSucc = true;
while (TmpBB->getSinglePredecessor()) {
isSinglePred = true;
TmpBB = TmpBB->getSinglePredecessor();
if (TmpBB == LoadBB) // Infinite (unreachable) loop.
return false;
if (Blockers.count(TmpBB))
return false;
// If any of these blocks has more than one successor (i.e. if the edge we
// just traversed was critical), then there are other paths through this
// block along which the load may not be anticipated. Hoisting the load
// above this block would be adding the load to execution paths along
// which it was not previously executed.
if (TmpBB->getTerminator()->getNumSuccessors() != 1)
return false;
}
assert(TmpBB);
LoadBB = TmpBB;
// FIXME: It is extremely unclear what this loop is doing, other than
// artificially restricting loadpre.
if (isSinglePred) {
bool isHot = false;
for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
const AvailableValueInBlock &AV = ValuesPerBlock[i];
if (AV.isSimpleValue())
// "Hot" Instruction is in some loop (because it dominates its dep.
// instruction).
if (Instruction *I = dyn_cast<Instruction>(AV.getSimpleValue()))
if (DT->dominates(LI, I)) {
isHot = true;
break;
}
}
// We are interested only in "hot" instructions. We don't want to do any
// mis-optimizations here.
if (!isHot)
return false;
}
// Check to see how many predecessors have the loaded value fully
// available.
DenseMap<BasicBlock*, Value*> PredLoads;
DenseMap<BasicBlock*, char> FullyAvailableBlocks;
for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
FullyAvailableBlocks[ValuesPerBlock[i].BB] = true;
for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
FullyAvailableBlocks[UnavailableBlocks[i]] = false;
SmallVector<std::pair<TerminatorInst*, unsigned>, 4> NeedToSplit;
for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB);
PI != E; ++PI) {
BasicBlock *Pred = *PI;
if (IsValueFullyAvailableInBlock(Pred, FullyAvailableBlocks)) {
continue;
}
PredLoads[Pred] = 0;
if (Pred->getTerminator()->getNumSuccessors() != 1) {
if (isa<IndirectBrInst>(Pred->getTerminator())) {
DEBUG(dbgs() << "COULD NOT PRE LOAD BECAUSE OF INDBR CRITICAL EDGE '"
<< Pred->getName() << "': " << *LI << '\n');
return false;
}
unsigned SuccNum = GetSuccessorNumber(Pred, LoadBB);
NeedToSplit.push_back(std::make_pair(Pred->getTerminator(), SuccNum));
}
}
if (!NeedToSplit.empty()) {
toSplit.append(NeedToSplit.begin(), NeedToSplit.end());
return false;
}
// Decide whether PRE is profitable for this load.
unsigned NumUnavailablePreds = PredLoads.size();
assert(NumUnavailablePreds != 0 &&
"Fully available value should be eliminated above!");
// If this load is unavailable in multiple predecessors, reject it.
// FIXME: If we could restructure the CFG, we could make a common pred with
// all the preds that don't have an available LI and insert a new load into
// that one block.
if (NumUnavailablePreds != 1)
return false;
// Check if the load can safely be moved to all the unavailable predecessors.
bool CanDoPRE = true;
SmallVector<Instruction*, 8> NewInsts;
for (DenseMap<BasicBlock*, Value*>::iterator I = PredLoads.begin(),
E = PredLoads.end(); I != E; ++I) {
BasicBlock *UnavailablePred = I->first;
// Do PHI translation to get its value in the predecessor if necessary. The
// returned pointer (if non-null) is guaranteed to dominate UnavailablePred.
// If all preds have a single successor, then we know it is safe to insert
// the load on the pred (?!?), so we can insert code to materialize the
// pointer if it is not available.
PHITransAddr Address(LI->getPointerOperand(), TD);
Value *LoadPtr = 0;
if (allSingleSucc) {
LoadPtr = Address.PHITranslateWithInsertion(LoadBB, UnavailablePred,
*DT, NewInsts);
} else {
Address.PHITranslateValue(LoadBB, UnavailablePred, DT);
LoadPtr = Address.getAddr();
}
// If we couldn't find or insert a computation of this phi translated value,
// we fail PRE.
if (LoadPtr == 0) {
DEBUG(dbgs() << "COULDN'T INSERT PHI TRANSLATED VALUE OF: "
<< *LI->getPointerOperand() << "\n");
CanDoPRE = false;
break;
}
// Make sure it is valid to move this load here. We have to watch out for:
// @1 = getelementptr (i8* p, ...
// test p and branch if == 0
// load @1
// It is valid to have the getelementptr before the test, even if p can be 0,
// as getelementptr only does address arithmetic.
// If we are not pushing the value through any multiple-successor blocks
// we do not have this case. Otherwise, check that the load is safe to
// put anywhere; this can be improved, but should be conservatively safe.
if (!allSingleSucc &&
// FIXME: REEVALUTE THIS.
!isSafeToLoadUnconditionally(LoadPtr,
UnavailablePred->getTerminator(),
LI->getAlignment(), TD)) {
CanDoPRE = false;
break;
}
I->second = LoadPtr;
}
if (!CanDoPRE) {
while (!NewInsts.empty())
NewInsts.pop_back_val()->eraseFromParent();
return false;
}
// Okay, we can eliminate this load by inserting a reload in the predecessor
// and using PHI construction to get the value in the other predecessors, do
// it.
DEBUG(dbgs() << "GVN REMOVING PRE LOAD: " << *LI << '\n');
DEBUG(if (!NewInsts.empty())
dbgs() << "INSERTED " << NewInsts.size() << " INSTS: "
<< *NewInsts.back() << '\n');
// Assign value numbers to the new instructions.
for (unsigned i = 0, e = NewInsts.size(); i != e; ++i) {
// FIXME: We really _ought_ to insert these value numbers into their
// parent's availability map. However, in doing so, we risk getting into
// ordering issues. If a block hasn't been processed yet, we would be
// marking a value as AVAIL-IN, which isn't what we intend.
VN.lookup_or_add(NewInsts[i]);
}
for (DenseMap<BasicBlock*, Value*>::iterator I = PredLoads.begin(),
E = PredLoads.end(); I != E; ++I) {
BasicBlock *UnavailablePred = I->first;
Value *LoadPtr = I->second;
Value *NewLoad = new LoadInst(LoadPtr, LI->getName()+".pre", false,
LI->getAlignment(),
UnavailablePred->getTerminator());
// Add the newly created load.
ValuesPerBlock.push_back(AvailableValueInBlock::get(UnavailablePred,
NewLoad));
MD->invalidateCachedPointerInfo(LoadPtr);
DEBUG(dbgs() << "GVN INSERTED " << *NewLoad << '\n');
}
// Perform PHI construction.
Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, TD, *DT,
VN.getAliasAnalysis());
LI->replaceAllUsesWith(V);
if (isa<PHINode>(V))
V->takeName(LI);
if (V->getType()->isPointerTy())
MD->invalidateCachedPointerInfo(V);
VN.erase(LI);
toErase.push_back(LI);
++NumPRELoad;
return true;
}
/// processLoad - Attempt to eliminate a load, first by eliminating it
/// locally, and then attempting non-local elimination if that fails.
bool GVN::processLoad(LoadInst *L, SmallVectorImpl<Instruction*> &toErase) {
if (!MD)
return false;
if (L->isVolatile())
return false;
// ... to a pointer that has been loaded from before...
MemDepResult Dep = MD->getDependency(L);
// If the value isn't available, don't do anything!
if (Dep.isClobber()) {
// Check to see if we have something like this:
// store i32 123, i32* %P
// %A = bitcast i32* %P to i8*
// %B = gep i8* %A, i32 1
// %C = load i8* %B
//
// We could do that by recognizing if the clobber instructions are obviously
// a common base + constant offset, and if the previous store (or memset)
// completely covers this load. This sort of thing can happen in bitfield
// access code.
Value *AvailVal = 0;
if (StoreInst *DepSI = dyn_cast<StoreInst>(Dep.getInst()))
if (TD) {
int Offset = AnalyzeLoadFromClobberingStore(L->getType(),
L->getPointerOperand(),
DepSI, *TD);
if (Offset != -1)
AvailVal = GetStoreValueForLoad(DepSI->getValueOperand(), Offset,
L->getType(), L, *TD);
}
// If the clobbering value is a memset/memcpy/memmove, see if we can forward
// a value on from it.
if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(Dep.getInst())) {
if (TD) {
int Offset = AnalyzeLoadFromClobberingMemInst(L->getType(),
L->getPointerOperand(),
DepMI, *TD);
if (Offset != -1)
AvailVal = GetMemInstValueForLoad(DepMI, Offset, L->getType(), L,*TD);
}
}
if (AvailVal) {
DEBUG(dbgs() << "GVN COERCED INST:\n" << *Dep.getInst() << '\n'
<< *AvailVal << '\n' << *L << "\n\n\n");
// Replace the load!
L->replaceAllUsesWith(AvailVal);
if (AvailVal->getType()->isPointerTy())
MD->invalidateCachedPointerInfo(AvailVal);
VN.erase(L);
toErase.push_back(L);
++NumGVNLoad;
return true;
}
DEBUG(
// fast print dep, using operator<< on instruction would be too slow
dbgs() << "GVN: load ";
WriteAsOperand(dbgs(), L);
Instruction *I = Dep.getInst();
dbgs() << " is clobbered by " << *I << '\n';
);
return false;
}
// If it is defined in another block, try harder.
if (Dep.isNonLocal())
return processNonLocalLoad(L, toErase);
Instruction *DepInst = Dep.getInst();
if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) {
Value *StoredVal = DepSI->getValueOperand();
// The store and load are to a must-aliased pointer, but they may not
// actually have the same type. See if we know how to reuse the stored
// value (depending on its type).
if (StoredVal->getType() != L->getType()) {
if (TD) {
StoredVal = CoerceAvailableValueToLoadType(StoredVal, L->getType(),
L, *TD);
if (StoredVal == 0)
return false;
DEBUG(dbgs() << "GVN COERCED STORE:\n" << *DepSI << '\n' << *StoredVal
<< '\n' << *L << "\n\n\n");
}
else
return false;
}
// Remove it!
L->replaceAllUsesWith(StoredVal);
if (StoredVal->getType()->isPointerTy())
MD->invalidateCachedPointerInfo(StoredVal);
VN.erase(L);
toErase.push_back(L);
++NumGVNLoad;
return true;
}
if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInst)) {
Value *AvailableVal = DepLI;
// The loads are of a must-aliased pointer, but they may not actually have
// the same type. See if we know how to reuse the previously loaded value
// (depending on its type).
if (DepLI->getType() != L->getType()) {
if (TD) {
AvailableVal = CoerceAvailableValueToLoadType(DepLI, L->getType(), L,*TD);
if (AvailableVal == 0)
return false;
DEBUG(dbgs() << "GVN COERCED LOAD:\n" << *DepLI << "\n" << *AvailableVal
<< "\n" << *L << "\n\n\n");
}
else
return false;
}
// Remove it!
L->replaceAllUsesWith(AvailableVal);
if (DepLI->getType()->isPointerTy())
MD->invalidateCachedPointerInfo(DepLI);
VN.erase(L);
toErase.push_back(L);
++NumGVNLoad;
return true;
}
// If this load really doesn't depend on anything, then we must be loading an
// undef value. This can happen when loading for a fresh allocation with no
// intervening stores, for example.
if (isa<AllocaInst>(DepInst) || isMalloc(DepInst)) {
L->replaceAllUsesWith(UndefValue::get(L->getType()));
VN.erase(L);
toErase.push_back(L);
++NumGVNLoad;
return true;
}
// If this load occurs either right after a lifetime begin,
// then the loaded value is undefined.
if (IntrinsicInst* II = dyn_cast<IntrinsicInst>(DepInst)) {
if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
L->replaceAllUsesWith(UndefValue::get(L->getType()));
VN.erase(L);
toErase.push_back(L);
++NumGVNLoad;
return true;
}
}
return false;
}
Value *GVN::lookupNumber(BasicBlock *BB, uint32_t num) {
DenseMap<BasicBlock*, ValueNumberScope*>::iterator I = localAvail.find(BB);
if (I == localAvail.end())
return 0;
ValueNumberScope *Locals = I->second;
while (Locals) {
DenseMap<uint32_t, Value*>::iterator I = Locals->table.find(num);
if (I != Locals->table.end())
return I->second;
Locals = Locals->parent;
}
return 0;
}
/// processInstruction - When calculating availability, handle an instruction
/// by inserting it into the appropriate sets
bool GVN::processInstruction(Instruction *I,
SmallVectorImpl<Instruction*> &toErase) {
// Ignore dbg info intrinsics.
if (isa<DbgInfoIntrinsic>(I))
return false;
// If the instruction can be easily simplified then do so now in preference
// to value numbering it. Value numbering often exposes redundancies, for
// example if it determines that %y is equal to %x then the instruction
// "%z = and i32 %x, %y" becomes "%z = and i32 %x, %x" which we now simplify.
if (Value *V = SimplifyInstruction(I, TD, DT)) {
I->replaceAllUsesWith(V);
if (MD && V->getType()->isPointerTy())
MD->invalidateCachedPointerInfo(V);
VN.erase(I);
toErase.push_back(I);
return true;
}
if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
bool Changed = processLoad(LI, toErase);
if (!Changed) {
unsigned Num = VN.lookup_or_add(LI);
localAvail[I->getParent()]->table.insert(std::make_pair(Num, LI));
}
return Changed;
}
uint32_t NextNum = VN.getNextUnusedValueNumber();
unsigned Num = VN.lookup_or_add(I);
if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
if (!BI->isConditional() || isa<Constant>(BI->getCondition()))
return false;
Value *BranchCond = BI->getCondition();
uint32_t CondVN = VN.lookup_or_add(BranchCond);
BasicBlock *TrueSucc = BI->getSuccessor(0);
BasicBlock *FalseSucc = BI->getSuccessor(1);
if (TrueSucc->getSinglePredecessor())
localAvail[TrueSucc]->table[CondVN] =
ConstantInt::getTrue(TrueSucc->getContext());
if (FalseSucc->getSinglePredecessor())
localAvail[FalseSucc]->table[CondVN] =
ConstantInt::getFalse(TrueSucc->getContext());
return false;
// Allocations are always uniquely numbered, so we can save time and memory
// by fast failing them.
} else if (isa<AllocaInst>(I) || isa<TerminatorInst>(I)) {
localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
return false;
}
if (isa<PHINode>(I)) {
localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
// If the number we were assigned was a brand new VN, then we don't
// need to do a lookup to see if the number already exists
// somewhere in the domtree: it can't!
} else if (Num == NextNum) {
localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
// Perform fast-path value-number based elimination of values inherited from
// dominators.
} else if (Value *repl = lookupNumber(I->getParent(), Num)) {
// Remove it!
VN.erase(I);
I->replaceAllUsesWith(repl);
if (MD && repl->getType()->isPointerTy())
MD->invalidateCachedPointerInfo(repl);
toErase.push_back(I);
return true;
} else {
localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
}
return false;
}
/// runOnFunction - This is the main transformation entry point for a function.
bool GVN::runOnFunction(Function& F) {
if (!NoLoads)
MD = &getAnalysis<MemoryDependenceAnalysis>();
DT = &getAnalysis<DominatorTree>();
TD = getAnalysisIfAvailable<TargetData>();
VN.setAliasAnalysis(&getAnalysis<AliasAnalysis>());
VN.setMemDep(MD);
VN.setDomTree(DT);
bool Changed = false;
bool ShouldContinue = true;
// Merge unconditional branches, allowing PRE to catch more
// optimization opportunities.
for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) {
BasicBlock *BB = FI;
++FI;
bool removedBlock = MergeBlockIntoPredecessor(BB, this);
if (removedBlock) ++NumGVNBlocks;
Changed |= removedBlock;
}
unsigned Iteration = 0;
while (ShouldContinue) {
DEBUG(dbgs() << "GVN iteration: " << Iteration << "\n");
ShouldContinue = iterateOnFunction(F);
if (splitCriticalEdges())
ShouldContinue = true;
Changed |= ShouldContinue;
++Iteration;
}
if (EnablePRE) {
bool PREChanged = true;
while (PREChanged) {
PREChanged = performPRE(F);
Changed |= PREChanged;
}
}
// FIXME: Should perform GVN again after PRE does something. PRE can move
// computations into blocks where they become fully redundant. Note that
// we can't do this until PRE's critical edge splitting updates memdep.
// Actually, when this happens, we should just fully integrate PRE into GVN.
cleanupGlobalSets();
return Changed;
}
bool GVN::processBlock(BasicBlock *BB) {
// FIXME: Kill off toErase by doing erasing eagerly in a helper function (and
// incrementing BI before processing an instruction).
SmallVector<Instruction*, 8> toErase;
bool ChangedFunction = false;
for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
BI != BE;) {
ChangedFunction |= processInstruction(BI, toErase);
if (toErase.empty()) {
++BI;
continue;
}
// If we need some instructions deleted, do it now.
NumGVNInstr += toErase.size();
// Avoid iterator invalidation.
bool AtStart = BI == BB->begin();
if (!AtStart)
--BI;
for (SmallVector<Instruction*, 4>::iterator I = toErase.begin(),
E = toErase.end(); I != E; ++I) {
DEBUG(dbgs() << "GVN removed: " << **I << '\n');
if (MD) MD->removeInstruction(*I);
(*I)->eraseFromParent();
DEBUG(verifyRemoved(*I));
}
toErase.clear();
if (AtStart)
BI = BB->begin();
else
++BI;
}
return ChangedFunction;
}
/// performPRE - Perform a purely local form of PRE that looks for diamond
/// control flow patterns and attempts to perform simple PRE at the join point.
bool GVN::performPRE(Function &F) {
bool Changed = false;
DenseMap<BasicBlock*, Value*> predMap;
for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()),
DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) {
BasicBlock *CurrentBlock = *DI;
// Nothing to PRE in the entry block.
if (CurrentBlock == &F.getEntryBlock()) continue;
for (BasicBlock::iterator BI = CurrentBlock->begin(),
BE = CurrentBlock->end(); BI != BE; ) {
Instruction *CurInst = BI++;
if (isa<AllocaInst>(CurInst) ||
isa<TerminatorInst>(CurInst) || isa<PHINode>(CurInst) ||
CurInst->getType()->isVoidTy() ||
CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() ||
isa<DbgInfoIntrinsic>(CurInst))
continue;
// We don't currently value number ANY inline asm calls.
if (CallInst *CallI = dyn_cast<CallInst>(CurInst))
if (CallI->isInlineAsm())
continue;
uint32_t ValNo = VN.lookup(CurInst);
// Look for the predecessors for PRE opportunities. We're
// only trying to solve the basic diamond case, where
// a value is computed in the successor and one predecessor,
// but not the other. We also explicitly disallow cases
// where the successor is its own predecessor, because they're
// more complicated to get right.
unsigned NumWith = 0;
unsigned NumWithout = 0;
BasicBlock *PREPred = 0;
predMap.clear();
for (pred_iterator PI = pred_begin(CurrentBlock),
PE = pred_end(CurrentBlock); PI != PE; ++PI) {
BasicBlock *P = *PI;
// We're not interested in PRE where the block is its
// own predecessor, or in blocks with predecessors
// that are not reachable.
if (P == CurrentBlock) {
NumWithout = 2;
break;
} else if (!localAvail.count(P)) {
NumWithout = 2;
break;
}
DenseMap<uint32_t, Value*>::iterator predV =
localAvail[P]->table.find(ValNo);
if (predV == localAvail[P]->table.end()) {
PREPred = P;
++NumWithout;
} else if (predV->second == CurInst) {
NumWithout = 2;
} else {
predMap[P] = predV->second;
++NumWith;
}
}
// Don't do PRE when it might increase code size, i.e. when
// we would need to insert instructions in more than one pred.
if (NumWithout != 1 || NumWith == 0)
continue;
// Don't do PRE across indirect branch.
if (isa<IndirectBrInst>(PREPred->getTerminator()))
continue;
// We can't do PRE safely on a critical edge, so instead we schedule
// the edge to be split and perform the PRE the next time we iterate
// on the function.
unsigned SuccNum = GetSuccessorNumber(PREPred, CurrentBlock);
if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) {
toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum));
continue;
}
// Instantiate the expression in the predecessor that lacked it.
// Because we are going top-down through the block, all value numbers
// will be available in the predecessor by the time we need them. Any
// that weren't originally present will have been instantiated earlier
// in this loop.
Instruction *PREInstr = CurInst->clone();
bool success = true;
for (unsigned i = 0, e = CurInst->getNumOperands(); i != e; ++i) {
Value *Op = PREInstr->getOperand(i);
if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op))
continue;
if (Value *V = lookupNumber(PREPred, VN.lookup(Op))) {
PREInstr->setOperand(i, V);
} else {
success = false;
break;
}
}
// Fail out if we encounter an operand that is not available in
// the PRE predecessor. This is typically because of loads which
// are not value numbered precisely.
if (!success) {
delete PREInstr;
DEBUG(verifyRemoved(PREInstr));
continue;
}
PREInstr->insertBefore(PREPred->getTerminator());
PREInstr->setName(CurInst->getName() + ".pre");
predMap[PREPred] = PREInstr;
VN.add(PREInstr, ValNo);
++NumGVNPRE;
// Update the availability map to include the new instruction.
localAvail[PREPred]->table.insert(std::make_pair(ValNo, PREInstr));
// Create a PHI to make the value available in this block.
PHINode* Phi = PHINode::Create(CurInst->getType(),
CurInst->getName() + ".pre-phi",
CurrentBlock->begin());
for (pred_iterator PI = pred_begin(CurrentBlock),
PE = pred_end(CurrentBlock); PI != PE; ++PI) {
BasicBlock *P = *PI;
Phi->addIncoming(predMap[P], P);
}
VN.add(Phi, ValNo);
localAvail[CurrentBlock]->table[ValNo] = Phi;
CurInst->replaceAllUsesWith(Phi);
if (MD && Phi->getType()->isPointerTy())
MD->invalidateCachedPointerInfo(Phi);
VN.erase(CurInst);
DEBUG(dbgs() << "GVN PRE removed: " << *CurInst << '\n');
if (MD) MD->removeInstruction(CurInst);
CurInst->eraseFromParent();
DEBUG(verifyRemoved(CurInst));
Changed = true;
}
}
if (splitCriticalEdges())
Changed = true;
return Changed;
}
/// splitCriticalEdges - Split critical edges found during the previous
/// iteration that may enable further optimization.
bool GVN::splitCriticalEdges() {
if (toSplit.empty())
return false;
do {
std::pair<TerminatorInst*, unsigned> Edge = toSplit.pop_back_val();
SplitCriticalEdge(Edge.first, Edge.second, this);
} while (!toSplit.empty());
if (MD) MD->invalidateCachedPredecessors();
return true;
}
/// iterateOnFunction - Executes one iteration of GVN
bool GVN::iterateOnFunction(Function &F) {
cleanupGlobalSets();
for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
DE = df_end(DT->getRootNode()); DI != DE; ++DI) {
if (DI->getIDom())
localAvail[DI->getBlock()] =
new ValueNumberScope(localAvail[DI->getIDom()->getBlock()]);
else
localAvail[DI->getBlock()] = new ValueNumberScope(0);
}
// Top-down walk of the dominator tree
bool Changed = false;
#if 0
// Needed for value numbering with phi construction to work.
ReversePostOrderTraversal<Function*> RPOT(&F);
for (ReversePostOrderTraversal<Function*>::rpo_iterator RI = RPOT.begin(),
RE = RPOT.end(); RI != RE; ++RI)
Changed |= processBlock(*RI);
#else
for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
DE = df_end(DT->getRootNode()); DI != DE; ++DI)
Changed |= processBlock(DI->getBlock());
#endif
return Changed;
}
void GVN::cleanupGlobalSets() {
VN.clear();
for (DenseMap<BasicBlock*, ValueNumberScope*>::iterator
I = localAvail.begin(), E = localAvail.end(); I != E; ++I)
delete I->second;
localAvail.clear();
}
/// verifyRemoved - Verify that the specified instruction does not occur in our
/// internal data structures.
void GVN::verifyRemoved(const Instruction *Inst) const {
VN.verifyRemoved(Inst);
// Walk through the value number scope to make sure the instruction isn't
// ferreted away in it.
for (DenseMap<BasicBlock*, ValueNumberScope*>::const_iterator
I = localAvail.begin(), E = localAvail.end(); I != E; ++I) {
const ValueNumberScope *VNS = I->second;
while (VNS) {
for (DenseMap<uint32_t, Value*>::const_iterator
II = VNS->table.begin(), IE = VNS->table.end(); II != IE; ++II) {
assert(II->second != Inst && "Inst still in value numbering scope!");
}
VNS = VNS->parent;
}
}
}