llvm-6502/include/llvm/ADT/APSInt.h
Benjamin Kramer b69143c6a9 Annotate APInt methods where it's not clear whether they are in place with warn_unused_result.
Fix ScalarEvolution bugs uncovered by this.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@194928 91177308-0d34-0410-b5e6-96231b3b80d8
2013-11-16 16:25:41 +00:00

313 lines
9.9 KiB
C++

//===-- llvm/ADT/APSInt.h - Arbitrary Precision Signed Int -----*- C++ -*--===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the APSInt class, which is a simple class that
// represents an arbitrary sized integer that knows its signedness.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_APSINT_H
#define LLVM_ADT_APSINT_H
#include "llvm/ADT/APInt.h"
namespace llvm {
class APSInt : public APInt {
bool IsUnsigned;
public:
/// Default constructor that creates an uninitialized APInt.
explicit APSInt() : IsUnsigned(false) {}
/// APSInt ctor - Create an APSInt with the specified width, default to
/// unsigned.
explicit APSInt(uint32_t BitWidth, bool isUnsigned = true)
: APInt(BitWidth, 0), IsUnsigned(isUnsigned) {}
explicit APSInt(const APInt &I, bool isUnsigned = true)
: APInt(I), IsUnsigned(isUnsigned) {}
APSInt &operator=(const APSInt &RHS) {
APInt::operator=(RHS);
IsUnsigned = RHS.IsUnsigned;
return *this;
}
APSInt &operator=(const APInt &RHS) {
// Retain our current sign.
APInt::operator=(RHS);
return *this;
}
APSInt &operator=(uint64_t RHS) {
// Retain our current sign.
APInt::operator=(RHS);
return *this;
}
// Query sign information.
bool isSigned() const { return !IsUnsigned; }
bool isUnsigned() const { return IsUnsigned; }
void setIsUnsigned(bool Val) { IsUnsigned = Val; }
void setIsSigned(bool Val) { IsUnsigned = !Val; }
/// toString - Append this APSInt to the specified SmallString.
void toString(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
APInt::toString(Str, Radix, isSigned());
}
/// toString - Converts an APInt to a std::string. This is an inefficient
/// method, your should prefer passing in a SmallString instead.
std::string toString(unsigned Radix) const {
return APInt::toString(Radix, isSigned());
}
using APInt::toString;
APSInt LLVM_ATTRIBUTE_UNUSED_RESULT trunc(uint32_t width) const {
return APSInt(APInt::trunc(width), IsUnsigned);
}
APSInt LLVM_ATTRIBUTE_UNUSED_RESULT extend(uint32_t width) const {
if (IsUnsigned)
return APSInt(zext(width), IsUnsigned);
else
return APSInt(sext(width), IsUnsigned);
}
APSInt LLVM_ATTRIBUTE_UNUSED_RESULT extOrTrunc(uint32_t width) const {
if (IsUnsigned)
return APSInt(zextOrTrunc(width), IsUnsigned);
else
return APSInt(sextOrTrunc(width), IsUnsigned);
}
const APSInt &operator%=(const APSInt &RHS) {
assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
if (IsUnsigned)
*this = urem(RHS);
else
*this = srem(RHS);
return *this;
}
const APSInt &operator/=(const APSInt &RHS) {
assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
if (IsUnsigned)
*this = udiv(RHS);
else
*this = sdiv(RHS);
return *this;
}
APSInt operator%(const APSInt &RHS) const {
assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
return IsUnsigned ? APSInt(urem(RHS), true) : APSInt(srem(RHS), false);
}
APSInt operator/(const APSInt &RHS) const {
assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
return IsUnsigned ? APSInt(udiv(RHS), true) : APSInt(sdiv(RHS), false);
}
APSInt operator>>(unsigned Amt) const {
return IsUnsigned ? APSInt(lshr(Amt), true) : APSInt(ashr(Amt), false);
}
APSInt& operator>>=(unsigned Amt) {
*this = *this >> Amt;
return *this;
}
inline bool operator<(const APSInt& RHS) const {
assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
return IsUnsigned ? ult(RHS) : slt(RHS);
}
inline bool operator>(const APSInt& RHS) const {
assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
return IsUnsigned ? ugt(RHS) : sgt(RHS);
}
inline bool operator<=(const APSInt& RHS) const {
assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
return IsUnsigned ? ule(RHS) : sle(RHS);
}
inline bool operator>=(const APSInt& RHS) const {
assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
return IsUnsigned ? uge(RHS) : sge(RHS);
}
inline bool operator==(const APSInt& RHS) const {
assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
return eq(RHS);
}
inline bool operator==(int64_t RHS) const {
return isSameValue(*this, APSInt(APInt(64, RHS), true));
}
inline bool operator!=(const APSInt& RHS) const {
return !((*this) == RHS);
}
inline bool operator!=(int64_t RHS) const {
return !((*this) == RHS);
}
// The remaining operators just wrap the logic of APInt, but retain the
// signedness information.
APSInt operator<<(unsigned Bits) const {
return APSInt(static_cast<const APInt&>(*this) << Bits, IsUnsigned);
}
APSInt& operator<<=(unsigned Amt) {
*this = *this << Amt;
return *this;
}
APSInt& operator++() {
++(static_cast<APInt&>(*this));
return *this;
}
APSInt& operator--() {
--(static_cast<APInt&>(*this));
return *this;
}
APSInt operator++(int) {
return APSInt(++static_cast<APInt&>(*this), IsUnsigned);
}
APSInt operator--(int) {
return APSInt(--static_cast<APInt&>(*this), IsUnsigned);
}
APSInt operator-() const {
return APSInt(-static_cast<const APInt&>(*this), IsUnsigned);
}
APSInt& operator+=(const APSInt& RHS) {
assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
static_cast<APInt&>(*this) += RHS;
return *this;
}
APSInt& operator-=(const APSInt& RHS) {
assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
static_cast<APInt&>(*this) -= RHS;
return *this;
}
APSInt& operator*=(const APSInt& RHS) {
assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
static_cast<APInt&>(*this) *= RHS;
return *this;
}
APSInt& operator&=(const APSInt& RHS) {
assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
static_cast<APInt&>(*this) &= RHS;
return *this;
}
APSInt& operator|=(const APSInt& RHS) {
assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
static_cast<APInt&>(*this) |= RHS;
return *this;
}
APSInt& operator^=(const APSInt& RHS) {
assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
static_cast<APInt&>(*this) ^= RHS;
return *this;
}
APSInt operator&(const APSInt& RHS) const {
assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
return APSInt(static_cast<const APInt&>(*this) & RHS, IsUnsigned);
}
APSInt LLVM_ATTRIBUTE_UNUSED_RESULT And(const APSInt& RHS) const {
return this->operator&(RHS);
}
APSInt operator|(const APSInt& RHS) const {
assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
return APSInt(static_cast<const APInt&>(*this) | RHS, IsUnsigned);
}
APSInt LLVM_ATTRIBUTE_UNUSED_RESULT Or(const APSInt& RHS) const {
return this->operator|(RHS);
}
APSInt operator^(const APSInt& RHS) const {
assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
return APSInt(static_cast<const APInt&>(*this) ^ RHS, IsUnsigned);
}
APSInt LLVM_ATTRIBUTE_UNUSED_RESULT Xor(const APSInt& RHS) const {
return this->operator^(RHS);
}
APSInt operator*(const APSInt& RHS) const {
assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
return APSInt(static_cast<const APInt&>(*this) * RHS, IsUnsigned);
}
APSInt operator+(const APSInt& RHS) const {
assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
return APSInt(static_cast<const APInt&>(*this) + RHS, IsUnsigned);
}
APSInt operator-(const APSInt& RHS) const {
assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
return APSInt(static_cast<const APInt&>(*this) - RHS, IsUnsigned);
}
APSInt operator~() const {
return APSInt(~static_cast<const APInt&>(*this), IsUnsigned);
}
/// getMaxValue - Return the APSInt representing the maximum integer value
/// with the given bit width and signedness.
static APSInt getMaxValue(uint32_t numBits, bool Unsigned) {
return APSInt(Unsigned ? APInt::getMaxValue(numBits)
: APInt::getSignedMaxValue(numBits), Unsigned);
}
/// getMinValue - Return the APSInt representing the minimum integer value
/// with the given bit width and signedness.
static APSInt getMinValue(uint32_t numBits, bool Unsigned) {
return APSInt(Unsigned ? APInt::getMinValue(numBits)
: APInt::getSignedMinValue(numBits), Unsigned);
}
/// \brief Determine if two APSInts have the same value, zero- or
/// sign-extending as needed.
static bool isSameValue(const APSInt &I1, const APSInt &I2) {
if (I1.getBitWidth() == I2.getBitWidth() && I1.isSigned() == I2.isSigned())
return I1 == I2;
// Check for a bit-width mismatch.
if (I1.getBitWidth() > I2.getBitWidth())
return isSameValue(I1, I2.extend(I1.getBitWidth()));
else if (I2.getBitWidth() > I1.getBitWidth())
return isSameValue(I1.extend(I2.getBitWidth()), I2);
// We have a signedness mismatch. Turn the signed value into an unsigned
// value.
if (I1.isSigned()) {
if (I1.isNegative())
return false;
return APSInt(I1, true) == I2;
}
if (I2.isNegative())
return false;
return I1 == APSInt(I2, true);
}
/// Profile - Used to insert APSInt objects, or objects that contain APSInt
/// objects, into FoldingSets.
void Profile(FoldingSetNodeID& ID) const;
};
inline bool operator==(int64_t V1, const APSInt& V2) {
return V2 == V1;
}
inline bool operator!=(int64_t V1, const APSInt& V2) {
return V2 != V1;
}
inline raw_ostream &operator<<(raw_ostream &OS, const APSInt &I) {
I.print(OS, I.isSigned());
return OS;
}
} // end namespace llvm
#endif