llvm-6502/lib/Target/X86/X86InstrInfo.td
Chris Lattner b5505d0ee3 reapply r103668 with a fix. Never make "minor syntax changes"
after testing before committing.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@103681 91177308-0d34-0410-b5e6-96231b3b80d8
2010-05-13 00:02:47 +00:00

4825 lines
233 KiB
TableGen

//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file describes the X86 instruction set, defining the instructions, and
// properties of the instructions which are needed for code generation, machine
// code emission, and analysis.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// X86 specific DAG Nodes.
//
def SDTIntShiftDOp: SDTypeProfile<1, 3,
[SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>,
SDTCisInt<0>, SDTCisInt<3>]>;
def SDTX86CmpTest : SDTypeProfile<1, 2, [SDTCisVT<0, i32>, SDTCisSameAs<1, 2>]>;
def SDTX86Cmov : SDTypeProfile<1, 4,
[SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>,
SDTCisVT<3, i8>, SDTCisVT<4, i32>]>;
// Unary and binary operator instructions that set EFLAGS as a side-effect.
def SDTUnaryArithWithFlags : SDTypeProfile<2, 1,
[SDTCisInt<0>, SDTCisVT<1, i32>]>;
def SDTBinaryArithWithFlags : SDTypeProfile<2, 2,
[SDTCisSameAs<0, 2>,
SDTCisSameAs<0, 3>,
SDTCisInt<0>, SDTCisVT<1, i32>]>;
def SDTX86BrCond : SDTypeProfile<0, 3,
[SDTCisVT<0, OtherVT>,
SDTCisVT<1, i8>, SDTCisVT<2, i32>]>;
def SDTX86SetCC : SDTypeProfile<1, 2,
[SDTCisVT<0, i8>,
SDTCisVT<1, i8>, SDTCisVT<2, i32>]>;
def SDTX86SetCC_C : SDTypeProfile<1, 2,
[SDTCisInt<0>,
SDTCisVT<1, i8>, SDTCisVT<2, i32>]>;
def SDTX86cas : SDTypeProfile<0, 3, [SDTCisPtrTy<0>, SDTCisInt<1>,
SDTCisVT<2, i8>]>;
def SDTX86cas8 : SDTypeProfile<0, 1, [SDTCisPtrTy<0>]>;
def SDTX86atomicBinary : SDTypeProfile<2, 3, [SDTCisInt<0>, SDTCisInt<1>,
SDTCisPtrTy<2>, SDTCisInt<3>,SDTCisInt<4>]>;
def SDTX86Ret : SDTypeProfile<0, -1, [SDTCisVT<0, i16>]>;
def SDT_X86CallSeqStart : SDCallSeqStart<[SDTCisVT<0, i32>]>;
def SDT_X86CallSeqEnd : SDCallSeqEnd<[SDTCisVT<0, i32>,
SDTCisVT<1, i32>]>;
def SDT_X86Call : SDTypeProfile<0, -1, [SDTCisVT<0, iPTR>]>;
def SDT_X86VASTART_SAVE_XMM_REGS : SDTypeProfile<0, -1, [SDTCisVT<0, i8>,
SDTCisVT<1, iPTR>,
SDTCisVT<2, iPTR>]>;
def SDTX86RepStr : SDTypeProfile<0, 1, [SDTCisVT<0, OtherVT>]>;
def SDTX86Void : SDTypeProfile<0, 0, []>;
def SDTX86Wrapper : SDTypeProfile<1, 1, [SDTCisSameAs<0, 1>, SDTCisPtrTy<0>]>;
def SDT_X86TLSADDR : SDTypeProfile<0, 1, [SDTCisInt<0>]>;
def SDT_X86SegmentBaseAddress : SDTypeProfile<1, 1, [SDTCisPtrTy<0>]>;
def SDT_X86EHRET : SDTypeProfile<0, 1, [SDTCisInt<0>]>;
def SDT_X86TCRET : SDTypeProfile<0, 2, [SDTCisPtrTy<0>, SDTCisVT<1, i32>]>;
def X86bsf : SDNode<"X86ISD::BSF", SDTUnaryArithWithFlags>;
def X86bsr : SDNode<"X86ISD::BSR", SDTUnaryArithWithFlags>;
def X86shld : SDNode<"X86ISD::SHLD", SDTIntShiftDOp>;
def X86shrd : SDNode<"X86ISD::SHRD", SDTIntShiftDOp>;
def X86cmp : SDNode<"X86ISD::CMP" , SDTX86CmpTest>;
def X86bt : SDNode<"X86ISD::BT", SDTX86CmpTest>;
def X86cmov : SDNode<"X86ISD::CMOV", SDTX86Cmov>;
def X86brcond : SDNode<"X86ISD::BRCOND", SDTX86BrCond,
[SDNPHasChain]>;
def X86setcc : SDNode<"X86ISD::SETCC", SDTX86SetCC>;
def X86setcc_c : SDNode<"X86ISD::SETCC_CARRY", SDTX86SetCC_C>;
def X86cas : SDNode<"X86ISD::LCMPXCHG_DAG", SDTX86cas,
[SDNPHasChain, SDNPInFlag, SDNPOutFlag, SDNPMayStore,
SDNPMayLoad]>;
def X86cas8 : SDNode<"X86ISD::LCMPXCHG8_DAG", SDTX86cas8,
[SDNPHasChain, SDNPInFlag, SDNPOutFlag, SDNPMayStore,
SDNPMayLoad]>;
def X86AtomAdd64 : SDNode<"X86ISD::ATOMADD64_DAG", SDTX86atomicBinary,
[SDNPHasChain, SDNPMayStore,
SDNPMayLoad, SDNPMemOperand]>;
def X86AtomSub64 : SDNode<"X86ISD::ATOMSUB64_DAG", SDTX86atomicBinary,
[SDNPHasChain, SDNPMayStore,
SDNPMayLoad, SDNPMemOperand]>;
def X86AtomOr64 : SDNode<"X86ISD::ATOMOR64_DAG", SDTX86atomicBinary,
[SDNPHasChain, SDNPMayStore,
SDNPMayLoad, SDNPMemOperand]>;
def X86AtomXor64 : SDNode<"X86ISD::ATOMXOR64_DAG", SDTX86atomicBinary,
[SDNPHasChain, SDNPMayStore,
SDNPMayLoad, SDNPMemOperand]>;
def X86AtomAnd64 : SDNode<"X86ISD::ATOMAND64_DAG", SDTX86atomicBinary,
[SDNPHasChain, SDNPMayStore,
SDNPMayLoad, SDNPMemOperand]>;
def X86AtomNand64 : SDNode<"X86ISD::ATOMNAND64_DAG", SDTX86atomicBinary,
[SDNPHasChain, SDNPMayStore,
SDNPMayLoad, SDNPMemOperand]>;
def X86AtomSwap64 : SDNode<"X86ISD::ATOMSWAP64_DAG", SDTX86atomicBinary,
[SDNPHasChain, SDNPMayStore,
SDNPMayLoad, SDNPMemOperand]>;
def X86retflag : SDNode<"X86ISD::RET_FLAG", SDTX86Ret,
[SDNPHasChain, SDNPOptInFlag, SDNPVariadic]>;
def X86vastart_save_xmm_regs :
SDNode<"X86ISD::VASTART_SAVE_XMM_REGS",
SDT_X86VASTART_SAVE_XMM_REGS,
[SDNPHasChain, SDNPVariadic]>;
def X86callseq_start :
SDNode<"ISD::CALLSEQ_START", SDT_X86CallSeqStart,
[SDNPHasChain, SDNPOutFlag]>;
def X86callseq_end :
SDNode<"ISD::CALLSEQ_END", SDT_X86CallSeqEnd,
[SDNPHasChain, SDNPOptInFlag, SDNPOutFlag]>;
def X86call : SDNode<"X86ISD::CALL", SDT_X86Call,
[SDNPHasChain, SDNPOutFlag, SDNPOptInFlag,
SDNPVariadic]>;
def X86rep_stos: SDNode<"X86ISD::REP_STOS", SDTX86RepStr,
[SDNPHasChain, SDNPInFlag, SDNPOutFlag, SDNPMayStore]>;
def X86rep_movs: SDNode<"X86ISD::REP_MOVS", SDTX86RepStr,
[SDNPHasChain, SDNPInFlag, SDNPOutFlag, SDNPMayStore,
SDNPMayLoad]>;
def X86rdtsc : SDNode<"X86ISD::RDTSC_DAG", SDTX86Void,
[SDNPHasChain, SDNPOutFlag, SDNPSideEffect]>;
def X86Wrapper : SDNode<"X86ISD::Wrapper", SDTX86Wrapper>;
def X86WrapperRIP : SDNode<"X86ISD::WrapperRIP", SDTX86Wrapper>;
def X86tlsaddr : SDNode<"X86ISD::TLSADDR", SDT_X86TLSADDR,
[SDNPHasChain, SDNPOptInFlag, SDNPOutFlag]>;
def X86SegmentBaseAddress : SDNode<"X86ISD::SegmentBaseAddress",
SDT_X86SegmentBaseAddress, []>;
def X86ehret : SDNode<"X86ISD::EH_RETURN", SDT_X86EHRET,
[SDNPHasChain]>;
def X86tcret : SDNode<"X86ISD::TC_RETURN", SDT_X86TCRET,
[SDNPHasChain, SDNPOptInFlag, SDNPVariadic]>;
def X86add_flag : SDNode<"X86ISD::ADD", SDTBinaryArithWithFlags,
[SDNPCommutative]>;
def X86sub_flag : SDNode<"X86ISD::SUB", SDTBinaryArithWithFlags>;
def X86smul_flag : SDNode<"X86ISD::SMUL", SDTBinaryArithWithFlags,
[SDNPCommutative]>;
def X86umul_flag : SDNode<"X86ISD::UMUL", SDTUnaryArithWithFlags,
[SDNPCommutative]>;
def X86inc_flag : SDNode<"X86ISD::INC", SDTUnaryArithWithFlags>;
def X86dec_flag : SDNode<"X86ISD::DEC", SDTUnaryArithWithFlags>;
def X86or_flag : SDNode<"X86ISD::OR", SDTBinaryArithWithFlags,
[SDNPCommutative]>;
def X86xor_flag : SDNode<"X86ISD::XOR", SDTBinaryArithWithFlags,
[SDNPCommutative]>;
def X86and_flag : SDNode<"X86ISD::AND", SDTBinaryArithWithFlags,
[SDNPCommutative]>;
def X86mul_imm : SDNode<"X86ISD::MUL_IMM", SDTIntBinOp>;
def X86MingwAlloca : SDNode<"X86ISD::MINGW_ALLOCA", SDTX86Void,
[SDNPHasChain, SDNPInFlag, SDNPOutFlag]>;
//===----------------------------------------------------------------------===//
// X86 Operand Definitions.
//
// A version of ptr_rc which excludes SP, ESP, and RSP. This is used for
// the index operand of an address, to conform to x86 encoding restrictions.
def ptr_rc_nosp : PointerLikeRegClass<1>;
// *mem - Operand definitions for the funky X86 addressing mode operands.
//
def X86MemAsmOperand : AsmOperandClass {
let Name = "Mem";
let SuperClass = ?;
}
def X86NoSegMemAsmOperand : AsmOperandClass {
let Name = "NoSegMem";
let SuperClass = X86MemAsmOperand;
}
def X86AbsMemAsmOperand : AsmOperandClass {
let Name = "AbsMem";
let SuperClass = X86NoSegMemAsmOperand;
}
class X86MemOperand<string printMethod> : Operand<iPTR> {
let PrintMethod = printMethod;
let MIOperandInfo = (ops ptr_rc, i8imm, ptr_rc_nosp, i32imm, i8imm);
let ParserMatchClass = X86MemAsmOperand;
}
def opaque32mem : X86MemOperand<"printopaquemem">;
def opaque48mem : X86MemOperand<"printopaquemem">;
def opaque80mem : X86MemOperand<"printopaquemem">;
def opaque512mem : X86MemOperand<"printopaquemem">;
def i8mem : X86MemOperand<"printi8mem">;
def i16mem : X86MemOperand<"printi16mem">;
def i32mem : X86MemOperand<"printi32mem">;
def i64mem : X86MemOperand<"printi64mem">;
def i128mem : X86MemOperand<"printi128mem">;
//def i256mem : X86MemOperand<"printi256mem">;
def f32mem : X86MemOperand<"printf32mem">;
def f64mem : X86MemOperand<"printf64mem">;
def f80mem : X86MemOperand<"printf80mem">;
def f128mem : X86MemOperand<"printf128mem">;
//def f256mem : X86MemOperand<"printf256mem">;
// A version of i8mem for use on x86-64 that uses GR64_NOREX instead of
// plain GR64, so that it doesn't potentially require a REX prefix.
def i8mem_NOREX : Operand<i64> {
let PrintMethod = "printi8mem";
let MIOperandInfo = (ops GR64_NOREX, i8imm, GR64_NOREX_NOSP, i32imm, i8imm);
let ParserMatchClass = X86MemAsmOperand;
}
// Special i32mem for addresses of load folding tail calls. These are not
// allowed to use callee-saved registers since they must be scheduled
// after callee-saved register are popped.
def i32mem_TC : Operand<i32> {
let PrintMethod = "printi32mem";
let MIOperandInfo = (ops GR32_TC, i8imm, GR32_TC, i32imm, i8imm);
let ParserMatchClass = X86MemAsmOperand;
}
def lea32mem : Operand<i32> {
let PrintMethod = "printlea32mem";
let MIOperandInfo = (ops GR32, i8imm, GR32_NOSP, i32imm);
let ParserMatchClass = X86NoSegMemAsmOperand;
}
let ParserMatchClass = X86AbsMemAsmOperand,
PrintMethod = "print_pcrel_imm" in {
def i32imm_pcrel : Operand<i32>;
def offset8 : Operand<i64>;
def offset16 : Operand<i64>;
def offset32 : Operand<i64>;
def offset64 : Operand<i64>;
// Branch targets have OtherVT type and print as pc-relative values.
def brtarget : Operand<OtherVT>;
def brtarget8 : Operand<OtherVT>;
}
def SSECC : Operand<i8> {
let PrintMethod = "printSSECC";
}
def ImmSExt8AsmOperand : AsmOperandClass {
let Name = "ImmSExt8";
let SuperClass = ImmAsmOperand;
}
// A couple of more descriptive operand definitions.
// 16-bits but only 8 bits are significant.
def i16i8imm : Operand<i16> {
let ParserMatchClass = ImmSExt8AsmOperand;
}
// 32-bits but only 8 bits are significant.
def i32i8imm : Operand<i32> {
let ParserMatchClass = ImmSExt8AsmOperand;
}
//===----------------------------------------------------------------------===//
// X86 Complex Pattern Definitions.
//
// Define X86 specific addressing mode.
def addr : ComplexPattern<iPTR, 5, "SelectAddr", [], []>;
def lea32addr : ComplexPattern<i32, 4, "SelectLEAAddr",
[add, sub, mul, X86mul_imm, shl, or, frameindex],
[]>;
def tls32addr : ComplexPattern<i32, 4, "SelectTLSADDRAddr",
[tglobaltlsaddr], []>;
//===----------------------------------------------------------------------===//
// X86 Instruction Predicate Definitions.
def HasCMov : Predicate<"Subtarget->hasCMov()">;
def NoCMov : Predicate<"!Subtarget->hasCMov()">;
def HasMMX : Predicate<"Subtarget->hasMMX()">;
def HasSSE1 : Predicate<"Subtarget->hasSSE1()">;
def HasSSE2 : Predicate<"Subtarget->hasSSE2()">;
def HasSSE3 : Predicate<"Subtarget->hasSSE3()">;
def HasSSSE3 : Predicate<"Subtarget->hasSSSE3()">;
def HasSSE41 : Predicate<"Subtarget->hasSSE41()">;
def HasSSE42 : Predicate<"Subtarget->hasSSE42()">;
def HasSSE4A : Predicate<"Subtarget->hasSSE4A()">;
def HasAVX : Predicate<"Subtarget->hasAVX()">;
def HasFMA3 : Predicate<"Subtarget->hasFMA3()">;
def HasFMA4 : Predicate<"Subtarget->hasFMA4()">;
def FPStackf32 : Predicate<"!Subtarget->hasSSE1()">;
def FPStackf64 : Predicate<"!Subtarget->hasSSE2()">;
def In32BitMode : Predicate<"!Subtarget->is64Bit()">;
def In64BitMode : Predicate<"Subtarget->is64Bit()">;
def IsWin64 : Predicate<"Subtarget->isTargetWin64()">;
def NotWin64 : Predicate<"!Subtarget->isTargetWin64()">;
def SmallCode : Predicate<"TM.getCodeModel() == CodeModel::Small">;
def KernelCode : Predicate<"TM.getCodeModel() == CodeModel::Kernel">;
def FarData : Predicate<"TM.getCodeModel() != CodeModel::Small &&"
"TM.getCodeModel() != CodeModel::Kernel">;
def NearData : Predicate<"TM.getCodeModel() == CodeModel::Small ||"
"TM.getCodeModel() == CodeModel::Kernel">;
def IsStatic : Predicate<"TM.getRelocationModel() == Reloc::Static">;
def IsNotPIC : Predicate<"TM.getRelocationModel() != Reloc::PIC_">;
def OptForSize : Predicate<"OptForSize">;
def OptForSpeed : Predicate<"!OptForSize">;
def FastBTMem : Predicate<"!Subtarget->isBTMemSlow()">;
def CallImmAddr : Predicate<"Subtarget->IsLegalToCallImmediateAddr(TM)">;
def HasAES : Predicate<"Subtarget->hasAES()">;
//===----------------------------------------------------------------------===//
// X86 Instruction Format Definitions.
//
include "X86InstrFormats.td"
//===----------------------------------------------------------------------===//
// Pattern fragments...
//
// X86 specific condition code. These correspond to CondCode in
// X86InstrInfo.h. They must be kept in synch.
def X86_COND_A : PatLeaf<(i8 0)>; // alt. COND_NBE
def X86_COND_AE : PatLeaf<(i8 1)>; // alt. COND_NC
def X86_COND_B : PatLeaf<(i8 2)>; // alt. COND_C
def X86_COND_BE : PatLeaf<(i8 3)>; // alt. COND_NA
def X86_COND_E : PatLeaf<(i8 4)>; // alt. COND_Z
def X86_COND_G : PatLeaf<(i8 5)>; // alt. COND_NLE
def X86_COND_GE : PatLeaf<(i8 6)>; // alt. COND_NL
def X86_COND_L : PatLeaf<(i8 7)>; // alt. COND_NGE
def X86_COND_LE : PatLeaf<(i8 8)>; // alt. COND_NG
def X86_COND_NE : PatLeaf<(i8 9)>; // alt. COND_NZ
def X86_COND_NO : PatLeaf<(i8 10)>;
def X86_COND_NP : PatLeaf<(i8 11)>; // alt. COND_PO
def X86_COND_NS : PatLeaf<(i8 12)>;
def X86_COND_O : PatLeaf<(i8 13)>;
def X86_COND_P : PatLeaf<(i8 14)>; // alt. COND_PE
def X86_COND_S : PatLeaf<(i8 15)>;
def immSext8 : PatLeaf<(imm), [{
return N->getSExtValue() == (int8_t)N->getSExtValue();
}]>;
def i16immSExt8 : PatLeaf<(i16 immSext8)>;
def i32immSExt8 : PatLeaf<(i32 immSext8)>;
/// Load patterns: these constraint the match to the right address space.
def dsload : PatFrag<(ops node:$ptr), (load node:$ptr), [{
if (const Value *Src = cast<LoadSDNode>(N)->getSrcValue())
if (const PointerType *PT = dyn_cast<PointerType>(Src->getType()))
if (PT->getAddressSpace() > 255)
return false;
return true;
}]>;
def gsload : PatFrag<(ops node:$ptr), (load node:$ptr), [{
if (const Value *Src = cast<LoadSDNode>(N)->getSrcValue())
if (const PointerType *PT = dyn_cast<PointerType>(Src->getType()))
return PT->getAddressSpace() == 256;
return false;
}]>;
def fsload : PatFrag<(ops node:$ptr), (load node:$ptr), [{
if (const Value *Src = cast<LoadSDNode>(N)->getSrcValue())
if (const PointerType *PT = dyn_cast<PointerType>(Src->getType()))
return PT->getAddressSpace() == 257;
return false;
}]>;
// Helper fragments for loads.
// It's always safe to treat a anyext i16 load as a i32 load if the i16 is
// known to be 32-bit aligned or better. Ditto for i8 to i16.
def loadi16 : PatFrag<(ops node:$ptr), (i16 (unindexedload node:$ptr)), [{
LoadSDNode *LD = cast<LoadSDNode>(N);
if (const Value *Src = LD->getSrcValue())
if (const PointerType *PT = dyn_cast<PointerType>(Src->getType()))
if (PT->getAddressSpace() > 255)
return false;
ISD::LoadExtType ExtType = LD->getExtensionType();
if (ExtType == ISD::NON_EXTLOAD)
return true;
if (ExtType == ISD::EXTLOAD)
return LD->getAlignment() >= 2 && !LD->isVolatile();
return false;
}]>;
def loadi16_anyext : PatFrag<(ops node:$ptr), (i32 (unindexedload node:$ptr)),[{
LoadSDNode *LD = cast<LoadSDNode>(N);
if (const Value *Src = LD->getSrcValue())
if (const PointerType *PT = dyn_cast<PointerType>(Src->getType()))
if (PT->getAddressSpace() > 255)
return false;
ISD::LoadExtType ExtType = LD->getExtensionType();
if (ExtType == ISD::EXTLOAD)
return LD->getAlignment() >= 2 && !LD->isVolatile();
return false;
}]>;
def loadi32 : PatFrag<(ops node:$ptr), (i32 (unindexedload node:$ptr)), [{
LoadSDNode *LD = cast<LoadSDNode>(N);
if (const Value *Src = LD->getSrcValue())
if (const PointerType *PT = dyn_cast<PointerType>(Src->getType()))
if (PT->getAddressSpace() > 255)
return false;
ISD::LoadExtType ExtType = LD->getExtensionType();
if (ExtType == ISD::NON_EXTLOAD)
return true;
if (ExtType == ISD::EXTLOAD)
return LD->getAlignment() >= 4 && !LD->isVolatile();
return false;
}]>;
def loadi8 : PatFrag<(ops node:$ptr), (i8 (dsload node:$ptr))>;
def loadi64 : PatFrag<(ops node:$ptr), (i64 (dsload node:$ptr))>;
def loadf32 : PatFrag<(ops node:$ptr), (f32 (dsload node:$ptr))>;
def loadf64 : PatFrag<(ops node:$ptr), (f64 (dsload node:$ptr))>;
def loadf80 : PatFrag<(ops node:$ptr), (f80 (dsload node:$ptr))>;
def sextloadi16i8 : PatFrag<(ops node:$ptr), (i16 (sextloadi8 node:$ptr))>;
def sextloadi32i8 : PatFrag<(ops node:$ptr), (i32 (sextloadi8 node:$ptr))>;
def sextloadi32i16 : PatFrag<(ops node:$ptr), (i32 (sextloadi16 node:$ptr))>;
def zextloadi8i1 : PatFrag<(ops node:$ptr), (i8 (zextloadi1 node:$ptr))>;
def zextloadi16i1 : PatFrag<(ops node:$ptr), (i16 (zextloadi1 node:$ptr))>;
def zextloadi32i1 : PatFrag<(ops node:$ptr), (i32 (zextloadi1 node:$ptr))>;
def zextloadi16i8 : PatFrag<(ops node:$ptr), (i16 (zextloadi8 node:$ptr))>;
def zextloadi32i8 : PatFrag<(ops node:$ptr), (i32 (zextloadi8 node:$ptr))>;
def zextloadi32i16 : PatFrag<(ops node:$ptr), (i32 (zextloadi16 node:$ptr))>;
def extloadi8i1 : PatFrag<(ops node:$ptr), (i8 (extloadi1 node:$ptr))>;
def extloadi16i1 : PatFrag<(ops node:$ptr), (i16 (extloadi1 node:$ptr))>;
def extloadi32i1 : PatFrag<(ops node:$ptr), (i32 (extloadi1 node:$ptr))>;
def extloadi16i8 : PatFrag<(ops node:$ptr), (i16 (extloadi8 node:$ptr))>;
def extloadi32i8 : PatFrag<(ops node:$ptr), (i32 (extloadi8 node:$ptr))>;
def extloadi32i16 : PatFrag<(ops node:$ptr), (i32 (extloadi16 node:$ptr))>;
// An 'and' node with a single use.
def and_su : PatFrag<(ops node:$lhs, node:$rhs), (and node:$lhs, node:$rhs), [{
return N->hasOneUse();
}]>;
// An 'srl' node with a single use.
def srl_su : PatFrag<(ops node:$lhs, node:$rhs), (srl node:$lhs, node:$rhs), [{
return N->hasOneUse();
}]>;
// An 'trunc' node with a single use.
def trunc_su : PatFrag<(ops node:$src), (trunc node:$src), [{
return N->hasOneUse();
}]>;
// Treat an 'or' node is as an 'add' if the or'ed bits are known to be zero.
def or_is_add : PatFrag<(ops node:$lhs, node:$rhs), (or node:$lhs, node:$rhs),[{
if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N->getOperand(1)))
return CurDAG->MaskedValueIsZero(N->getOperand(0), CN->getAPIntValue());
unsigned BitWidth = N->getValueType(0).getScalarType().getSizeInBits();
APInt Mask = APInt::getAllOnesValue(BitWidth);
APInt KnownZero0, KnownOne0;
CurDAG->ComputeMaskedBits(N->getOperand(0), Mask, KnownZero0, KnownOne0, 0);
APInt KnownZero1, KnownOne1;
CurDAG->ComputeMaskedBits(N->getOperand(1), Mask, KnownZero1, KnownOne1, 0);
return (~KnownZero0 & ~KnownZero1) == 0;
}]>;
//===----------------------------------------------------------------------===//
// Instruction list...
//
// ADJCALLSTACKDOWN/UP implicitly use/def ESP because they may be expanded into
// a stack adjustment and the codegen must know that they may modify the stack
// pointer before prolog-epilog rewriting occurs.
// Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
// sub / add which can clobber EFLAGS.
let Defs = [ESP, EFLAGS], Uses = [ESP] in {
def ADJCALLSTACKDOWN32 : I<0, Pseudo, (outs), (ins i32imm:$amt),
"#ADJCALLSTACKDOWN",
[(X86callseq_start timm:$amt)]>,
Requires<[In32BitMode]>;
def ADJCALLSTACKUP32 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
"#ADJCALLSTACKUP",
[(X86callseq_end timm:$amt1, timm:$amt2)]>,
Requires<[In32BitMode]>;
}
// x86-64 va_start lowering magic.
let usesCustomInserter = 1 in {
def VASTART_SAVE_XMM_REGS : I<0, Pseudo,
(outs),
(ins GR8:$al,
i64imm:$regsavefi, i64imm:$offset,
variable_ops),
"#VASTART_SAVE_XMM_REGS $al, $regsavefi, $offset",
[(X86vastart_save_xmm_regs GR8:$al,
imm:$regsavefi,
imm:$offset)]>;
// Dynamic stack allocation yields _alloca call for Cygwin/Mingw targets. Calls
// to _alloca is needed to probe the stack when allocating more than 4k bytes in
// one go. Touching the stack at 4K increments is necessary to ensure that the
// guard pages used by the OS virtual memory manager are allocated in correct
// sequence.
// The main point of having separate instruction are extra unmodelled effects
// (compared to ordinary calls) like stack pointer change.
def MINGW_ALLOCA : I<0, Pseudo, (outs), (ins),
"# dynamic stack allocation",
[(X86MingwAlloca)]>;
}
// Nop
let neverHasSideEffects = 1 in {
def NOOP : I<0x90, RawFrm, (outs), (ins), "nop", []>;
def NOOPW : I<0x1f, MRM0m, (outs), (ins i16mem:$zero),
"nop{w}\t$zero", []>, TB, OpSize;
def NOOPL : I<0x1f, MRM0m, (outs), (ins i32mem:$zero),
"nop{l}\t$zero", []>, TB;
}
// Trap
def INT3 : I<0xcc, RawFrm, (outs), (ins), "int\t3", []>;
def INT : I<0xcd, RawFrm, (outs), (ins i8imm:$trap), "int\t$trap", []>;
def IRET16 : I<0xcf, RawFrm, (outs), (ins), "iret{w}", []>, OpSize;
def IRET32 : I<0xcf, RawFrm, (outs), (ins), "iret{l}", []>;
// PIC base construction. This expands to code that looks like this:
// call $next_inst
// popl %destreg"
let neverHasSideEffects = 1, isNotDuplicable = 1, Uses = [ESP] in
def MOVPC32r : Ii32<0xE8, Pseudo, (outs GR32:$reg), (ins i32imm:$label),
"", []>;
//===----------------------------------------------------------------------===//
// Control Flow Instructions.
//
// Return instructions.
let isTerminator = 1, isReturn = 1, isBarrier = 1,
hasCtrlDep = 1, FPForm = SpecialFP in {
def RET : I <0xC3, RawFrm, (outs), (ins variable_ops),
"ret",
[(X86retflag 0)]>;
def RETI : Ii16<0xC2, RawFrm, (outs), (ins i16imm:$amt, variable_ops),
"ret\t$amt",
[(X86retflag timm:$amt)]>;
def LRET : I <0xCB, RawFrm, (outs), (ins),
"lret", []>;
def LRETI : Ii16<0xCA, RawFrm, (outs), (ins i16imm:$amt),
"lret\t$amt", []>;
}
// Unconditional branches.
let isBarrier = 1, isBranch = 1, isTerminator = 1 in {
def JMP_4 : Ii32PCRel<0xE9, RawFrm, (outs), (ins brtarget:$dst),
"jmp\t$dst", [(br bb:$dst)]>;
def JMP_1 : Ii8PCRel<0xEB, RawFrm, (outs), (ins brtarget8:$dst),
"jmp\t$dst", []>;
}
// Conditional Branches.
let isBranch = 1, isTerminator = 1, Uses = [EFLAGS] in {
multiclass ICBr<bits<8> opc1, bits<8> opc4, string asm, PatFrag Cond> {
def _1 : Ii8PCRel <opc1, RawFrm, (outs), (ins brtarget8:$dst), asm, []>;
def _4 : Ii32PCRel<opc4, RawFrm, (outs), (ins brtarget:$dst), asm,
[(X86brcond bb:$dst, Cond, EFLAGS)]>, TB;
}
}
defm JO : ICBr<0x70, 0x80, "jo\t$dst" , X86_COND_O>;
defm JNO : ICBr<0x71, 0x81, "jno\t$dst" , X86_COND_NO>;
defm JB : ICBr<0x72, 0x82, "jb\t$dst" , X86_COND_B>;
defm JAE : ICBr<0x73, 0x83, "jae\t$dst", X86_COND_AE>;
defm JE : ICBr<0x74, 0x84, "je\t$dst" , X86_COND_E>;
defm JNE : ICBr<0x75, 0x85, "jne\t$dst", X86_COND_NE>;
defm JBE : ICBr<0x76, 0x86, "jbe\t$dst", X86_COND_BE>;
defm JA : ICBr<0x77, 0x87, "ja\t$dst" , X86_COND_A>;
defm JS : ICBr<0x78, 0x88, "js\t$dst" , X86_COND_S>;
defm JNS : ICBr<0x79, 0x89, "jns\t$dst", X86_COND_NS>;
defm JP : ICBr<0x7A, 0x8A, "jp\t$dst" , X86_COND_P>;
defm JNP : ICBr<0x7B, 0x8B, "jnp\t$dst", X86_COND_NP>;
defm JL : ICBr<0x7C, 0x8C, "jl\t$dst" , X86_COND_L>;
defm JGE : ICBr<0x7D, 0x8D, "jge\t$dst", X86_COND_GE>;
defm JLE : ICBr<0x7E, 0x8E, "jle\t$dst", X86_COND_LE>;
defm JG : ICBr<0x7F, 0x8F, "jg\t$dst" , X86_COND_G>;
// FIXME: What about the CX/RCX versions of this instruction?
let Uses = [ECX], isBranch = 1, isTerminator = 1 in
def JCXZ8 : Ii8PCRel<0xE3, RawFrm, (outs), (ins brtarget8:$dst),
"jcxz\t$dst", []>;
// Indirect branches
let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in {
def JMP32r : I<0xFF, MRM4r, (outs), (ins GR32:$dst), "jmp{l}\t{*}$dst",
[(brind GR32:$dst)]>;
def JMP32m : I<0xFF, MRM4m, (outs), (ins i32mem:$dst), "jmp{l}\t{*}$dst",
[(brind (loadi32 addr:$dst))]>;
def FARJMP16i : Iseg16<0xEA, RawFrm, (outs),
(ins i16imm:$seg, i16imm:$off),
"ljmp{w}\t$seg, $off", []>, OpSize;
def FARJMP32i : Iseg32<0xEA, RawFrm, (outs),
(ins i16imm:$seg, i32imm:$off),
"ljmp{l}\t$seg, $off", []>;
def FARJMP16m : I<0xFF, MRM5m, (outs), (ins opaque32mem:$dst),
"ljmp{w}\t{*}$dst", []>, OpSize;
def FARJMP32m : I<0xFF, MRM5m, (outs), (ins opaque48mem:$dst),
"ljmp{l}\t{*}$dst", []>;
}
// Loop instructions
def LOOP : I<0xE2, RawFrm, (outs), (ins brtarget8:$dst), "loop\t$dst", []>;
def LOOPE : I<0xE1, RawFrm, (outs), (ins brtarget8:$dst), "loope\t$dst", []>;
def LOOPNE : I<0xE0, RawFrm, (outs), (ins brtarget8:$dst), "loopne\t$dst", []>;
//===----------------------------------------------------------------------===//
// Call Instructions...
//
let isCall = 1 in
// All calls clobber the non-callee saved registers. ESP is marked as
// a use to prevent stack-pointer assignments that appear immediately
// before calls from potentially appearing dead. Uses for argument
// registers are added manually.
let Defs = [EAX, ECX, EDX, FP0, FP1, FP2, FP3, FP4, FP5, FP6, ST0,
MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS],
Uses = [ESP] in {
def CALLpcrel32 : Ii32PCRel<0xE8, RawFrm,
(outs), (ins i32imm_pcrel:$dst,variable_ops),
"call\t$dst", []>;
def CALL32r : I<0xFF, MRM2r, (outs), (ins GR32:$dst, variable_ops),
"call\t{*}$dst", [(X86call GR32:$dst)]>;
def CALL32m : I<0xFF, MRM2m, (outs), (ins i32mem:$dst, variable_ops),
"call\t{*}$dst", [(X86call (loadi32 addr:$dst))]>;
def FARCALL16i : Iseg16<0x9A, RawFrm, (outs),
(ins i16imm:$seg, i16imm:$off),
"lcall{w}\t$seg, $off", []>, OpSize;
def FARCALL32i : Iseg32<0x9A, RawFrm, (outs),
(ins i16imm:$seg, i32imm:$off),
"lcall{l}\t$seg, $off", []>;
def FARCALL16m : I<0xFF, MRM3m, (outs), (ins opaque32mem:$dst),
"lcall{w}\t{*}$dst", []>, OpSize;
def FARCALL32m : I<0xFF, MRM3m, (outs), (ins opaque48mem:$dst),
"lcall{l}\t{*}$dst", []>;
}
// Constructing a stack frame.
def ENTER : I<0xC8, RawFrm, (outs), (ins i16imm:$len, i8imm:$lvl),
"enter\t$len, $lvl", []>;
// Tail call stuff.
let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1 in
let Defs = [EAX, ECX, EDX, FP0, FP1, FP2, FP3, FP4, FP5, FP6, ST0,
MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS],
Uses = [ESP] in {
def TCRETURNdi : I<0, Pseudo, (outs),
(ins i32imm_pcrel:$dst, i32imm:$offset, variable_ops),
"#TC_RETURN $dst $offset", []>;
def TCRETURNri : I<0, Pseudo, (outs),
(ins GR32_TC:$dst, i32imm:$offset, variable_ops),
"#TC_RETURN $dst $offset", []>;
def TCRETURNmi : I<0, Pseudo, (outs),
(ins i32mem_TC:$dst, i32imm:$offset, variable_ops),
"#TC_RETURN $dst $offset", []>;
// FIXME: The should be pseudo instructions that are lowered when going to
// mcinst.
def TAILJMPd : Ii32PCRel<0xE9, RawFrm, (outs),
(ins i32imm_pcrel:$dst, variable_ops),
"jmp\t$dst # TAILCALL",
[]>;
def TAILJMPr : I<0xFF, MRM4r, (outs), (ins GR32_TC:$dst, variable_ops),
"jmp{l}\t{*}$dst # TAILCALL",
[]>;
def TAILJMPm : I<0xFF, MRM4m, (outs), (ins i32mem_TC:$dst, variable_ops),
"jmp{l}\t{*}$dst # TAILCALL", []>;
}
//===----------------------------------------------------------------------===//
// Miscellaneous Instructions...
//
let Defs = [EBP, ESP], Uses = [EBP, ESP], mayLoad = 1, neverHasSideEffects=1 in
def LEAVE : I<0xC9, RawFrm,
(outs), (ins), "leave", []>;
def POPCNT16rr : I<0xB8, MRMSrcReg, (outs GR16:$dst), (ins GR16:$src),
"popcnt{w}\t{$src, $dst|$dst, $src}", []>, OpSize, XS;
def POPCNT16rm : I<0xB8, MRMSrcMem, (outs GR16:$dst), (ins i16mem:$src),
"popcnt{w}\t{$src, $dst|$dst, $src}", []>, OpSize, XS;
def POPCNT32rr : I<0xB8, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src),
"popcnt{l}\t{$src, $dst|$dst, $src}", []>, XS;
def POPCNT32rm : I<0xB8, MRMSrcMem, (outs GR32:$dst), (ins i32mem:$src),
"popcnt{l}\t{$src, $dst|$dst, $src}", []>, XS;
let Defs = [ESP], Uses = [ESP], neverHasSideEffects=1 in {
let mayLoad = 1 in {
def POP16r : I<0x58, AddRegFrm, (outs GR16:$reg), (ins), "pop{w}\t$reg", []>,
OpSize;
def POP32r : I<0x58, AddRegFrm, (outs GR32:$reg), (ins), "pop{l}\t$reg", []>;
def POP16rmr: I<0x8F, MRM0r, (outs GR16:$reg), (ins), "pop{w}\t$reg", []>,
OpSize;
def POP16rmm: I<0x8F, MRM0m, (outs i16mem:$dst), (ins), "pop{w}\t$dst", []>,
OpSize;
def POP32rmr: I<0x8F, MRM0r, (outs GR32:$reg), (ins), "pop{l}\t$reg", []>;
def POP32rmm: I<0x8F, MRM0m, (outs i32mem:$dst), (ins), "pop{l}\t$dst", []>;
}
let mayStore = 1 in {
def PUSH16r : I<0x50, AddRegFrm, (outs), (ins GR16:$reg), "push{w}\t$reg",[]>,
OpSize;
def PUSH32r : I<0x50, AddRegFrm, (outs), (ins GR32:$reg), "push{l}\t$reg",[]>;
def PUSH16rmr: I<0xFF, MRM6r, (outs), (ins GR16:$reg), "push{w}\t$reg",[]>,
OpSize;
def PUSH16rmm: I<0xFF, MRM6m, (outs), (ins i16mem:$src), "push{w}\t$src",[]>,
OpSize;
def PUSH32rmr: I<0xFF, MRM6r, (outs), (ins GR32:$reg), "push{l}\t$reg",[]>;
def PUSH32rmm: I<0xFF, MRM6m, (outs), (ins i32mem:$src), "push{l}\t$src",[]>;
}
}
let Defs = [ESP], Uses = [ESP], neverHasSideEffects = 1, mayStore = 1 in {
def PUSHi8 : Ii8<0x6a, RawFrm, (outs), (ins i32i8imm:$imm),
"push{l}\t$imm", []>;
def PUSHi16 : Ii16<0x68, RawFrm, (outs), (ins i16imm:$imm),
"push{w}\t$imm", []>, OpSize;
def PUSHi32 : Ii32<0x68, RawFrm, (outs), (ins i32imm:$imm),
"push{l}\t$imm", []>;
}
let Defs = [ESP, EFLAGS], Uses = [ESP], mayLoad = 1, neverHasSideEffects=1 in {
def POPF : I<0x9D, RawFrm, (outs), (ins), "popf{w}", []>, OpSize;
def POPFD : I<0x9D, RawFrm, (outs), (ins), "popf{l}", []>;
}
let Defs = [ESP], Uses = [ESP, EFLAGS], mayStore = 1, neverHasSideEffects=1 in {
def PUSHF : I<0x9C, RawFrm, (outs), (ins), "pushf{w}", []>, OpSize;
def PUSHFD : I<0x9C, RawFrm, (outs), (ins), "pushf{l}", []>;
}
let isTwoAddress = 1 in // GR32 = bswap GR32
def BSWAP32r : I<0xC8, AddRegFrm,
(outs GR32:$dst), (ins GR32:$src),
"bswap{l}\t$dst",
[(set GR32:$dst, (bswap GR32:$src))]>, TB;
// Bit scan instructions.
let Defs = [EFLAGS] in {
def BSF16rr : I<0xBC, MRMSrcReg, (outs GR16:$dst), (ins GR16:$src),
"bsf{w}\t{$src, $dst|$dst, $src}",
[(set GR16:$dst, EFLAGS, (X86bsf GR16:$src))]>, TB, OpSize;
def BSF16rm : I<0xBC, MRMSrcMem, (outs GR16:$dst), (ins i16mem:$src),
"bsf{w}\t{$src, $dst|$dst, $src}",
[(set GR16:$dst, EFLAGS, (X86bsf (loadi16 addr:$src)))]>, TB,
OpSize;
def BSF32rr : I<0xBC, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src),
"bsf{l}\t{$src, $dst|$dst, $src}",
[(set GR32:$dst, EFLAGS, (X86bsf GR32:$src))]>, TB;
def BSF32rm : I<0xBC, MRMSrcMem, (outs GR32:$dst), (ins i32mem:$src),
"bsf{l}\t{$src, $dst|$dst, $src}",
[(set GR32:$dst, EFLAGS, (X86bsf (loadi32 addr:$src)))]>, TB;
def BSR16rr : I<0xBD, MRMSrcReg, (outs GR16:$dst), (ins GR16:$src),
"bsr{w}\t{$src, $dst|$dst, $src}",
[(set GR16:$dst, EFLAGS, (X86bsr GR16:$src))]>, TB, OpSize;
def BSR16rm : I<0xBD, MRMSrcMem, (outs GR16:$dst), (ins i16mem:$src),
"bsr{w}\t{$src, $dst|$dst, $src}",
[(set GR16:$dst, EFLAGS, (X86bsr (loadi16 addr:$src)))]>, TB,
OpSize;
def BSR32rr : I<0xBD, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src),
"bsr{l}\t{$src, $dst|$dst, $src}",
[(set GR32:$dst, EFLAGS, (X86bsr GR32:$src))]>, TB;
def BSR32rm : I<0xBD, MRMSrcMem, (outs GR32:$dst), (ins i32mem:$src),
"bsr{l}\t{$src, $dst|$dst, $src}",
[(set GR32:$dst, EFLAGS, (X86bsr (loadi32 addr:$src)))]>, TB;
} // Defs = [EFLAGS]
let neverHasSideEffects = 1 in
def LEA16r : I<0x8D, MRMSrcMem,
(outs GR16:$dst), (ins lea32mem:$src),
"lea{w}\t{$src|$dst}, {$dst|$src}", []>, OpSize;
let isReMaterializable = 1 in
def LEA32r : I<0x8D, MRMSrcMem,
(outs GR32:$dst), (ins lea32mem:$src),
"lea{l}\t{$src|$dst}, {$dst|$src}",
[(set GR32:$dst, lea32addr:$src)]>, Requires<[In32BitMode]>;
let Defs = [ECX,EDI,ESI], Uses = [ECX,EDI,ESI], isCodeGenOnly = 1 in {
def REP_MOVSB : I<0xA4, RawFrm, (outs), (ins), "{rep;movsb|rep movsb}",
[(X86rep_movs i8)]>, REP;
def REP_MOVSW : I<0xA5, RawFrm, (outs), (ins), "{rep;movsw|rep movsw}",
[(X86rep_movs i16)]>, REP, OpSize;
def REP_MOVSD : I<0xA5, RawFrm, (outs), (ins), "{rep;movsl|rep movsd}",
[(X86rep_movs i32)]>, REP;
}
// These uses the DF flag in the EFLAGS register to inc or dec EDI and ESI
let Defs = [EDI,ESI], Uses = [EDI,ESI,EFLAGS] in {
def MOVSB : I<0xA4, RawFrm, (outs), (ins), "{movsb}", []>;
def MOVSW : I<0xA5, RawFrm, (outs), (ins), "{movsw}", []>, OpSize;
def MOVSD : I<0xA5, RawFrm, (outs), (ins), "{movsl|movsd}", []>;
}
let Defs = [ECX,EDI], Uses = [AL,ECX,EDI], isCodeGenOnly = 1 in
def REP_STOSB : I<0xAA, RawFrm, (outs), (ins), "{rep;stosb|rep stosb}",
[(X86rep_stos i8)]>, REP;
let Defs = [ECX,EDI], Uses = [AX,ECX,EDI], isCodeGenOnly = 1 in
def REP_STOSW : I<0xAB, RawFrm, (outs), (ins), "{rep;stosw|rep stosw}",
[(X86rep_stos i16)]>, REP, OpSize;
let Defs = [ECX,EDI], Uses = [EAX,ECX,EDI], isCodeGenOnly = 1 in
def REP_STOSD : I<0xAB, RawFrm, (outs), (ins), "{rep;stosl|rep stosd}",
[(X86rep_stos i32)]>, REP;
// These uses the DF flag in the EFLAGS register to inc or dec EDI and ESI
let Defs = [EDI], Uses = [AL,EDI,EFLAGS] in
def STOSB : I<0xAA, RawFrm, (outs), (ins), "{stosb}", []>;
let Defs = [EDI], Uses = [AX,EDI,EFLAGS] in
def STOSW : I<0xAB, RawFrm, (outs), (ins), "{stosw}", []>, OpSize;
let Defs = [EDI], Uses = [EAX,EDI,EFLAGS] in
def STOSD : I<0xAB, RawFrm, (outs), (ins), "{stosl|stosd}", []>;
def SCAS8 : I<0xAE, RawFrm, (outs), (ins), "scas{b}", []>;
def SCAS16 : I<0xAF, RawFrm, (outs), (ins), "scas{w}", []>, OpSize;
def SCAS32 : I<0xAF, RawFrm, (outs), (ins), "scas{l}", []>;
def CMPS8 : I<0xA6, RawFrm, (outs), (ins), "cmps{b}", []>;
def CMPS16 : I<0xA7, RawFrm, (outs), (ins), "cmps{w}", []>, OpSize;
def CMPS32 : I<0xA7, RawFrm, (outs), (ins), "cmps{l}", []>;
let Defs = [RAX, RDX] in
def RDTSC : I<0x31, RawFrm, (outs), (ins), "rdtsc", [(X86rdtsc)]>,
TB;
let Defs = [RAX, RCX, RDX] in
def RDTSCP : I<0x01, MRM_F9, (outs), (ins), "rdtscp", []>, TB;
let isBarrier = 1, hasCtrlDep = 1 in {
def TRAP : I<0x0B, RawFrm, (outs), (ins), "ud2", [(trap)]>, TB;
}
def SYSCALL : I<0x05, RawFrm,
(outs), (ins), "syscall", []>, TB;
def SYSRET : I<0x07, RawFrm,
(outs), (ins), "sysret", []>, TB;
def SYSENTER : I<0x34, RawFrm,
(outs), (ins), "sysenter", []>, TB;
def SYSEXIT : I<0x35, RawFrm,
(outs), (ins), "sysexit", []>, TB;
def WAIT : I<0x9B, RawFrm, (outs), (ins), "wait", []>;
//===----------------------------------------------------------------------===//
// Input/Output Instructions...
//
let Defs = [AL], Uses = [DX] in
def IN8rr : I<0xEC, RawFrm, (outs), (ins),
"in{b}\t{%dx, %al|%AL, %DX}", []>;
let Defs = [AX], Uses = [DX] in
def IN16rr : I<0xED, RawFrm, (outs), (ins),
"in{w}\t{%dx, %ax|%AX, %DX}", []>, OpSize;
let Defs = [EAX], Uses = [DX] in
def IN32rr : I<0xED, RawFrm, (outs), (ins),
"in{l}\t{%dx, %eax|%EAX, %DX}", []>;
let Defs = [AL] in
def IN8ri : Ii8<0xE4, RawFrm, (outs), (ins i16i8imm:$port),
"in{b}\t{$port, %al|%AL, $port}", []>;
let Defs = [AX] in
def IN16ri : Ii8<0xE5, RawFrm, (outs), (ins i16i8imm:$port),
"in{w}\t{$port, %ax|%AX, $port}", []>, OpSize;
let Defs = [EAX] in
def IN32ri : Ii8<0xE5, RawFrm, (outs), (ins i16i8imm:$port),
"in{l}\t{$port, %eax|%EAX, $port}", []>;
let Uses = [DX, AL] in
def OUT8rr : I<0xEE, RawFrm, (outs), (ins),
"out{b}\t{%al, %dx|%DX, %AL}", []>;
let Uses = [DX, AX] in
def OUT16rr : I<0xEF, RawFrm, (outs), (ins),
"out{w}\t{%ax, %dx|%DX, %AX}", []>, OpSize;
let Uses = [DX, EAX] in
def OUT32rr : I<0xEF, RawFrm, (outs), (ins),
"out{l}\t{%eax, %dx|%DX, %EAX}", []>;
let Uses = [AL] in
def OUT8ir : Ii8<0xE6, RawFrm, (outs), (ins i16i8imm:$port),
"out{b}\t{%al, $port|$port, %AL}", []>;
let Uses = [AX] in
def OUT16ir : Ii8<0xE7, RawFrm, (outs), (ins i16i8imm:$port),
"out{w}\t{%ax, $port|$port, %AX}", []>, OpSize;
let Uses = [EAX] in
def OUT32ir : Ii8<0xE7, RawFrm, (outs), (ins i16i8imm:$port),
"out{l}\t{%eax, $port|$port, %EAX}", []>;
def IN8 : I<0x6C, RawFrm, (outs), (ins),
"ins{b}", []>;
def IN16 : I<0x6D, RawFrm, (outs), (ins),
"ins{w}", []>, OpSize;
def IN32 : I<0x6D, RawFrm, (outs), (ins),
"ins{l}", []>;
//===----------------------------------------------------------------------===//
// Move Instructions...
//
let neverHasSideEffects = 1 in {
def MOV8rr : I<0x88, MRMDestReg, (outs GR8 :$dst), (ins GR8 :$src),
"mov{b}\t{$src, $dst|$dst, $src}", []>;
def MOV16rr : I<0x89, MRMDestReg, (outs GR16:$dst), (ins GR16:$src),
"mov{w}\t{$src, $dst|$dst, $src}", []>, OpSize;
def MOV32rr : I<0x89, MRMDestReg, (outs GR32:$dst), (ins GR32:$src),
"mov{l}\t{$src, $dst|$dst, $src}", []>;
}
let isReMaterializable = 1, isAsCheapAsAMove = 1 in {
def MOV8ri : Ii8 <0xB0, AddRegFrm, (outs GR8 :$dst), (ins i8imm :$src),
"mov{b}\t{$src, $dst|$dst, $src}",
[(set GR8:$dst, imm:$src)]>;
def MOV16ri : Ii16<0xB8, AddRegFrm, (outs GR16:$dst), (ins i16imm:$src),
"mov{w}\t{$src, $dst|$dst, $src}",
[(set GR16:$dst, imm:$src)]>, OpSize;
def MOV32ri : Ii32<0xB8, AddRegFrm, (outs GR32:$dst), (ins i32imm:$src),
"mov{l}\t{$src, $dst|$dst, $src}",
[(set GR32:$dst, imm:$src)]>;
}
def MOV8mi : Ii8 <0xC6, MRM0m, (outs), (ins i8mem :$dst, i8imm :$src),
"mov{b}\t{$src, $dst|$dst, $src}",
[(store (i8 imm:$src), addr:$dst)]>;
def MOV16mi : Ii16<0xC7, MRM0m, (outs), (ins i16mem:$dst, i16imm:$src),
"mov{w}\t{$src, $dst|$dst, $src}",
[(store (i16 imm:$src), addr:$dst)]>, OpSize;
def MOV32mi : Ii32<0xC7, MRM0m, (outs), (ins i32mem:$dst, i32imm:$src),
"mov{l}\t{$src, $dst|$dst, $src}",
[(store (i32 imm:$src), addr:$dst)]>;
/// moffs8, moffs16 and moffs32 versions of moves. The immediate is a
/// 32-bit offset from the PC. These are only valid in x86-32 mode.
def MOV8o8a : Ii32 <0xA0, RawFrm, (outs), (ins offset8:$src),
"mov{b}\t{$src, %al|%al, $src}", []>;
def MOV16o16a : Ii32 <0xA1, RawFrm, (outs), (ins offset16:$src),
"mov{w}\t{$src, %ax|%ax, $src}", []>, OpSize;
def MOV32o32a : Ii32 <0xA1, RawFrm, (outs), (ins offset32:$src),
"mov{l}\t{$src, %eax|%eax, $src}", []>;
def MOV8ao8 : Ii32 <0xA2, RawFrm, (outs offset8:$dst), (ins),
"mov{b}\t{%al, $dst|$dst, %al}", []>;
def MOV16ao16 : Ii32 <0xA3, RawFrm, (outs offset16:$dst), (ins),
"mov{w}\t{%ax, $dst|$dst, %ax}", []>, OpSize;
def MOV32ao32 : Ii32 <0xA3, RawFrm, (outs offset32:$dst), (ins),
"mov{l}\t{%eax, $dst|$dst, %eax}", []>;
// Moves to and from segment registers
def MOV16rs : I<0x8C, MRMDestReg, (outs GR16:$dst), (ins SEGMENT_REG:$src),
"mov{w}\t{$src, $dst|$dst, $src}", []>;
def MOV16ms : I<0x8C, MRMDestMem, (outs i16mem:$dst), (ins SEGMENT_REG:$src),
"mov{w}\t{$src, $dst|$dst, $src}", []>;
def MOV16sr : I<0x8E, MRMSrcReg, (outs SEGMENT_REG:$dst), (ins GR16:$src),
"mov{w}\t{$src, $dst|$dst, $src}", []>;
def MOV16sm : I<0x8E, MRMSrcMem, (outs SEGMENT_REG:$dst), (ins i16mem:$src),
"mov{w}\t{$src, $dst|$dst, $src}", []>;
def MOV8rr_REV : I<0x8A, MRMSrcReg, (outs GR8:$dst), (ins GR8:$src),
"mov{b}\t{$src, $dst|$dst, $src}", []>;
def MOV16rr_REV : I<0x8B, MRMSrcReg, (outs GR16:$dst), (ins GR16:$src),
"mov{w}\t{$src, $dst|$dst, $src}", []>, OpSize;
def MOV32rr_REV : I<0x8B, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src),
"mov{l}\t{$src, $dst|$dst, $src}", []>;
let canFoldAsLoad = 1, isReMaterializable = 1 in {
def MOV8rm : I<0x8A, MRMSrcMem, (outs GR8 :$dst), (ins i8mem :$src),
"mov{b}\t{$src, $dst|$dst, $src}",
[(set GR8:$dst, (loadi8 addr:$src))]>;
def MOV16rm : I<0x8B, MRMSrcMem, (outs GR16:$dst), (ins i16mem:$src),
"mov{w}\t{$src, $dst|$dst, $src}",
[(set GR16:$dst, (loadi16 addr:$src))]>, OpSize;
def MOV32rm : I<0x8B, MRMSrcMem, (outs GR32:$dst), (ins i32mem:$src),
"mov{l}\t{$src, $dst|$dst, $src}",
[(set GR32:$dst, (loadi32 addr:$src))]>;
}
def MOV8mr : I<0x88, MRMDestMem, (outs), (ins i8mem :$dst, GR8 :$src),
"mov{b}\t{$src, $dst|$dst, $src}",
[(store GR8:$src, addr:$dst)]>;
def MOV16mr : I<0x89, MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src),
"mov{w}\t{$src, $dst|$dst, $src}",
[(store GR16:$src, addr:$dst)]>, OpSize;
def MOV32mr : I<0x89, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src),
"mov{l}\t{$src, $dst|$dst, $src}",
[(store GR32:$src, addr:$dst)]>;
/// Versions of MOV32rr, MOV32rm, and MOV32mr for i32mem_TC and GR32_TC.
let neverHasSideEffects = 1 in
def MOV32rr_TC : I<0x89, MRMDestReg, (outs GR32_TC:$dst), (ins GR32_TC:$src),
"mov{l}\t{$src, $dst|$dst, $src}", []>;
let mayLoad = 1,
canFoldAsLoad = 1, isReMaterializable = 1 in
def MOV32rm_TC : I<0x8B, MRMSrcMem, (outs GR32_TC:$dst), (ins i32mem_TC:$src),
"mov{l}\t{$src, $dst|$dst, $src}",
[]>;
let mayStore = 1 in
def MOV32mr_TC : I<0x89, MRMDestMem, (outs), (ins i32mem_TC:$dst, GR32_TC:$src),
"mov{l}\t{$src, $dst|$dst, $src}",
[]>;
// Versions of MOV8rr, MOV8mr, and MOV8rm that use i8mem_NOREX and GR8_NOREX so
// that they can be used for copying and storing h registers, which can't be
// encoded when a REX prefix is present.
let neverHasSideEffects = 1 in
def MOV8rr_NOREX : I<0x88, MRMDestReg,
(outs GR8_NOREX:$dst), (ins GR8_NOREX:$src),
"mov{b}\t{$src, $dst|$dst, $src} # NOREX", []>;
let mayStore = 1 in
def MOV8mr_NOREX : I<0x88, MRMDestMem,
(outs), (ins i8mem_NOREX:$dst, GR8_NOREX:$src),
"mov{b}\t{$src, $dst|$dst, $src} # NOREX", []>;
let mayLoad = 1,
canFoldAsLoad = 1, isReMaterializable = 1 in
def MOV8rm_NOREX : I<0x8A, MRMSrcMem,
(outs GR8_NOREX:$dst), (ins i8mem_NOREX:$src),
"mov{b}\t{$src, $dst|$dst, $src} # NOREX", []>;
// Moves to and from debug registers
def MOV32rd : I<0x21, MRMDestReg, (outs GR32:$dst), (ins DEBUG_REG:$src),
"mov{l}\t{$src, $dst|$dst, $src}", []>, TB;
def MOV32dr : I<0x23, MRMSrcReg, (outs DEBUG_REG:$dst), (ins GR32:$src),
"mov{l}\t{$src, $dst|$dst, $src}", []>, TB;
// Moves to and from control registers
def MOV32rc : I<0x20, MRMDestReg, (outs GR32:$dst), (ins CONTROL_REG:$src),
"mov{l}\t{$src, $dst|$dst, $src}", []>, TB;
def MOV32cr : I<0x22, MRMSrcReg, (outs CONTROL_REG:$dst), (ins GR32:$src),
"mov{l}\t{$src, $dst|$dst, $src}", []>, TB;
//===----------------------------------------------------------------------===//
// Fixed-Register Multiplication and Division Instructions...
//
// Extra precision multiplication
// AL is really implied by AX, by the registers in Defs must match the
// SDNode results (i8, i32).
let Defs = [AL,EFLAGS,AX], Uses = [AL] in
def MUL8r : I<0xF6, MRM4r, (outs), (ins GR8:$src), "mul{b}\t$src",
// FIXME: Used for 8-bit mul, ignore result upper 8 bits.
// This probably ought to be moved to a def : Pat<> if the
// syntax can be accepted.
[(set AL, (mul AL, GR8:$src)),
(implicit EFLAGS)]>; // AL,AH = AL*GR8
let Defs = [AX,DX,EFLAGS], Uses = [AX], neverHasSideEffects = 1 in
def MUL16r : I<0xF7, MRM4r, (outs), (ins GR16:$src),
"mul{w}\t$src",
[]>, OpSize; // AX,DX = AX*GR16
let Defs = [EAX,EDX,EFLAGS], Uses = [EAX], neverHasSideEffects = 1 in
def MUL32r : I<0xF7, MRM4r, (outs), (ins GR32:$src),
"mul{l}\t$src",
[]>; // EAX,EDX = EAX*GR32
let Defs = [AL,EFLAGS,AX], Uses = [AL] in
def MUL8m : I<0xF6, MRM4m, (outs), (ins i8mem :$src),
"mul{b}\t$src",
// FIXME: Used for 8-bit mul, ignore result upper 8 bits.
// This probably ought to be moved to a def : Pat<> if the
// syntax can be accepted.
[(set AL, (mul AL, (loadi8 addr:$src))),
(implicit EFLAGS)]>; // AL,AH = AL*[mem8]
let mayLoad = 1, neverHasSideEffects = 1 in {
let Defs = [AX,DX,EFLAGS], Uses = [AX] in
def MUL16m : I<0xF7, MRM4m, (outs), (ins i16mem:$src),
"mul{w}\t$src",
[]>, OpSize; // AX,DX = AX*[mem16]
let Defs = [EAX,EDX,EFLAGS], Uses = [EAX] in
def MUL32m : I<0xF7, MRM4m, (outs), (ins i32mem:$src),
"mul{l}\t$src",
[]>; // EAX,EDX = EAX*[mem32]
}
let neverHasSideEffects = 1 in {
let Defs = [AL,EFLAGS,AX], Uses = [AL] in
def IMUL8r : I<0xF6, MRM5r, (outs), (ins GR8:$src), "imul{b}\t$src", []>;
// AL,AH = AL*GR8
let Defs = [AX,DX,EFLAGS], Uses = [AX] in
def IMUL16r : I<0xF7, MRM5r, (outs), (ins GR16:$src), "imul{w}\t$src", []>,
OpSize; // AX,DX = AX*GR16
let Defs = [EAX,EDX,EFLAGS], Uses = [EAX] in
def IMUL32r : I<0xF7, MRM5r, (outs), (ins GR32:$src), "imul{l}\t$src", []>;
// EAX,EDX = EAX*GR32
let mayLoad = 1 in {
let Defs = [AL,EFLAGS,AX], Uses = [AL] in
def IMUL8m : I<0xF6, MRM5m, (outs), (ins i8mem :$src),
"imul{b}\t$src", []>; // AL,AH = AL*[mem8]
let Defs = [AX,DX,EFLAGS], Uses = [AX] in
def IMUL16m : I<0xF7, MRM5m, (outs), (ins i16mem:$src),
"imul{w}\t$src", []>, OpSize; // AX,DX = AX*[mem16]
let Defs = [EAX,EDX,EFLAGS], Uses = [EAX] in
def IMUL32m : I<0xF7, MRM5m, (outs), (ins i32mem:$src),
"imul{l}\t$src", []>; // EAX,EDX = EAX*[mem32]
}
} // neverHasSideEffects
// unsigned division/remainder
let Defs = [AL,EFLAGS,AX], Uses = [AX] in
def DIV8r : I<0xF6, MRM6r, (outs), (ins GR8:$src), // AX/r8 = AL,AH
"div{b}\t$src", []>;
let Defs = [AX,DX,EFLAGS], Uses = [AX,DX] in
def DIV16r : I<0xF7, MRM6r, (outs), (ins GR16:$src), // DX:AX/r16 = AX,DX
"div{w}\t$src", []>, OpSize;
let Defs = [EAX,EDX,EFLAGS], Uses = [EAX,EDX] in
def DIV32r : I<0xF7, MRM6r, (outs), (ins GR32:$src), // EDX:EAX/r32 = EAX,EDX
"div{l}\t$src", []>;
let mayLoad = 1 in {
let Defs = [AL,EFLAGS,AX], Uses = [AX] in
def DIV8m : I<0xF6, MRM6m, (outs), (ins i8mem:$src), // AX/[mem8] = AL,AH
"div{b}\t$src", []>;
let Defs = [AX,DX,EFLAGS], Uses = [AX,DX] in
def DIV16m : I<0xF7, MRM6m, (outs), (ins i16mem:$src), // DX:AX/[mem16] = AX,DX
"div{w}\t$src", []>, OpSize;
let Defs = [EAX,EDX,EFLAGS], Uses = [EAX,EDX] in
// EDX:EAX/[mem32] = EAX,EDX
def DIV32m : I<0xF7, MRM6m, (outs), (ins i32mem:$src),
"div{l}\t$src", []>;
}
// Signed division/remainder.
let Defs = [AL,EFLAGS,AX], Uses = [AX] in
def IDIV8r : I<0xF6, MRM7r, (outs), (ins GR8:$src), // AX/r8 = AL,AH
"idiv{b}\t$src", []>;
let Defs = [AX,DX,EFLAGS], Uses = [AX,DX] in
def IDIV16r: I<0xF7, MRM7r, (outs), (ins GR16:$src), // DX:AX/r16 = AX,DX
"idiv{w}\t$src", []>, OpSize;
let Defs = [EAX,EDX,EFLAGS], Uses = [EAX,EDX] in
def IDIV32r: I<0xF7, MRM7r, (outs), (ins GR32:$src), // EDX:EAX/r32 = EAX,EDX
"idiv{l}\t$src", []>;
let mayLoad = 1, mayLoad = 1 in {
let Defs = [AL,EFLAGS,AX], Uses = [AX] in
def IDIV8m : I<0xF6, MRM7m, (outs), (ins i8mem:$src), // AX/[mem8] = AL,AH
"idiv{b}\t$src", []>;
let Defs = [AX,DX,EFLAGS], Uses = [AX,DX] in
def IDIV16m: I<0xF7, MRM7m, (outs), (ins i16mem:$src), // DX:AX/[mem16] = AX,DX
"idiv{w}\t$src", []>, OpSize;
let Defs = [EAX,EDX,EFLAGS], Uses = [EAX,EDX] in
def IDIV32m: I<0xF7, MRM7m, (outs), (ins i32mem:$src),
// EDX:EAX/[mem32] = EAX,EDX
"idiv{l}\t$src", []>;
}
//===----------------------------------------------------------------------===//
// Two address Instructions.
//
let isTwoAddress = 1 in {
// Conditional moves
let Uses = [EFLAGS] in {
let Predicates = [HasCMov] in {
let isCommutable = 1 in {
def CMOVB16rr : I<0x42, MRMSrcReg, // if <u, GR16 = GR16
(outs GR16:$dst), (ins GR16:$src1, GR16:$src2),
"cmovb{w}\t{$src2, $dst|$dst, $src2}",
[(set GR16:$dst, (X86cmov GR16:$src1, GR16:$src2,
X86_COND_B, EFLAGS))]>,
TB, OpSize;
def CMOVB32rr : I<0x42, MRMSrcReg, // if <u, GR32 = GR32
(outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"cmovb{l}\t{$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (X86cmov GR32:$src1, GR32:$src2,
X86_COND_B, EFLAGS))]>,
TB;
def CMOVAE16rr: I<0x43, MRMSrcReg, // if >=u, GR16 = GR16
(outs GR16:$dst), (ins GR16:$src1, GR16:$src2),
"cmovae{w}\t{$src2, $dst|$dst, $src2}",
[(set GR16:$dst, (X86cmov GR16:$src1, GR16:$src2,
X86_COND_AE, EFLAGS))]>,
TB, OpSize;
def CMOVAE32rr: I<0x43, MRMSrcReg, // if >=u, GR32 = GR32
(outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"cmovae{l}\t{$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (X86cmov GR32:$src1, GR32:$src2,
X86_COND_AE, EFLAGS))]>,
TB;
def CMOVE16rr : I<0x44, MRMSrcReg, // if ==, GR16 = GR16
(outs GR16:$dst), (ins GR16:$src1, GR16:$src2),
"cmove{w}\t{$src2, $dst|$dst, $src2}",
[(set GR16:$dst, (X86cmov GR16:$src1, GR16:$src2,
X86_COND_E, EFLAGS))]>,
TB, OpSize;
def CMOVE32rr : I<0x44, MRMSrcReg, // if ==, GR32 = GR32
(outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"cmove{l}\t{$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (X86cmov GR32:$src1, GR32:$src2,
X86_COND_E, EFLAGS))]>,
TB;
def CMOVNE16rr: I<0x45, MRMSrcReg, // if !=, GR16 = GR16
(outs GR16:$dst), (ins GR16:$src1, GR16:$src2),
"cmovne{w}\t{$src2, $dst|$dst, $src2}",
[(set GR16:$dst, (X86cmov GR16:$src1, GR16:$src2,
X86_COND_NE, EFLAGS))]>,
TB, OpSize;
def CMOVNE32rr: I<0x45, MRMSrcReg, // if !=, GR32 = GR32
(outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"cmovne{l}\t{$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (X86cmov GR32:$src1, GR32:$src2,
X86_COND_NE, EFLAGS))]>,
TB;
def CMOVBE16rr: I<0x46, MRMSrcReg, // if <=u, GR16 = GR16
(outs GR16:$dst), (ins GR16:$src1, GR16:$src2),
"cmovbe{w}\t{$src2, $dst|$dst, $src2}",
[(set GR16:$dst, (X86cmov GR16:$src1, GR16:$src2,
X86_COND_BE, EFLAGS))]>,
TB, OpSize;
def CMOVBE32rr: I<0x46, MRMSrcReg, // if <=u, GR32 = GR32
(outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"cmovbe{l}\t{$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (X86cmov GR32:$src1, GR32:$src2,
X86_COND_BE, EFLAGS))]>,
TB;
def CMOVA16rr : I<0x47, MRMSrcReg, // if >u, GR16 = GR16
(outs GR16:$dst), (ins GR16:$src1, GR16:$src2),
"cmova{w}\t{$src2, $dst|$dst, $src2}",
[(set GR16:$dst, (X86cmov GR16:$src1, GR16:$src2,
X86_COND_A, EFLAGS))]>,
TB, OpSize;
def CMOVA32rr : I<0x47, MRMSrcReg, // if >u, GR32 = GR32
(outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"cmova{l}\t{$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (X86cmov GR32:$src1, GR32:$src2,
X86_COND_A, EFLAGS))]>,
TB;
def CMOVL16rr : I<0x4C, MRMSrcReg, // if <s, GR16 = GR16
(outs GR16:$dst), (ins GR16:$src1, GR16:$src2),
"cmovl{w}\t{$src2, $dst|$dst, $src2}",
[(set GR16:$dst, (X86cmov GR16:$src1, GR16:$src2,
X86_COND_L, EFLAGS))]>,
TB, OpSize;
def CMOVL32rr : I<0x4C, MRMSrcReg, // if <s, GR32 = GR32
(outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"cmovl{l}\t{$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (X86cmov GR32:$src1, GR32:$src2,
X86_COND_L, EFLAGS))]>,
TB;
def CMOVGE16rr: I<0x4D, MRMSrcReg, // if >=s, GR16 = GR16
(outs GR16:$dst), (ins GR16:$src1, GR16:$src2),
"cmovge{w}\t{$src2, $dst|$dst, $src2}",
[(set GR16:$dst, (X86cmov GR16:$src1, GR16:$src2,
X86_COND_GE, EFLAGS))]>,
TB, OpSize;
def CMOVGE32rr: I<0x4D, MRMSrcReg, // if >=s, GR32 = GR32
(outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"cmovge{l}\t{$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (X86cmov GR32:$src1, GR32:$src2,
X86_COND_GE, EFLAGS))]>,
TB;
def CMOVLE16rr: I<0x4E, MRMSrcReg, // if <=s, GR16 = GR16
(outs GR16:$dst), (ins GR16:$src1, GR16:$src2),
"cmovle{w}\t{$src2, $dst|$dst, $src2}",
[(set GR16:$dst, (X86cmov GR16:$src1, GR16:$src2,
X86_COND_LE, EFLAGS))]>,
TB, OpSize;
def CMOVLE32rr: I<0x4E, MRMSrcReg, // if <=s, GR32 = GR32
(outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"cmovle{l}\t{$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (X86cmov GR32:$src1, GR32:$src2,
X86_COND_LE, EFLAGS))]>,
TB;
def CMOVG16rr : I<0x4F, MRMSrcReg, // if >s, GR16 = GR16
(outs GR16:$dst), (ins GR16:$src1, GR16:$src2),
"cmovg{w}\t{$src2, $dst|$dst, $src2}",
[(set GR16:$dst, (X86cmov GR16:$src1, GR16:$src2,
X86_COND_G, EFLAGS))]>,
TB, OpSize;
def CMOVG32rr : I<0x4F, MRMSrcReg, // if >s, GR32 = GR32
(outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"cmovg{l}\t{$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (X86cmov GR32:$src1, GR32:$src2,
X86_COND_G, EFLAGS))]>,
TB;
def CMOVS16rr : I<0x48, MRMSrcReg, // if signed, GR16 = GR16
(outs GR16:$dst), (ins GR16:$src1, GR16:$src2),
"cmovs{w}\t{$src2, $dst|$dst, $src2}",
[(set GR16:$dst, (X86cmov GR16:$src1, GR16:$src2,
X86_COND_S, EFLAGS))]>,
TB, OpSize;
def CMOVS32rr : I<0x48, MRMSrcReg, // if signed, GR32 = GR32
(outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"cmovs{l}\t{$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (X86cmov GR32:$src1, GR32:$src2,
X86_COND_S, EFLAGS))]>,
TB;
def CMOVNS16rr: I<0x49, MRMSrcReg, // if !signed, GR16 = GR16
(outs GR16:$dst), (ins GR16:$src1, GR16:$src2),
"cmovns{w}\t{$src2, $dst|$dst, $src2}",
[(set GR16:$dst, (X86cmov GR16:$src1, GR16:$src2,
X86_COND_NS, EFLAGS))]>,
TB, OpSize;
def CMOVNS32rr: I<0x49, MRMSrcReg, // if !signed, GR32 = GR32
(outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"cmovns{l}\t{$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (X86cmov GR32:$src1, GR32:$src2,
X86_COND_NS, EFLAGS))]>,
TB;
def CMOVP16rr : I<0x4A, MRMSrcReg, // if parity, GR16 = GR16
(outs GR16:$dst), (ins GR16:$src1, GR16:$src2),
"cmovp{w}\t{$src2, $dst|$dst, $src2}",
[(set GR16:$dst, (X86cmov GR16:$src1, GR16:$src2,
X86_COND_P, EFLAGS))]>,
TB, OpSize;
def CMOVP32rr : I<0x4A, MRMSrcReg, // if parity, GR32 = GR32
(outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"cmovp{l}\t{$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (X86cmov GR32:$src1, GR32:$src2,
X86_COND_P, EFLAGS))]>,
TB;
def CMOVNP16rr : I<0x4B, MRMSrcReg, // if !parity, GR16 = GR16
(outs GR16:$dst), (ins GR16:$src1, GR16:$src2),
"cmovnp{w}\t{$src2, $dst|$dst, $src2}",
[(set GR16:$dst, (X86cmov GR16:$src1, GR16:$src2,
X86_COND_NP, EFLAGS))]>,
TB, OpSize;
def CMOVNP32rr : I<0x4B, MRMSrcReg, // if !parity, GR32 = GR32
(outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"cmovnp{l}\t{$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (X86cmov GR32:$src1, GR32:$src2,
X86_COND_NP, EFLAGS))]>,
TB;
def CMOVO16rr : I<0x40, MRMSrcReg, // if overflow, GR16 = GR16
(outs GR16:$dst), (ins GR16:$src1, GR16:$src2),
"cmovo{w}\t{$src2, $dst|$dst, $src2}",
[(set GR16:$dst, (X86cmov GR16:$src1, GR16:$src2,
X86_COND_O, EFLAGS))]>,
TB, OpSize;
def CMOVO32rr : I<0x40, MRMSrcReg, // if overflow, GR32 = GR32
(outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"cmovo{l}\t{$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (X86cmov GR32:$src1, GR32:$src2,
X86_COND_O, EFLAGS))]>,
TB;
def CMOVNO16rr : I<0x41, MRMSrcReg, // if !overflow, GR16 = GR16
(outs GR16:$dst), (ins GR16:$src1, GR16:$src2),
"cmovno{w}\t{$src2, $dst|$dst, $src2}",
[(set GR16:$dst, (X86cmov GR16:$src1, GR16:$src2,
X86_COND_NO, EFLAGS))]>,
TB, OpSize;
def CMOVNO32rr : I<0x41, MRMSrcReg, // if !overflow, GR32 = GR32
(outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"cmovno{l}\t{$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (X86cmov GR32:$src1, GR32:$src2,
X86_COND_NO, EFLAGS))]>,
TB;
} // isCommutable = 1
def CMOVB16rm : I<0x42, MRMSrcMem, // if <u, GR16 = [mem16]
(outs GR16:$dst), (ins GR16:$src1, i16mem:$src2),
"cmovb{w}\t{$src2, $dst|$dst, $src2}",
[(set GR16:$dst, (X86cmov GR16:$src1, (loadi16 addr:$src2),
X86_COND_B, EFLAGS))]>,
TB, OpSize;
def CMOVB32rm : I<0x42, MRMSrcMem, // if <u, GR32 = [mem32]
(outs GR32:$dst), (ins GR32:$src1, i32mem:$src2),
"cmovb{l}\t{$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (X86cmov GR32:$src1, (loadi32 addr:$src2),
X86_COND_B, EFLAGS))]>,
TB;
def CMOVAE16rm: I<0x43, MRMSrcMem, // if >=u, GR16 = [mem16]
(outs GR16:$dst), (ins GR16:$src1, i16mem:$src2),
"cmovae{w}\t{$src2, $dst|$dst, $src2}",
[(set GR16:$dst, (X86cmov GR16:$src1, (loadi16 addr:$src2),
X86_COND_AE, EFLAGS))]>,
TB, OpSize;
def CMOVAE32rm: I<0x43, MRMSrcMem, // if >=u, GR32 = [mem32]
(outs GR32:$dst), (ins GR32:$src1, i32mem:$src2),
"cmovae{l}\t{$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (X86cmov GR32:$src1, (loadi32 addr:$src2),
X86_COND_AE, EFLAGS))]>,
TB;
def CMOVE16rm : I<0x44, MRMSrcMem, // if ==, GR16 = [mem16]
(outs GR16:$dst), (ins GR16:$src1, i16mem:$src2),
"cmove{w}\t{$src2, $dst|$dst, $src2}",
[(set GR16:$dst, (X86cmov GR16:$src1, (loadi16 addr:$src2),
X86_COND_E, EFLAGS))]>,
TB, OpSize;
def CMOVE32rm : I<0x44, MRMSrcMem, // if ==, GR32 = [mem32]
(outs GR32:$dst), (ins GR32:$src1, i32mem:$src2),
"cmove{l}\t{$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (X86cmov GR32:$src1, (loadi32 addr:$src2),
X86_COND_E, EFLAGS))]>,
TB;
def CMOVNE16rm: I<0x45, MRMSrcMem, // if !=, GR16 = [mem16]
(outs GR16:$dst), (ins GR16:$src1, i16mem:$src2),
"cmovne{w}\t{$src2, $dst|$dst, $src2}",
[(set GR16:$dst, (X86cmov GR16:$src1, (loadi16 addr:$src2),
X86_COND_NE, EFLAGS))]>,
TB, OpSize;
def CMOVNE32rm: I<0x45, MRMSrcMem, // if !=, GR32 = [mem32]
(outs GR32:$dst), (ins GR32:$src1, i32mem:$src2),
"cmovne{l}\t{$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (X86cmov GR32:$src1, (loadi32 addr:$src2),
X86_COND_NE, EFLAGS))]>,
TB;
def CMOVBE16rm: I<0x46, MRMSrcMem, // if <=u, GR16 = [mem16]
(outs GR16:$dst), (ins GR16:$src1, i16mem:$src2),
"cmovbe{w}\t{$src2, $dst|$dst, $src2}",
[(set GR16:$dst, (X86cmov GR16:$src1, (loadi16 addr:$src2),
X86_COND_BE, EFLAGS))]>,
TB, OpSize;
def CMOVBE32rm: I<0x46, MRMSrcMem, // if <=u, GR32 = [mem32]
(outs GR32:$dst), (ins GR32:$src1, i32mem:$src2),
"cmovbe{l}\t{$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (X86cmov GR32:$src1, (loadi32 addr:$src2),
X86_COND_BE, EFLAGS))]>,
TB;
def CMOVA16rm : I<0x47, MRMSrcMem, // if >u, GR16 = [mem16]
(outs GR16:$dst), (ins GR16:$src1, i16mem:$src2),
"cmova{w}\t{$src2, $dst|$dst, $src2}",
[(set GR16:$dst, (X86cmov GR16:$src1, (loadi16 addr:$src2),
X86_COND_A, EFLAGS))]>,
TB, OpSize;
def CMOVA32rm : I<0x47, MRMSrcMem, // if >u, GR32 = [mem32]
(outs GR32:$dst), (ins GR32:$src1, i32mem:$src2),
"cmova{l}\t{$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (X86cmov GR32:$src1, (loadi32 addr:$src2),
X86_COND_A, EFLAGS))]>,
TB;
def CMOVL16rm : I<0x4C, MRMSrcMem, // if <s, GR16 = [mem16]
(outs GR16:$dst), (ins GR16:$src1, i16mem:$src2),
"cmovl{w}\t{$src2, $dst|$dst, $src2}",
[(set GR16:$dst, (X86cmov GR16:$src1, (loadi16 addr:$src2),
X86_COND_L, EFLAGS))]>,
TB, OpSize;
def CMOVL32rm : I<0x4C, MRMSrcMem, // if <s, GR32 = [mem32]
(outs GR32:$dst), (ins GR32:$src1, i32mem:$src2),
"cmovl{l}\t{$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (X86cmov GR32:$src1, (loadi32 addr:$src2),
X86_COND_L, EFLAGS))]>,
TB;
def CMOVGE16rm: I<0x4D, MRMSrcMem, // if >=s, GR16 = [mem16]
(outs GR16:$dst), (ins GR16:$src1, i16mem:$src2),
"cmovge{w}\t{$src2, $dst|$dst, $src2}",
[(set GR16:$dst, (X86cmov GR16:$src1, (loadi16 addr:$src2),
X86_COND_GE, EFLAGS))]>,
TB, OpSize;
def CMOVGE32rm: I<0x4D, MRMSrcMem, // if >=s, GR32 = [mem32]
(outs GR32:$dst), (ins GR32:$src1, i32mem:$src2),
"cmovge{l}\t{$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (X86cmov GR32:$src1, (loadi32 addr:$src2),
X86_COND_GE, EFLAGS))]>,
TB;
def CMOVLE16rm: I<0x4E, MRMSrcMem, // if <=s, GR16 = [mem16]
(outs GR16:$dst), (ins GR16:$src1, i16mem:$src2),
"cmovle{w}\t{$src2, $dst|$dst, $src2}",
[(set GR16:$dst, (X86cmov GR16:$src1, (loadi16 addr:$src2),
X86_COND_LE, EFLAGS))]>,
TB, OpSize;
def CMOVLE32rm: I<0x4E, MRMSrcMem, // if <=s, GR32 = [mem32]
(outs GR32:$dst), (ins GR32:$src1, i32mem:$src2),
"cmovle{l}\t{$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (X86cmov GR32:$src1, (loadi32 addr:$src2),
X86_COND_LE, EFLAGS))]>,
TB;
def CMOVG16rm : I<0x4F, MRMSrcMem, // if >s, GR16 = [mem16]
(outs GR16:$dst), (ins GR16:$src1, i16mem:$src2),
"cmovg{w}\t{$src2, $dst|$dst, $src2}",
[(set GR16:$dst, (X86cmov GR16:$src1, (loadi16 addr:$src2),
X86_COND_G, EFLAGS))]>,
TB, OpSize;
def CMOVG32rm : I<0x4F, MRMSrcMem, // if >s, GR32 = [mem32]
(outs GR32:$dst), (ins GR32:$src1, i32mem:$src2),
"cmovg{l}\t{$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (X86cmov GR32:$src1, (loadi32 addr:$src2),
X86_COND_G, EFLAGS))]>,
TB;
def CMOVS16rm : I<0x48, MRMSrcMem, // if signed, GR16 = [mem16]
(outs GR16:$dst), (ins GR16:$src1, i16mem:$src2),
"cmovs{w}\t{$src2, $dst|$dst, $src2}",
[(set GR16:$dst, (X86cmov GR16:$src1, (loadi16 addr:$src2),
X86_COND_S, EFLAGS))]>,
TB, OpSize;
def CMOVS32rm : I<0x48, MRMSrcMem, // if signed, GR32 = [mem32]
(outs GR32:$dst), (ins GR32:$src1, i32mem:$src2),
"cmovs{l}\t{$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (X86cmov GR32:$src1, (loadi32 addr:$src2),
X86_COND_S, EFLAGS))]>,
TB;
def CMOVNS16rm: I<0x49, MRMSrcMem, // if !signed, GR16 = [mem16]
(outs GR16:$dst), (ins GR16:$src1, i16mem:$src2),
"cmovns{w}\t{$src2, $dst|$dst, $src2}",
[(set GR16:$dst, (X86cmov GR16:$src1, (loadi16 addr:$src2),
X86_COND_NS, EFLAGS))]>,
TB, OpSize;
def CMOVNS32rm: I<0x49, MRMSrcMem, // if !signed, GR32 = [mem32]
(outs GR32:$dst), (ins GR32:$src1, i32mem:$src2),
"cmovns{l}\t{$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (X86cmov GR32:$src1, (loadi32 addr:$src2),
X86_COND_NS, EFLAGS))]>,
TB;
def CMOVP16rm : I<0x4A, MRMSrcMem, // if parity, GR16 = [mem16]
(outs GR16:$dst), (ins GR16:$src1, i16mem:$src2),
"cmovp{w}\t{$src2, $dst|$dst, $src2}",
[(set GR16:$dst, (X86cmov GR16:$src1, (loadi16 addr:$src2),
X86_COND_P, EFLAGS))]>,
TB, OpSize;
def CMOVP32rm : I<0x4A, MRMSrcMem, // if parity, GR32 = [mem32]
(outs GR32:$dst), (ins GR32:$src1, i32mem:$src2),
"cmovp{l}\t{$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (X86cmov GR32:$src1, (loadi32 addr:$src2),
X86_COND_P, EFLAGS))]>,
TB;
def CMOVNP16rm : I<0x4B, MRMSrcMem, // if !parity, GR16 = [mem16]
(outs GR16:$dst), (ins GR16:$src1, i16mem:$src2),
"cmovnp{w}\t{$src2, $dst|$dst, $src2}",
[(set GR16:$dst, (X86cmov GR16:$src1, (loadi16 addr:$src2),
X86_COND_NP, EFLAGS))]>,
TB, OpSize;
def CMOVNP32rm : I<0x4B, MRMSrcMem, // if !parity, GR32 = [mem32]
(outs GR32:$dst), (ins GR32:$src1, i32mem:$src2),
"cmovnp{l}\t{$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (X86cmov GR32:$src1, (loadi32 addr:$src2),
X86_COND_NP, EFLAGS))]>,
TB;
def CMOVO16rm : I<0x40, MRMSrcMem, // if overflow, GR16 = [mem16]
(outs GR16:$dst), (ins GR16:$src1, i16mem:$src2),
"cmovo{w}\t{$src2, $dst|$dst, $src2}",
[(set GR16:$dst, (X86cmov GR16:$src1, (loadi16 addr:$src2),
X86_COND_O, EFLAGS))]>,
TB, OpSize;
def CMOVO32rm : I<0x40, MRMSrcMem, // if overflow, GR32 = [mem32]
(outs GR32:$dst), (ins GR32:$src1, i32mem:$src2),
"cmovo{l}\t{$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (X86cmov GR32:$src1, (loadi32 addr:$src2),
X86_COND_O, EFLAGS))]>,
TB;
def CMOVNO16rm : I<0x41, MRMSrcMem, // if !overflow, GR16 = [mem16]
(outs GR16:$dst), (ins GR16:$src1, i16mem:$src2),
"cmovno{w}\t{$src2, $dst|$dst, $src2}",
[(set GR16:$dst, (X86cmov GR16:$src1, (loadi16 addr:$src2),
X86_COND_NO, EFLAGS))]>,
TB, OpSize;
def CMOVNO32rm : I<0x41, MRMSrcMem, // if !overflow, GR32 = [mem32]
(outs GR32:$dst), (ins GR32:$src1, i32mem:$src2),
"cmovno{l}\t{$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (X86cmov GR32:$src1, (loadi32 addr:$src2),
X86_COND_NO, EFLAGS))]>,
TB;
} // Predicates = [HasCMov]
// X86 doesn't have 8-bit conditional moves. Use a customInserter to
// emit control flow. An alternative to this is to mark i8 SELECT as Promote,
// however that requires promoting the operands, and can induce additional
// i8 register pressure. Note that CMOV_GR8 is conservatively considered to
// clobber EFLAGS, because if one of the operands is zero, the expansion
// could involve an xor.
let usesCustomInserter = 1, isTwoAddress = 0, Defs = [EFLAGS] in {
def CMOV_GR8 : I<0, Pseudo,
(outs GR8:$dst), (ins GR8:$src1, GR8:$src2, i8imm:$cond),
"#CMOV_GR8 PSEUDO!",
[(set GR8:$dst, (X86cmov GR8:$src1, GR8:$src2,
imm:$cond, EFLAGS))]>;
let Predicates = [NoCMov] in {
def CMOV_GR32 : I<0, Pseudo,
(outs GR32:$dst), (ins GR32:$src1, GR32:$src2, i8imm:$cond),
"#CMOV_GR32* PSEUDO!",
[(set GR32:$dst,
(X86cmov GR32:$src1, GR32:$src2, imm:$cond, EFLAGS))]>;
def CMOV_GR16 : I<0, Pseudo,
(outs GR16:$dst), (ins GR16:$src1, GR16:$src2, i8imm:$cond),
"#CMOV_GR16* PSEUDO!",
[(set GR16:$dst,
(X86cmov GR16:$src1, GR16:$src2, imm:$cond, EFLAGS))]>;
def CMOV_RFP32 : I<0, Pseudo,
(outs RFP32:$dst), (ins RFP32:$src1, RFP32:$src2, i8imm:$cond),
"#CMOV_RFP32 PSEUDO!",
[(set RFP32:$dst, (X86cmov RFP32:$src1, RFP32:$src2, imm:$cond,
EFLAGS))]>;
def CMOV_RFP64 : I<0, Pseudo,
(outs RFP64:$dst), (ins RFP64:$src1, RFP64:$src2, i8imm:$cond),
"#CMOV_RFP64 PSEUDO!",
[(set RFP64:$dst, (X86cmov RFP64:$src1, RFP64:$src2, imm:$cond,
EFLAGS))]>;
def CMOV_RFP80 : I<0, Pseudo,
(outs RFP80:$dst), (ins RFP80:$src1, RFP80:$src2, i8imm:$cond),
"#CMOV_RFP80 PSEUDO!",
[(set RFP80:$dst, (X86cmov RFP80:$src1, RFP80:$src2, imm:$cond,
EFLAGS))]>;
} // Predicates = [NoCMov]
} // UsesCustomInserter = 1, isTwoAddress = 0, Defs = [EFLAGS]
} // Uses = [EFLAGS]
// unary instructions
let CodeSize = 2 in {
let Defs = [EFLAGS] in {
def NEG8r : I<0xF6, MRM3r, (outs GR8 :$dst), (ins GR8 :$src), "neg{b}\t$dst",
[(set GR8:$dst, (ineg GR8:$src)),
(implicit EFLAGS)]>;
def NEG16r : I<0xF7, MRM3r, (outs GR16:$dst), (ins GR16:$src), "neg{w}\t$dst",
[(set GR16:$dst, (ineg GR16:$src)),
(implicit EFLAGS)]>, OpSize;
def NEG32r : I<0xF7, MRM3r, (outs GR32:$dst), (ins GR32:$src), "neg{l}\t$dst",
[(set GR32:$dst, (ineg GR32:$src)),
(implicit EFLAGS)]>;
let isTwoAddress = 0 in {
def NEG8m : I<0xF6, MRM3m, (outs), (ins i8mem :$dst), "neg{b}\t$dst",
[(store (ineg (loadi8 addr:$dst)), addr:$dst),
(implicit EFLAGS)]>;
def NEG16m : I<0xF7, MRM3m, (outs), (ins i16mem:$dst), "neg{w}\t$dst",
[(store (ineg (loadi16 addr:$dst)), addr:$dst),
(implicit EFLAGS)]>, OpSize;
def NEG32m : I<0xF7, MRM3m, (outs), (ins i32mem:$dst), "neg{l}\t$dst",
[(store (ineg (loadi32 addr:$dst)), addr:$dst),
(implicit EFLAGS)]>;
}
} // Defs = [EFLAGS]
// Match xor -1 to not. Favors these over a move imm + xor to save code size.
let AddedComplexity = 15 in {
def NOT8r : I<0xF6, MRM2r, (outs GR8 :$dst), (ins GR8 :$src), "not{b}\t$dst",
[(set GR8:$dst, (not GR8:$src))]>;
def NOT16r : I<0xF7, MRM2r, (outs GR16:$dst), (ins GR16:$src), "not{w}\t$dst",
[(set GR16:$dst, (not GR16:$src))]>, OpSize;
def NOT32r : I<0xF7, MRM2r, (outs GR32:$dst), (ins GR32:$src), "not{l}\t$dst",
[(set GR32:$dst, (not GR32:$src))]>;
}
let isTwoAddress = 0 in {
def NOT8m : I<0xF6, MRM2m, (outs), (ins i8mem :$dst), "not{b}\t$dst",
[(store (not (loadi8 addr:$dst)), addr:$dst)]>;
def NOT16m : I<0xF7, MRM2m, (outs), (ins i16mem:$dst), "not{w}\t$dst",
[(store (not (loadi16 addr:$dst)), addr:$dst)]>, OpSize;
def NOT32m : I<0xF7, MRM2m, (outs), (ins i32mem:$dst), "not{l}\t$dst",
[(store (not (loadi32 addr:$dst)), addr:$dst)]>;
}
} // CodeSize
// TODO: inc/dec is slow for P4, but fast for Pentium-M.
let Defs = [EFLAGS] in {
let CodeSize = 2 in
def INC8r : I<0xFE, MRM0r, (outs GR8 :$dst), (ins GR8 :$src), "inc{b}\t$dst",
[(set GR8:$dst, EFLAGS, (X86inc_flag GR8:$src))]>;
let isConvertibleToThreeAddress = 1, CodeSize = 1 in { // Can xform into LEA.
def INC16r : I<0x40, AddRegFrm, (outs GR16:$dst), (ins GR16:$src),
"inc{w}\t$dst",
[(set GR16:$dst, EFLAGS, (X86inc_flag GR16:$src))]>,
OpSize, Requires<[In32BitMode]>;
def INC32r : I<0x40, AddRegFrm, (outs GR32:$dst), (ins GR32:$src),
"inc{l}\t$dst",
[(set GR32:$dst, EFLAGS, (X86inc_flag GR32:$src))]>,
Requires<[In32BitMode]>;
}
let isTwoAddress = 0, CodeSize = 2 in {
def INC8m : I<0xFE, MRM0m, (outs), (ins i8mem :$dst), "inc{b}\t$dst",
[(store (add (loadi8 addr:$dst), 1), addr:$dst),
(implicit EFLAGS)]>;
def INC16m : I<0xFF, MRM0m, (outs), (ins i16mem:$dst), "inc{w}\t$dst",
[(store (add (loadi16 addr:$dst), 1), addr:$dst),
(implicit EFLAGS)]>,
OpSize, Requires<[In32BitMode]>;
def INC32m : I<0xFF, MRM0m, (outs), (ins i32mem:$dst), "inc{l}\t$dst",
[(store (add (loadi32 addr:$dst), 1), addr:$dst),
(implicit EFLAGS)]>,
Requires<[In32BitMode]>;
}
let CodeSize = 2 in
def DEC8r : I<0xFE, MRM1r, (outs GR8 :$dst), (ins GR8 :$src), "dec{b}\t$dst",
[(set GR8:$dst, EFLAGS, (X86dec_flag GR8:$src))]>;
let isConvertibleToThreeAddress = 1, CodeSize = 1 in { // Can xform into LEA.
def DEC16r : I<0x48, AddRegFrm, (outs GR16:$dst), (ins GR16:$src),
"dec{w}\t$dst",
[(set GR16:$dst, EFLAGS, (X86dec_flag GR16:$src))]>,
OpSize, Requires<[In32BitMode]>;
def DEC32r : I<0x48, AddRegFrm, (outs GR32:$dst), (ins GR32:$src),
"dec{l}\t$dst",
[(set GR32:$dst, EFLAGS, (X86dec_flag GR32:$src))]>,
Requires<[In32BitMode]>;
}
let isTwoAddress = 0, CodeSize = 2 in {
def DEC8m : I<0xFE, MRM1m, (outs), (ins i8mem :$dst), "dec{b}\t$dst",
[(store (add (loadi8 addr:$dst), -1), addr:$dst),
(implicit EFLAGS)]>;
def DEC16m : I<0xFF, MRM1m, (outs), (ins i16mem:$dst), "dec{w}\t$dst",
[(store (add (loadi16 addr:$dst), -1), addr:$dst),
(implicit EFLAGS)]>,
OpSize, Requires<[In32BitMode]>;
def DEC32m : I<0xFF, MRM1m, (outs), (ins i32mem:$dst), "dec{l}\t$dst",
[(store (add (loadi32 addr:$dst), -1), addr:$dst),
(implicit EFLAGS)]>,
Requires<[In32BitMode]>;
}
} // Defs = [EFLAGS]
// Logical operators...
let Defs = [EFLAGS] in {
let isCommutable = 1 in { // X = AND Y, Z --> X = AND Z, Y
def AND8rr : I<0x20, MRMDestReg,
(outs GR8 :$dst), (ins GR8 :$src1, GR8 :$src2),
"and{b}\t{$src2, $dst|$dst, $src2}",
[(set GR8:$dst, EFLAGS, (X86and_flag GR8:$src1, GR8:$src2))]>;
def AND16rr : I<0x21, MRMDestReg,
(outs GR16:$dst), (ins GR16:$src1, GR16:$src2),
"and{w}\t{$src2, $dst|$dst, $src2}",
[(set GR16:$dst, EFLAGS, (X86and_flag GR16:$src1,
GR16:$src2))]>, OpSize;
def AND32rr : I<0x21, MRMDestReg,
(outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"and{l}\t{$src2, $dst|$dst, $src2}",
[(set GR32:$dst, EFLAGS, (X86and_flag GR32:$src1,
GR32:$src2))]>;
}
// AND instructions with the destination register in REG and the source register
// in R/M. Included for the disassembler.
def AND8rr_REV : I<0x22, MRMSrcReg, (outs GR8:$dst), (ins GR8:$src1, GR8:$src2),
"and{b}\t{$src2, $dst|$dst, $src2}", []>;
def AND16rr_REV : I<0x23, MRMSrcReg, (outs GR16:$dst),
(ins GR16:$src1, GR16:$src2),
"and{w}\t{$src2, $dst|$dst, $src2}", []>, OpSize;
def AND32rr_REV : I<0x23, MRMSrcReg, (outs GR32:$dst),
(ins GR32:$src1, GR32:$src2),
"and{l}\t{$src2, $dst|$dst, $src2}", []>;
def AND8rm : I<0x22, MRMSrcMem,
(outs GR8 :$dst), (ins GR8 :$src1, i8mem :$src2),
"and{b}\t{$src2, $dst|$dst, $src2}",
[(set GR8:$dst, EFLAGS, (X86and_flag GR8:$src1,
(loadi8 addr:$src2)))]>;
def AND16rm : I<0x23, MRMSrcMem,
(outs GR16:$dst), (ins GR16:$src1, i16mem:$src2),
"and{w}\t{$src2, $dst|$dst, $src2}",
[(set GR16:$dst, EFLAGS, (X86and_flag GR16:$src1,
(loadi16 addr:$src2)))]>,
OpSize;
def AND32rm : I<0x23, MRMSrcMem,
(outs GR32:$dst), (ins GR32:$src1, i32mem:$src2),
"and{l}\t{$src2, $dst|$dst, $src2}",
[(set GR32:$dst, EFLAGS, (X86and_flag GR32:$src1,
(loadi32 addr:$src2)))]>;
def AND8ri : Ii8<0x80, MRM4r,
(outs GR8 :$dst), (ins GR8 :$src1, i8imm :$src2),
"and{b}\t{$src2, $dst|$dst, $src2}",
[(set GR8:$dst, EFLAGS, (X86and_flag GR8:$src1,
imm:$src2))]>;
def AND16ri : Ii16<0x81, MRM4r,
(outs GR16:$dst), (ins GR16:$src1, i16imm:$src2),
"and{w}\t{$src2, $dst|$dst, $src2}",
[(set GR16:$dst, EFLAGS, (X86and_flag GR16:$src1,
imm:$src2))]>, OpSize;
def AND32ri : Ii32<0x81, MRM4r,
(outs GR32:$dst), (ins GR32:$src1, i32imm:$src2),
"and{l}\t{$src2, $dst|$dst, $src2}",
[(set GR32:$dst, EFLAGS, (X86and_flag GR32:$src1,
imm:$src2))]>;
def AND16ri8 : Ii8<0x83, MRM4r,
(outs GR16:$dst), (ins GR16:$src1, i16i8imm:$src2),
"and{w}\t{$src2, $dst|$dst, $src2}",
[(set GR16:$dst, EFLAGS, (X86and_flag GR16:$src1,
i16immSExt8:$src2))]>,
OpSize;
def AND32ri8 : Ii8<0x83, MRM4r,
(outs GR32:$dst), (ins GR32:$src1, i32i8imm:$src2),
"and{l}\t{$src2, $dst|$dst, $src2}",
[(set GR32:$dst, EFLAGS, (X86and_flag GR32:$src1,
i32immSExt8:$src2))]>;
let isTwoAddress = 0 in {
def AND8mr : I<0x20, MRMDestMem,
(outs), (ins i8mem :$dst, GR8 :$src),
"and{b}\t{$src, $dst|$dst, $src}",
[(store (and (load addr:$dst), GR8:$src), addr:$dst),
(implicit EFLAGS)]>;
def AND16mr : I<0x21, MRMDestMem,
(outs), (ins i16mem:$dst, GR16:$src),
"and{w}\t{$src, $dst|$dst, $src}",
[(store (and (load addr:$dst), GR16:$src), addr:$dst),
(implicit EFLAGS)]>,
OpSize;
def AND32mr : I<0x21, MRMDestMem,
(outs), (ins i32mem:$dst, GR32:$src),
"and{l}\t{$src, $dst|$dst, $src}",
[(store (and (load addr:$dst), GR32:$src), addr:$dst),
(implicit EFLAGS)]>;
def AND8mi : Ii8<0x80, MRM4m,
(outs), (ins i8mem :$dst, i8imm :$src),
"and{b}\t{$src, $dst|$dst, $src}",
[(store (and (loadi8 addr:$dst), imm:$src), addr:$dst),
(implicit EFLAGS)]>;
def AND16mi : Ii16<0x81, MRM4m,
(outs), (ins i16mem:$dst, i16imm:$src),
"and{w}\t{$src, $dst|$dst, $src}",
[(store (and (loadi16 addr:$dst), imm:$src), addr:$dst),
(implicit EFLAGS)]>,
OpSize;
def AND32mi : Ii32<0x81, MRM4m,
(outs), (ins i32mem:$dst, i32imm:$src),
"and{l}\t{$src, $dst|$dst, $src}",
[(store (and (loadi32 addr:$dst), imm:$src), addr:$dst),
(implicit EFLAGS)]>;
def AND16mi8 : Ii8<0x83, MRM4m,
(outs), (ins i16mem:$dst, i16i8imm :$src),
"and{w}\t{$src, $dst|$dst, $src}",
[(store (and (load addr:$dst), i16immSExt8:$src), addr:$dst),
(implicit EFLAGS)]>,
OpSize;
def AND32mi8 : Ii8<0x83, MRM4m,
(outs), (ins i32mem:$dst, i32i8imm :$src),
"and{l}\t{$src, $dst|$dst, $src}",
[(store (and (load addr:$dst), i32immSExt8:$src), addr:$dst),
(implicit EFLAGS)]>;
def AND8i8 : Ii8<0x24, RawFrm, (outs), (ins i8imm:$src),
"and{b}\t{$src, %al|%al, $src}", []>;
def AND16i16 : Ii16<0x25, RawFrm, (outs), (ins i16imm:$src),
"and{w}\t{$src, %ax|%ax, $src}", []>, OpSize;
def AND32i32 : Ii32<0x25, RawFrm, (outs), (ins i32imm:$src),
"and{l}\t{$src, %eax|%eax, $src}", []>;
}
let isCommutable = 1 in { // X = OR Y, Z --> X = OR Z, Y
def OR8rr : I<0x08, MRMDestReg, (outs GR8 :$dst),
(ins GR8 :$src1, GR8 :$src2),
"or{b}\t{$src2, $dst|$dst, $src2}",
[(set GR8:$dst, EFLAGS, (X86or_flag GR8:$src1, GR8:$src2))]>;
def OR16rr : I<0x09, MRMDestReg, (outs GR16:$dst),
(ins GR16:$src1, GR16:$src2),
"or{w}\t{$src2, $dst|$dst, $src2}",
[(set GR16:$dst, EFLAGS, (X86or_flag GR16:$src1,GR16:$src2))]>,
OpSize;
def OR32rr : I<0x09, MRMDestReg, (outs GR32:$dst),
(ins GR32:$src1, GR32:$src2),
"or{l}\t{$src2, $dst|$dst, $src2}",
[(set GR32:$dst, EFLAGS, (X86or_flag GR32:$src1,GR32:$src2))]>;
}
// OR instructions with the destination register in REG and the source register
// in R/M. Included for the disassembler.
def OR8rr_REV : I<0x0A, MRMSrcReg, (outs GR8:$dst), (ins GR8:$src1, GR8:$src2),
"or{b}\t{$src2, $dst|$dst, $src2}", []>;
def OR16rr_REV : I<0x0B, MRMSrcReg, (outs GR16:$dst),
(ins GR16:$src1, GR16:$src2),
"or{w}\t{$src2, $dst|$dst, $src2}", []>, OpSize;
def OR32rr_REV : I<0x0B, MRMSrcReg, (outs GR32:$dst),
(ins GR32:$src1, GR32:$src2),
"or{l}\t{$src2, $dst|$dst, $src2}", []>;
def OR8rm : I<0x0A, MRMSrcMem, (outs GR8 :$dst),
(ins GR8 :$src1, i8mem :$src2),
"or{b}\t{$src2, $dst|$dst, $src2}",
[(set GR8:$dst, EFLAGS, (X86or_flag GR8:$src1,
(load addr:$src2)))]>;
def OR16rm : I<0x0B, MRMSrcMem, (outs GR16:$dst),
(ins GR16:$src1, i16mem:$src2),
"or{w}\t{$src2, $dst|$dst, $src2}",
[(set GR16:$dst, EFLAGS, (X86or_flag GR16:$src1,
(load addr:$src2)))]>,
OpSize;
def OR32rm : I<0x0B, MRMSrcMem, (outs GR32:$dst),
(ins GR32:$src1, i32mem:$src2),
"or{l}\t{$src2, $dst|$dst, $src2}",
[(set GR32:$dst, EFLAGS, (X86or_flag GR32:$src1,
(load addr:$src2)))]>;
def OR8ri : Ii8 <0x80, MRM1r, (outs GR8 :$dst),
(ins GR8 :$src1, i8imm:$src2),
"or{b}\t{$src2, $dst|$dst, $src2}",
[(set GR8:$dst,EFLAGS, (X86or_flag GR8:$src1, imm:$src2))]>;
def OR16ri : Ii16<0x81, MRM1r, (outs GR16:$dst),
(ins GR16:$src1, i16imm:$src2),
"or{w}\t{$src2, $dst|$dst, $src2}",
[(set GR16:$dst, EFLAGS, (X86or_flag GR16:$src1,
imm:$src2))]>, OpSize;
def OR32ri : Ii32<0x81, MRM1r, (outs GR32:$dst),
(ins GR32:$src1, i32imm:$src2),
"or{l}\t{$src2, $dst|$dst, $src2}",
[(set GR32:$dst, EFLAGS, (X86or_flag GR32:$src1,
imm:$src2))]>;
def OR16ri8 : Ii8<0x83, MRM1r, (outs GR16:$dst),
(ins GR16:$src1, i16i8imm:$src2),
"or{w}\t{$src2, $dst|$dst, $src2}",
[(set GR16:$dst, EFLAGS, (X86or_flag GR16:$src1,
i16immSExt8:$src2))]>, OpSize;
def OR32ri8 : Ii8<0x83, MRM1r, (outs GR32:$dst),
(ins GR32:$src1, i32i8imm:$src2),
"or{l}\t{$src2, $dst|$dst, $src2}",
[(set GR32:$dst, EFLAGS, (X86or_flag GR32:$src1,
i32immSExt8:$src2))]>;
let isTwoAddress = 0 in {
def OR8mr : I<0x08, MRMDestMem, (outs), (ins i8mem:$dst, GR8:$src),
"or{b}\t{$src, $dst|$dst, $src}",
[(store (or (load addr:$dst), GR8:$src), addr:$dst),
(implicit EFLAGS)]>;
def OR16mr : I<0x09, MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src),
"or{w}\t{$src, $dst|$dst, $src}",
[(store (or (load addr:$dst), GR16:$src), addr:$dst),
(implicit EFLAGS)]>, OpSize;
def OR32mr : I<0x09, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src),
"or{l}\t{$src, $dst|$dst, $src}",
[(store (or (load addr:$dst), GR32:$src), addr:$dst),
(implicit EFLAGS)]>;
def OR8mi : Ii8<0x80, MRM1m, (outs), (ins i8mem :$dst, i8imm:$src),
"or{b}\t{$src, $dst|$dst, $src}",
[(store (or (loadi8 addr:$dst), imm:$src), addr:$dst),
(implicit EFLAGS)]>;
def OR16mi : Ii16<0x81, MRM1m, (outs), (ins i16mem:$dst, i16imm:$src),
"or{w}\t{$src, $dst|$dst, $src}",
[(store (or (loadi16 addr:$dst), imm:$src), addr:$dst),
(implicit EFLAGS)]>,
OpSize;
def OR32mi : Ii32<0x81, MRM1m, (outs), (ins i32mem:$dst, i32imm:$src),
"or{l}\t{$src, $dst|$dst, $src}",
[(store (or (loadi32 addr:$dst), imm:$src), addr:$dst),
(implicit EFLAGS)]>;
def OR16mi8 : Ii8<0x83, MRM1m, (outs), (ins i16mem:$dst, i16i8imm:$src),
"or{w}\t{$src, $dst|$dst, $src}",
[(store (or (load addr:$dst), i16immSExt8:$src), addr:$dst),
(implicit EFLAGS)]>,
OpSize;
def OR32mi8 : Ii8<0x83, MRM1m, (outs), (ins i32mem:$dst, i32i8imm:$src),
"or{l}\t{$src, $dst|$dst, $src}",
[(store (or (load addr:$dst), i32immSExt8:$src), addr:$dst),
(implicit EFLAGS)]>;
def OR8i8 : Ii8 <0x0C, RawFrm, (outs), (ins i8imm:$src),
"or{b}\t{$src, %al|%al, $src}", []>;
def OR16i16 : Ii16 <0x0D, RawFrm, (outs), (ins i16imm:$src),
"or{w}\t{$src, %ax|%ax, $src}", []>, OpSize;
def OR32i32 : Ii32 <0x0D, RawFrm, (outs), (ins i32imm:$src),
"or{l}\t{$src, %eax|%eax, $src}", []>;
} // isTwoAddress = 0
let isCommutable = 1 in { // X = XOR Y, Z --> X = XOR Z, Y
def XOR8rr : I<0x30, MRMDestReg,
(outs GR8 :$dst), (ins GR8 :$src1, GR8 :$src2),
"xor{b}\t{$src2, $dst|$dst, $src2}",
[(set GR8:$dst, EFLAGS, (X86xor_flag GR8:$src1,
GR8:$src2))]>;
def XOR16rr : I<0x31, MRMDestReg,
(outs GR16:$dst), (ins GR16:$src1, GR16:$src2),
"xor{w}\t{$src2, $dst|$dst, $src2}",
[(set GR16:$dst, EFLAGS, (X86xor_flag GR16:$src1,
GR16:$src2))]>, OpSize;
def XOR32rr : I<0x31, MRMDestReg,
(outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"xor{l}\t{$src2, $dst|$dst, $src2}",
[(set GR32:$dst, EFLAGS, (X86xor_flag GR32:$src1,
GR32:$src2))]>;
} // isCommutable = 1
// XOR instructions with the destination register in REG and the source register
// in R/M. Included for the disassembler.
def XOR8rr_REV : I<0x32, MRMSrcReg, (outs GR8:$dst), (ins GR8:$src1, GR8:$src2),
"xor{b}\t{$src2, $dst|$dst, $src2}", []>;
def XOR16rr_REV : I<0x33, MRMSrcReg, (outs GR16:$dst),
(ins GR16:$src1, GR16:$src2),
"xor{w}\t{$src2, $dst|$dst, $src2}", []>, OpSize;
def XOR32rr_REV : I<0x33, MRMSrcReg, (outs GR32:$dst),
(ins GR32:$src1, GR32:$src2),
"xor{l}\t{$src2, $dst|$dst, $src2}", []>;
def XOR8rm : I<0x32, MRMSrcMem,
(outs GR8 :$dst), (ins GR8:$src1, i8mem :$src2),
"xor{b}\t{$src2, $dst|$dst, $src2}",
[(set GR8:$dst, EFLAGS, (X86xor_flag GR8:$src1,
(load addr:$src2)))]>;
def XOR16rm : I<0x33, MRMSrcMem,
(outs GR16:$dst), (ins GR16:$src1, i16mem:$src2),
"xor{w}\t{$src2, $dst|$dst, $src2}",
[(set GR16:$dst, EFLAGS, (X86xor_flag GR16:$src1,
(load addr:$src2)))]>,
OpSize;
def XOR32rm : I<0x33, MRMSrcMem,
(outs GR32:$dst), (ins GR32:$src1, i32mem:$src2),
"xor{l}\t{$src2, $dst|$dst, $src2}",
[(set GR32:$dst, EFLAGS, (X86xor_flag GR32:$src1,
(load addr:$src2)))]>;
def XOR8ri : Ii8<0x80, MRM6r,
(outs GR8:$dst), (ins GR8:$src1, i8imm:$src2),
"xor{b}\t{$src2, $dst|$dst, $src2}",
[(set GR8:$dst, EFLAGS, (X86xor_flag GR8:$src1, imm:$src2))]>;
def XOR16ri : Ii16<0x81, MRM6r,
(outs GR16:$dst), (ins GR16:$src1, i16imm:$src2),
"xor{w}\t{$src2, $dst|$dst, $src2}",
[(set GR16:$dst, EFLAGS, (X86xor_flag GR16:$src1,
imm:$src2))]>, OpSize;
def XOR32ri : Ii32<0x81, MRM6r,
(outs GR32:$dst), (ins GR32:$src1, i32imm:$src2),
"xor{l}\t{$src2, $dst|$dst, $src2}",
[(set GR32:$dst, EFLAGS, (X86xor_flag GR32:$src1,
imm:$src2))]>;
def XOR16ri8 : Ii8<0x83, MRM6r,
(outs GR16:$dst), (ins GR16:$src1, i16i8imm:$src2),
"xor{w}\t{$src2, $dst|$dst, $src2}",
[(set GR16:$dst, EFLAGS, (X86xor_flag GR16:$src1,
i16immSExt8:$src2))]>,
OpSize;
def XOR32ri8 : Ii8<0x83, MRM6r,
(outs GR32:$dst), (ins GR32:$src1, i32i8imm:$src2),
"xor{l}\t{$src2, $dst|$dst, $src2}",
[(set GR32:$dst, EFLAGS, (X86xor_flag GR32:$src1,
i32immSExt8:$src2))]>;
let isTwoAddress = 0 in {
def XOR8mr : I<0x30, MRMDestMem,
(outs), (ins i8mem :$dst, GR8 :$src),
"xor{b}\t{$src, $dst|$dst, $src}",
[(store (xor (load addr:$dst), GR8:$src), addr:$dst),
(implicit EFLAGS)]>;
def XOR16mr : I<0x31, MRMDestMem,
(outs), (ins i16mem:$dst, GR16:$src),
"xor{w}\t{$src, $dst|$dst, $src}",
[(store (xor (load addr:$dst), GR16:$src), addr:$dst),
(implicit EFLAGS)]>,
OpSize;
def XOR32mr : I<0x31, MRMDestMem,
(outs), (ins i32mem:$dst, GR32:$src),
"xor{l}\t{$src, $dst|$dst, $src}",
[(store (xor (load addr:$dst), GR32:$src), addr:$dst),
(implicit EFLAGS)]>;
def XOR8mi : Ii8<0x80, MRM6m,
(outs), (ins i8mem :$dst, i8imm :$src),
"xor{b}\t{$src, $dst|$dst, $src}",
[(store (xor (loadi8 addr:$dst), imm:$src), addr:$dst),
(implicit EFLAGS)]>;
def XOR16mi : Ii16<0x81, MRM6m,
(outs), (ins i16mem:$dst, i16imm:$src),
"xor{w}\t{$src, $dst|$dst, $src}",
[(store (xor (loadi16 addr:$dst), imm:$src), addr:$dst),
(implicit EFLAGS)]>,
OpSize;
def XOR32mi : Ii32<0x81, MRM6m,
(outs), (ins i32mem:$dst, i32imm:$src),
"xor{l}\t{$src, $dst|$dst, $src}",
[(store (xor (loadi32 addr:$dst), imm:$src), addr:$dst),
(implicit EFLAGS)]>;
def XOR16mi8 : Ii8<0x83, MRM6m,
(outs), (ins i16mem:$dst, i16i8imm :$src),
"xor{w}\t{$src, $dst|$dst, $src}",
[(store (xor (load addr:$dst), i16immSExt8:$src), addr:$dst),
(implicit EFLAGS)]>,
OpSize;
def XOR32mi8 : Ii8<0x83, MRM6m,
(outs), (ins i32mem:$dst, i32i8imm :$src),
"xor{l}\t{$src, $dst|$dst, $src}",
[(store (xor (load addr:$dst), i32immSExt8:$src), addr:$dst),
(implicit EFLAGS)]>;
def XOR8i8 : Ii8 <0x34, RawFrm, (outs), (ins i8imm:$src),
"xor{b}\t{$src, %al|%al, $src}", []>;
def XOR16i16 : Ii16<0x35, RawFrm, (outs), (ins i16imm:$src),
"xor{w}\t{$src, %ax|%ax, $src}", []>, OpSize;
def XOR32i32 : Ii32<0x35, RawFrm, (outs), (ins i32imm:$src),
"xor{l}\t{$src, %eax|%eax, $src}", []>;
} // isTwoAddress = 0
} // Defs = [EFLAGS]
// Shift instructions
let Defs = [EFLAGS] in {
let Uses = [CL] in {
def SHL8rCL : I<0xD2, MRM4r, (outs GR8 :$dst), (ins GR8 :$src),
"shl{b}\t{%cl, $dst|$dst, CL}",
[(set GR8:$dst, (shl GR8:$src, CL))]>;
def SHL16rCL : I<0xD3, MRM4r, (outs GR16:$dst), (ins GR16:$src),
"shl{w}\t{%cl, $dst|$dst, CL}",
[(set GR16:$dst, (shl GR16:$src, CL))]>, OpSize;
def SHL32rCL : I<0xD3, MRM4r, (outs GR32:$dst), (ins GR32:$src),
"shl{l}\t{%cl, $dst|$dst, CL}",
[(set GR32:$dst, (shl GR32:$src, CL))]>;
} // Uses = [CL]
def SHL8ri : Ii8<0xC0, MRM4r, (outs GR8 :$dst), (ins GR8 :$src1, i8imm:$src2),
"shl{b}\t{$src2, $dst|$dst, $src2}",
[(set GR8:$dst, (shl GR8:$src1, (i8 imm:$src2)))]>;
let isConvertibleToThreeAddress = 1 in { // Can transform into LEA.
def SHL16ri : Ii8<0xC1, MRM4r, (outs GR16:$dst), (ins GR16:$src1, i8imm:$src2),
"shl{w}\t{$src2, $dst|$dst, $src2}",
[(set GR16:$dst, (shl GR16:$src1, (i8 imm:$src2)))]>, OpSize;
def SHL32ri : Ii8<0xC1, MRM4r, (outs GR32:$dst), (ins GR32:$src1, i8imm:$src2),
"shl{l}\t{$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (shl GR32:$src1, (i8 imm:$src2)))]>;
// NOTE: We don't include patterns for shifts of a register by one, because
// 'add reg,reg' is cheaper.
def SHL8r1 : I<0xD0, MRM4r, (outs GR8:$dst), (ins GR8:$src1),
"shl{b}\t$dst", []>;
def SHL16r1 : I<0xD1, MRM4r, (outs GR16:$dst), (ins GR16:$src1),
"shl{w}\t$dst", []>, OpSize;
def SHL32r1 : I<0xD1, MRM4r, (outs GR32:$dst), (ins GR32:$src1),
"shl{l}\t$dst", []>;
} // isConvertibleToThreeAddress = 1
let isTwoAddress = 0 in {
let Uses = [CL] in {
def SHL8mCL : I<0xD2, MRM4m, (outs), (ins i8mem :$dst),
"shl{b}\t{%cl, $dst|$dst, CL}",
[(store (shl (loadi8 addr:$dst), CL), addr:$dst)]>;
def SHL16mCL : I<0xD3, MRM4m, (outs), (ins i16mem:$dst),
"shl{w}\t{%cl, $dst|$dst, CL}",
[(store (shl (loadi16 addr:$dst), CL), addr:$dst)]>, OpSize;
def SHL32mCL : I<0xD3, MRM4m, (outs), (ins i32mem:$dst),
"shl{l}\t{%cl, $dst|$dst, CL}",
[(store (shl (loadi32 addr:$dst), CL), addr:$dst)]>;
}
def SHL8mi : Ii8<0xC0, MRM4m, (outs), (ins i8mem :$dst, i8imm:$src),
"shl{b}\t{$src, $dst|$dst, $src}",
[(store (shl (loadi8 addr:$dst), (i8 imm:$src)), addr:$dst)]>;
def SHL16mi : Ii8<0xC1, MRM4m, (outs), (ins i16mem:$dst, i8imm:$src),
"shl{w}\t{$src, $dst|$dst, $src}",
[(store (shl (loadi16 addr:$dst), (i8 imm:$src)), addr:$dst)]>,
OpSize;
def SHL32mi : Ii8<0xC1, MRM4m, (outs), (ins i32mem:$dst, i8imm:$src),
"shl{l}\t{$src, $dst|$dst, $src}",
[(store (shl (loadi32 addr:$dst), (i8 imm:$src)), addr:$dst)]>;
// Shift by 1
def SHL8m1 : I<0xD0, MRM4m, (outs), (ins i8mem :$dst),
"shl{b}\t$dst",
[(store (shl (loadi8 addr:$dst), (i8 1)), addr:$dst)]>;
def SHL16m1 : I<0xD1, MRM4m, (outs), (ins i16mem:$dst),
"shl{w}\t$dst",
[(store (shl (loadi16 addr:$dst), (i8 1)), addr:$dst)]>,
OpSize;
def SHL32m1 : I<0xD1, MRM4m, (outs), (ins i32mem:$dst),
"shl{l}\t$dst",
[(store (shl (loadi32 addr:$dst), (i8 1)), addr:$dst)]>;
}
let Uses = [CL] in {
def SHR8rCL : I<0xD2, MRM5r, (outs GR8 :$dst), (ins GR8 :$src),
"shr{b}\t{%cl, $dst|$dst, CL}",
[(set GR8:$dst, (srl GR8:$src, CL))]>;
def SHR16rCL : I<0xD3, MRM5r, (outs GR16:$dst), (ins GR16:$src),
"shr{w}\t{%cl, $dst|$dst, CL}",
[(set GR16:$dst, (srl GR16:$src, CL))]>, OpSize;
def SHR32rCL : I<0xD3, MRM5r, (outs GR32:$dst), (ins GR32:$src),
"shr{l}\t{%cl, $dst|$dst, CL}",
[(set GR32:$dst, (srl GR32:$src, CL))]>;
}
def SHR8ri : Ii8<0xC0, MRM5r, (outs GR8:$dst), (ins GR8:$src1, i8imm:$src2),
"shr{b}\t{$src2, $dst|$dst, $src2}",
[(set GR8:$dst, (srl GR8:$src1, (i8 imm:$src2)))]>;
def SHR16ri : Ii8<0xC1, MRM5r, (outs GR16:$dst), (ins GR16:$src1, i8imm:$src2),
"shr{w}\t{$src2, $dst|$dst, $src2}",
[(set GR16:$dst, (srl GR16:$src1, (i8 imm:$src2)))]>, OpSize;
def SHR32ri : Ii8<0xC1, MRM5r, (outs GR32:$dst), (ins GR32:$src1, i8imm:$src2),
"shr{l}\t{$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (srl GR32:$src1, (i8 imm:$src2)))]>;
// Shift by 1
def SHR8r1 : I<0xD0, MRM5r, (outs GR8:$dst), (ins GR8:$src1),
"shr{b}\t$dst",
[(set GR8:$dst, (srl GR8:$src1, (i8 1)))]>;
def SHR16r1 : I<0xD1, MRM5r, (outs GR16:$dst), (ins GR16:$src1),
"shr{w}\t$dst",
[(set GR16:$dst, (srl GR16:$src1, (i8 1)))]>, OpSize;
def SHR32r1 : I<0xD1, MRM5r, (outs GR32:$dst), (ins GR32:$src1),
"shr{l}\t$dst",
[(set GR32:$dst, (srl GR32:$src1, (i8 1)))]>;
let isTwoAddress = 0 in {
let Uses = [CL] in {
def SHR8mCL : I<0xD2, MRM5m, (outs), (ins i8mem :$dst),
"shr{b}\t{%cl, $dst|$dst, CL}",
[(store (srl (loadi8 addr:$dst), CL), addr:$dst)]>;
def SHR16mCL : I<0xD3, MRM5m, (outs), (ins i16mem:$dst),
"shr{w}\t{%cl, $dst|$dst, CL}",
[(store (srl (loadi16 addr:$dst), CL), addr:$dst)]>,
OpSize;
def SHR32mCL : I<0xD3, MRM5m, (outs), (ins i32mem:$dst),
"shr{l}\t{%cl, $dst|$dst, CL}",
[(store (srl (loadi32 addr:$dst), CL), addr:$dst)]>;
}
def SHR8mi : Ii8<0xC0, MRM5m, (outs), (ins i8mem :$dst, i8imm:$src),
"shr{b}\t{$src, $dst|$dst, $src}",
[(store (srl (loadi8 addr:$dst), (i8 imm:$src)), addr:$dst)]>;
def SHR16mi : Ii8<0xC1, MRM5m, (outs), (ins i16mem:$dst, i8imm:$src),
"shr{w}\t{$src, $dst|$dst, $src}",
[(store (srl (loadi16 addr:$dst), (i8 imm:$src)), addr:$dst)]>,
OpSize;
def SHR32mi : Ii8<0xC1, MRM5m, (outs), (ins i32mem:$dst, i8imm:$src),
"shr{l}\t{$src, $dst|$dst, $src}",
[(store (srl (loadi32 addr:$dst), (i8 imm:$src)), addr:$dst)]>;
// Shift by 1
def SHR8m1 : I<0xD0, MRM5m, (outs), (ins i8mem :$dst),
"shr{b}\t$dst",
[(store (srl (loadi8 addr:$dst), (i8 1)), addr:$dst)]>;
def SHR16m1 : I<0xD1, MRM5m, (outs), (ins i16mem:$dst),
"shr{w}\t$dst",
[(store (srl (loadi16 addr:$dst), (i8 1)), addr:$dst)]>,OpSize;
def SHR32m1 : I<0xD1, MRM5m, (outs), (ins i32mem:$dst),
"shr{l}\t$dst",
[(store (srl (loadi32 addr:$dst), (i8 1)), addr:$dst)]>;
}
let Uses = [CL] in {
def SAR8rCL : I<0xD2, MRM7r, (outs GR8 :$dst), (ins GR8 :$src),
"sar{b}\t{%cl, $dst|$dst, CL}",
[(set GR8:$dst, (sra GR8:$src, CL))]>;
def SAR16rCL : I<0xD3, MRM7r, (outs GR16:$dst), (ins GR16:$src),
"sar{w}\t{%cl, $dst|$dst, CL}",
[(set GR16:$dst, (sra GR16:$src, CL))]>, OpSize;
def SAR32rCL : I<0xD3, MRM7r, (outs GR32:$dst), (ins GR32:$src),
"sar{l}\t{%cl, $dst|$dst, CL}",
[(set GR32:$dst, (sra GR32:$src, CL))]>;
}
def SAR8ri : Ii8<0xC0, MRM7r, (outs GR8 :$dst), (ins GR8 :$src1, i8imm:$src2),
"sar{b}\t{$src2, $dst|$dst, $src2}",
[(set GR8:$dst, (sra GR8:$src1, (i8 imm:$src2)))]>;
def SAR16ri : Ii8<0xC1, MRM7r, (outs GR16:$dst), (ins GR16:$src1, i8imm:$src2),
"sar{w}\t{$src2, $dst|$dst, $src2}",
[(set GR16:$dst, (sra GR16:$src1, (i8 imm:$src2)))]>,
OpSize;
def SAR32ri : Ii8<0xC1, MRM7r, (outs GR32:$dst), (ins GR32:$src1, i8imm:$src2),
"sar{l}\t{$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (sra GR32:$src1, (i8 imm:$src2)))]>;
// Shift by 1
def SAR8r1 : I<0xD0, MRM7r, (outs GR8 :$dst), (ins GR8 :$src1),
"sar{b}\t$dst",
[(set GR8:$dst, (sra GR8:$src1, (i8 1)))]>;
def SAR16r1 : I<0xD1, MRM7r, (outs GR16:$dst), (ins GR16:$src1),
"sar{w}\t$dst",
[(set GR16:$dst, (sra GR16:$src1, (i8 1)))]>, OpSize;
def SAR32r1 : I<0xD1, MRM7r, (outs GR32:$dst), (ins GR32:$src1),
"sar{l}\t$dst",
[(set GR32:$dst, (sra GR32:$src1, (i8 1)))]>;
let isTwoAddress = 0 in {
let Uses = [CL] in {
def SAR8mCL : I<0xD2, MRM7m, (outs), (ins i8mem :$dst),
"sar{b}\t{%cl, $dst|$dst, CL}",
[(store (sra (loadi8 addr:$dst), CL), addr:$dst)]>;
def SAR16mCL : I<0xD3, MRM7m, (outs), (ins i16mem:$dst),
"sar{w}\t{%cl, $dst|$dst, CL}",
[(store (sra (loadi16 addr:$dst), CL), addr:$dst)]>, OpSize;
def SAR32mCL : I<0xD3, MRM7m, (outs), (ins i32mem:$dst),
"sar{l}\t{%cl, $dst|$dst, CL}",
[(store (sra (loadi32 addr:$dst), CL), addr:$dst)]>;
}
def SAR8mi : Ii8<0xC0, MRM7m, (outs), (ins i8mem :$dst, i8imm:$src),
"sar{b}\t{$src, $dst|$dst, $src}",
[(store (sra (loadi8 addr:$dst), (i8 imm:$src)), addr:$dst)]>;
def SAR16mi : Ii8<0xC1, MRM7m, (outs), (ins i16mem:$dst, i8imm:$src),
"sar{w}\t{$src, $dst|$dst, $src}",
[(store (sra (loadi16 addr:$dst), (i8 imm:$src)), addr:$dst)]>,
OpSize;
def SAR32mi : Ii8<0xC1, MRM7m, (outs), (ins i32mem:$dst, i8imm:$src),
"sar{l}\t{$src, $dst|$dst, $src}",
[(store (sra (loadi32 addr:$dst), (i8 imm:$src)), addr:$dst)]>;
// Shift by 1
def SAR8m1 : I<0xD0, MRM7m, (outs), (ins i8mem :$dst),
"sar{b}\t$dst",
[(store (sra (loadi8 addr:$dst), (i8 1)), addr:$dst)]>;
def SAR16m1 : I<0xD1, MRM7m, (outs), (ins i16mem:$dst),
"sar{w}\t$dst",
[(store (sra (loadi16 addr:$dst), (i8 1)), addr:$dst)]>,
OpSize;
def SAR32m1 : I<0xD1, MRM7m, (outs), (ins i32mem:$dst),
"sar{l}\t$dst",
[(store (sra (loadi32 addr:$dst), (i8 1)), addr:$dst)]>;
}
// Rotate instructions
def RCL8r1 : I<0xD0, MRM2r, (outs GR8:$dst), (ins GR8:$src),
"rcl{b}\t{1, $dst|$dst, 1}", []>;
let Uses = [CL] in {
def RCL8rCL : I<0xD2, MRM2r, (outs GR8:$dst), (ins GR8:$src),
"rcl{b}\t{%cl, $dst|$dst, CL}", []>;
}
def RCL8ri : Ii8<0xC0, MRM2r, (outs GR8:$dst), (ins GR8:$src, i8imm:$cnt),
"rcl{b}\t{$cnt, $dst|$dst, $cnt}", []>;
def RCL16r1 : I<0xD1, MRM2r, (outs GR16:$dst), (ins GR16:$src),
"rcl{w}\t{1, $dst|$dst, 1}", []>, OpSize;
let Uses = [CL] in {
def RCL16rCL : I<0xD3, MRM2r, (outs GR16:$dst), (ins GR16:$src),
"rcl{w}\t{%cl, $dst|$dst, CL}", []>, OpSize;
}
def RCL16ri : Ii8<0xC1, MRM2r, (outs GR16:$dst), (ins GR16:$src, i8imm:$cnt),
"rcl{w}\t{$cnt, $dst|$dst, $cnt}", []>, OpSize;
def RCL32r1 : I<0xD1, MRM2r, (outs GR32:$dst), (ins GR32:$src),
"rcl{l}\t{1, $dst|$dst, 1}", []>;
let Uses = [CL] in {
def RCL32rCL : I<0xD3, MRM2r, (outs GR32:$dst), (ins GR32:$src),
"rcl{l}\t{%cl, $dst|$dst, CL}", []>;
}
def RCL32ri : Ii8<0xC1, MRM2r, (outs GR32:$dst), (ins GR32:$src, i8imm:$cnt),
"rcl{l}\t{$cnt, $dst|$dst, $cnt}", []>;
def RCR8r1 : I<0xD0, MRM3r, (outs GR8:$dst), (ins GR8:$src),
"rcr{b}\t{1, $dst|$dst, 1}", []>;
let Uses = [CL] in {
def RCR8rCL : I<0xD2, MRM3r, (outs GR8:$dst), (ins GR8:$src),
"rcr{b}\t{%cl, $dst|$dst, CL}", []>;
}
def RCR8ri : Ii8<0xC0, MRM3r, (outs GR8:$dst), (ins GR8:$src, i8imm:$cnt),
"rcr{b}\t{$cnt, $dst|$dst, $cnt}", []>;
def RCR16r1 : I<0xD1, MRM3r, (outs GR16:$dst), (ins GR16:$src),
"rcr{w}\t{1, $dst|$dst, 1}", []>, OpSize;
let Uses = [CL] in {
def RCR16rCL : I<0xD3, MRM3r, (outs GR16:$dst), (ins GR16:$src),
"rcr{w}\t{%cl, $dst|$dst, CL}", []>, OpSize;
}
def RCR16ri : Ii8<0xC1, MRM3r, (outs GR16:$dst), (ins GR16:$src, i8imm:$cnt),
"rcr{w}\t{$cnt, $dst|$dst, $cnt}", []>, OpSize;
def RCR32r1 : I<0xD1, MRM3r, (outs GR32:$dst), (ins GR32:$src),
"rcr{l}\t{1, $dst|$dst, 1}", []>;
let Uses = [CL] in {
def RCR32rCL : I<0xD3, MRM3r, (outs GR32:$dst), (ins GR32:$src),
"rcr{l}\t{%cl, $dst|$dst, CL}", []>;
}
def RCR32ri : Ii8<0xC1, MRM3r, (outs GR32:$dst), (ins GR32:$src, i8imm:$cnt),
"rcr{l}\t{$cnt, $dst|$dst, $cnt}", []>;
let isTwoAddress = 0 in {
def RCL8m1 : I<0xD0, MRM2m, (outs), (ins i8mem:$dst),
"rcl{b}\t{1, $dst|$dst, 1}", []>;
def RCL8mi : Ii8<0xC0, MRM2m, (outs), (ins i8mem:$dst, i8imm:$cnt),
"rcl{b}\t{$cnt, $dst|$dst, $cnt}", []>;
def RCL16m1 : I<0xD1, MRM2m, (outs), (ins i16mem:$dst),
"rcl{w}\t{1, $dst|$dst, 1}", []>, OpSize;
def RCL16mi : Ii8<0xC1, MRM2m, (outs), (ins i16mem:$dst, i8imm:$cnt),
"rcl{w}\t{$cnt, $dst|$dst, $cnt}", []>, OpSize;
def RCL32m1 : I<0xD1, MRM2m, (outs), (ins i32mem:$dst),
"rcl{l}\t{1, $dst|$dst, 1}", []>;
def RCL32mi : Ii8<0xC1, MRM2m, (outs), (ins i32mem:$dst, i8imm:$cnt),
"rcl{l}\t{$cnt, $dst|$dst, $cnt}", []>;
def RCR8m1 : I<0xD0, MRM3m, (outs), (ins i8mem:$dst),
"rcr{b}\t{1, $dst|$dst, 1}", []>;
def RCR8mi : Ii8<0xC0, MRM3m, (outs), (ins i8mem:$dst, i8imm:$cnt),
"rcr{b}\t{$cnt, $dst|$dst, $cnt}", []>;
def RCR16m1 : I<0xD1, MRM3m, (outs), (ins i16mem:$dst),
"rcr{w}\t{1, $dst|$dst, 1}", []>, OpSize;
def RCR16mi : Ii8<0xC1, MRM3m, (outs), (ins i16mem:$dst, i8imm:$cnt),
"rcr{w}\t{$cnt, $dst|$dst, $cnt}", []>, OpSize;
def RCR32m1 : I<0xD1, MRM3m, (outs), (ins i32mem:$dst),
"rcr{l}\t{1, $dst|$dst, 1}", []>;
def RCR32mi : Ii8<0xC1, MRM3m, (outs), (ins i32mem:$dst, i8imm:$cnt),
"rcr{l}\t{$cnt, $dst|$dst, $cnt}", []>;
let Uses = [CL] in {
def RCL8mCL : I<0xD2, MRM2m, (outs), (ins i8mem:$dst),
"rcl{b}\t{%cl, $dst|$dst, CL}", []>;
def RCL16mCL : I<0xD3, MRM2m, (outs), (ins i16mem:$dst),
"rcl{w}\t{%cl, $dst|$dst, CL}", []>, OpSize;
def RCL32mCL : I<0xD3, MRM2m, (outs), (ins i32mem:$dst),
"rcl{l}\t{%cl, $dst|$dst, CL}", []>;
def RCR8mCL : I<0xD2, MRM3m, (outs), (ins i8mem:$dst),
"rcr{b}\t{%cl, $dst|$dst, CL}", []>;
def RCR16mCL : I<0xD3, MRM3m, (outs), (ins i16mem:$dst),
"rcr{w}\t{%cl, $dst|$dst, CL}", []>, OpSize;
def RCR32mCL : I<0xD3, MRM3m, (outs), (ins i32mem:$dst),
"rcr{l}\t{%cl, $dst|$dst, CL}", []>;
}
}
// FIXME: provide shorter instructions when imm8 == 1
let Uses = [CL] in {
def ROL8rCL : I<0xD2, MRM0r, (outs GR8 :$dst), (ins GR8 :$src),
"rol{b}\t{%cl, $dst|$dst, CL}",
[(set GR8:$dst, (rotl GR8:$src, CL))]>;
def ROL16rCL : I<0xD3, MRM0r, (outs GR16:$dst), (ins GR16:$src),
"rol{w}\t{%cl, $dst|$dst, CL}",
[(set GR16:$dst, (rotl GR16:$src, CL))]>, OpSize;
def ROL32rCL : I<0xD3, MRM0r, (outs GR32:$dst), (ins GR32:$src),
"rol{l}\t{%cl, $dst|$dst, CL}",
[(set GR32:$dst, (rotl GR32:$src, CL))]>;
}
def ROL8ri : Ii8<0xC0, MRM0r, (outs GR8 :$dst), (ins GR8 :$src1, i8imm:$src2),
"rol{b}\t{$src2, $dst|$dst, $src2}",
[(set GR8:$dst, (rotl GR8:$src1, (i8 imm:$src2)))]>;
def ROL16ri : Ii8<0xC1, MRM0r, (outs GR16:$dst), (ins GR16:$src1, i8imm:$src2),
"rol{w}\t{$src2, $dst|$dst, $src2}",
[(set GR16:$dst, (rotl GR16:$src1, (i8 imm:$src2)))]>,
OpSize;
def ROL32ri : Ii8<0xC1, MRM0r, (outs GR32:$dst), (ins GR32:$src1, i8imm:$src2),
"rol{l}\t{$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (rotl GR32:$src1, (i8 imm:$src2)))]>;
// Rotate by 1
def ROL8r1 : I<0xD0, MRM0r, (outs GR8 :$dst), (ins GR8 :$src1),
"rol{b}\t$dst",
[(set GR8:$dst, (rotl GR8:$src1, (i8 1)))]>;
def ROL16r1 : I<0xD1, MRM0r, (outs GR16:$dst), (ins GR16:$src1),
"rol{w}\t$dst",
[(set GR16:$dst, (rotl GR16:$src1, (i8 1)))]>, OpSize;
def ROL32r1 : I<0xD1, MRM0r, (outs GR32:$dst), (ins GR32:$src1),
"rol{l}\t$dst",
[(set GR32:$dst, (rotl GR32:$src1, (i8 1)))]>;
let isTwoAddress = 0 in {
let Uses = [CL] in {
def ROL8mCL : I<0xD2, MRM0m, (outs), (ins i8mem :$dst),
"rol{b}\t{%cl, $dst|$dst, CL}",
[(store (rotl (loadi8 addr:$dst), CL), addr:$dst)]>;
def ROL16mCL : I<0xD3, MRM0m, (outs), (ins i16mem:$dst),
"rol{w}\t{%cl, $dst|$dst, CL}",
[(store (rotl (loadi16 addr:$dst), CL), addr:$dst)]>, OpSize;
def ROL32mCL : I<0xD3, MRM0m, (outs), (ins i32mem:$dst),
"rol{l}\t{%cl, $dst|$dst, CL}",
[(store (rotl (loadi32 addr:$dst), CL), addr:$dst)]>;
}
def ROL8mi : Ii8<0xC0, MRM0m, (outs), (ins i8mem :$dst, i8imm:$src),
"rol{b}\t{$src, $dst|$dst, $src}",
[(store (rotl (loadi8 addr:$dst), (i8 imm:$src)), addr:$dst)]>;
def ROL16mi : Ii8<0xC1, MRM0m, (outs), (ins i16mem:$dst, i8imm:$src),
"rol{w}\t{$src, $dst|$dst, $src}",
[(store (rotl (loadi16 addr:$dst), (i8 imm:$src)), addr:$dst)]>,
OpSize;
def ROL32mi : Ii8<0xC1, MRM0m, (outs), (ins i32mem:$dst, i8imm:$src),
"rol{l}\t{$src, $dst|$dst, $src}",
[(store (rotl (loadi32 addr:$dst), (i8 imm:$src)), addr:$dst)]>;
// Rotate by 1
def ROL8m1 : I<0xD0, MRM0m, (outs), (ins i8mem :$dst),
"rol{b}\t$dst",
[(store (rotl (loadi8 addr:$dst), (i8 1)), addr:$dst)]>;
def ROL16m1 : I<0xD1, MRM0m, (outs), (ins i16mem:$dst),
"rol{w}\t$dst",
[(store (rotl (loadi16 addr:$dst), (i8 1)), addr:$dst)]>,
OpSize;
def ROL32m1 : I<0xD1, MRM0m, (outs), (ins i32mem:$dst),
"rol{l}\t$dst",
[(store (rotl (loadi32 addr:$dst), (i8 1)), addr:$dst)]>;
}
let Uses = [CL] in {
def ROR8rCL : I<0xD2, MRM1r, (outs GR8 :$dst), (ins GR8 :$src),
"ror{b}\t{%cl, $dst|$dst, CL}",
[(set GR8:$dst, (rotr GR8:$src, CL))]>;
def ROR16rCL : I<0xD3, MRM1r, (outs GR16:$dst), (ins GR16:$src),
"ror{w}\t{%cl, $dst|$dst, CL}",
[(set GR16:$dst, (rotr GR16:$src, CL))]>, OpSize;
def ROR32rCL : I<0xD3, MRM1r, (outs GR32:$dst), (ins GR32:$src),
"ror{l}\t{%cl, $dst|$dst, CL}",
[(set GR32:$dst, (rotr GR32:$src, CL))]>;
}
def ROR8ri : Ii8<0xC0, MRM1r, (outs GR8 :$dst), (ins GR8 :$src1, i8imm:$src2),
"ror{b}\t{$src2, $dst|$dst, $src2}",
[(set GR8:$dst, (rotr GR8:$src1, (i8 imm:$src2)))]>;
def ROR16ri : Ii8<0xC1, MRM1r, (outs GR16:$dst), (ins GR16:$src1, i8imm:$src2),
"ror{w}\t{$src2, $dst|$dst, $src2}",
[(set GR16:$dst, (rotr GR16:$src1, (i8 imm:$src2)))]>,
OpSize;
def ROR32ri : Ii8<0xC1, MRM1r, (outs GR32:$dst), (ins GR32:$src1, i8imm:$src2),
"ror{l}\t{$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (rotr GR32:$src1, (i8 imm:$src2)))]>;
// Rotate by 1
def ROR8r1 : I<0xD0, MRM1r, (outs GR8 :$dst), (ins GR8 :$src1),
"ror{b}\t$dst",
[(set GR8:$dst, (rotr GR8:$src1, (i8 1)))]>;
def ROR16r1 : I<0xD1, MRM1r, (outs GR16:$dst), (ins GR16:$src1),
"ror{w}\t$dst",
[(set GR16:$dst, (rotr GR16:$src1, (i8 1)))]>, OpSize;
def ROR32r1 : I<0xD1, MRM1r, (outs GR32:$dst), (ins GR32:$src1),
"ror{l}\t$dst",
[(set GR32:$dst, (rotr GR32:$src1, (i8 1)))]>;
let isTwoAddress = 0 in {
let Uses = [CL] in {
def ROR8mCL : I<0xD2, MRM1m, (outs), (ins i8mem :$dst),
"ror{b}\t{%cl, $dst|$dst, CL}",
[(store (rotr (loadi8 addr:$dst), CL), addr:$dst)]>;
def ROR16mCL : I<0xD3, MRM1m, (outs), (ins i16mem:$dst),
"ror{w}\t{%cl, $dst|$dst, CL}",
[(store (rotr (loadi16 addr:$dst), CL), addr:$dst)]>, OpSize;
def ROR32mCL : I<0xD3, MRM1m, (outs), (ins i32mem:$dst),
"ror{l}\t{%cl, $dst|$dst, CL}",
[(store (rotr (loadi32 addr:$dst), CL), addr:$dst)]>;
}
def ROR8mi : Ii8<0xC0, MRM1m, (outs), (ins i8mem :$dst, i8imm:$src),
"ror{b}\t{$src, $dst|$dst, $src}",
[(store (rotr (loadi8 addr:$dst), (i8 imm:$src)), addr:$dst)]>;
def ROR16mi : Ii8<0xC1, MRM1m, (outs), (ins i16mem:$dst, i8imm:$src),
"ror{w}\t{$src, $dst|$dst, $src}",
[(store (rotr (loadi16 addr:$dst), (i8 imm:$src)), addr:$dst)]>,
OpSize;
def ROR32mi : Ii8<0xC1, MRM1m, (outs), (ins i32mem:$dst, i8imm:$src),
"ror{l}\t{$src, $dst|$dst, $src}",
[(store (rotr (loadi32 addr:$dst), (i8 imm:$src)), addr:$dst)]>;
// Rotate by 1
def ROR8m1 : I<0xD0, MRM1m, (outs), (ins i8mem :$dst),
"ror{b}\t$dst",
[(store (rotr (loadi8 addr:$dst), (i8 1)), addr:$dst)]>;
def ROR16m1 : I<0xD1, MRM1m, (outs), (ins i16mem:$dst),
"ror{w}\t$dst",
[(store (rotr (loadi16 addr:$dst), (i8 1)), addr:$dst)]>,
OpSize;
def ROR32m1 : I<0xD1, MRM1m, (outs), (ins i32mem:$dst),
"ror{l}\t$dst",
[(store (rotr (loadi32 addr:$dst), (i8 1)), addr:$dst)]>;
}
// Double shift instructions (generalizations of rotate)
let Uses = [CL] in {
def SHLD32rrCL : I<0xA5, MRMDestReg, (outs GR32:$dst),
(ins GR32:$src1, GR32:$src2),
"shld{l}\t{%cl, $src2, $dst|$dst, $src2, CL}",
[(set GR32:$dst, (X86shld GR32:$src1, GR32:$src2, CL))]>, TB;
def SHRD32rrCL : I<0xAD, MRMDestReg, (outs GR32:$dst),
(ins GR32:$src1, GR32:$src2),
"shrd{l}\t{%cl, $src2, $dst|$dst, $src2, CL}",
[(set GR32:$dst, (X86shrd GR32:$src1, GR32:$src2, CL))]>, TB;
def SHLD16rrCL : I<0xA5, MRMDestReg, (outs GR16:$dst),
(ins GR16:$src1, GR16:$src2),
"shld{w}\t{%cl, $src2, $dst|$dst, $src2, CL}",
[(set GR16:$dst, (X86shld GR16:$src1, GR16:$src2, CL))]>,
TB, OpSize;
def SHRD16rrCL : I<0xAD, MRMDestReg, (outs GR16:$dst),
(ins GR16:$src1, GR16:$src2),
"shrd{w}\t{%cl, $src2, $dst|$dst, $src2, CL}",
[(set GR16:$dst, (X86shrd GR16:$src1, GR16:$src2, CL))]>,
TB, OpSize;
}
let isCommutable = 1 in { // These instructions commute to each other.
def SHLD32rri8 : Ii8<0xA4, MRMDestReg,
(outs GR32:$dst),
(ins GR32:$src1, GR32:$src2, i8imm:$src3),
"shld{l}\t{$src3, $src2, $dst|$dst, $src2, $src3}",
[(set GR32:$dst, (X86shld GR32:$src1, GR32:$src2,
(i8 imm:$src3)))]>,
TB;
def SHRD32rri8 : Ii8<0xAC, MRMDestReg,
(outs GR32:$dst),
(ins GR32:$src1, GR32:$src2, i8imm:$src3),
"shrd{l}\t{$src3, $src2, $dst|$dst, $src2, $src3}",
[(set GR32:$dst, (X86shrd GR32:$src1, GR32:$src2,
(i8 imm:$src3)))]>,
TB;
def SHLD16rri8 : Ii8<0xA4, MRMDestReg,
(outs GR16:$dst),
(ins GR16:$src1, GR16:$src2, i8imm:$src3),
"shld{w}\t{$src3, $src2, $dst|$dst, $src2, $src3}",
[(set GR16:$dst, (X86shld GR16:$src1, GR16:$src2,
(i8 imm:$src3)))]>,
TB, OpSize;
def SHRD16rri8 : Ii8<0xAC, MRMDestReg,
(outs GR16:$dst),
(ins GR16:$src1, GR16:$src2, i8imm:$src3),
"shrd{w}\t{$src3, $src2, $dst|$dst, $src2, $src3}",
[(set GR16:$dst, (X86shrd GR16:$src1, GR16:$src2,
(i8 imm:$src3)))]>,
TB, OpSize;
}
let isTwoAddress = 0 in {
let Uses = [CL] in {
def SHLD32mrCL : I<0xA5, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src2),
"shld{l}\t{%cl, $src2, $dst|$dst, $src2, CL}",
[(store (X86shld (loadi32 addr:$dst), GR32:$src2, CL),
addr:$dst)]>, TB;
def SHRD32mrCL : I<0xAD, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src2),
"shrd{l}\t{%cl, $src2, $dst|$dst, $src2, CL}",
[(store (X86shrd (loadi32 addr:$dst), GR32:$src2, CL),
addr:$dst)]>, TB;
}
def SHLD32mri8 : Ii8<0xA4, MRMDestMem,
(outs), (ins i32mem:$dst, GR32:$src2, i8imm:$src3),
"shld{l}\t{$src3, $src2, $dst|$dst, $src2, $src3}",
[(store (X86shld (loadi32 addr:$dst), GR32:$src2,
(i8 imm:$src3)), addr:$dst)]>,
TB;
def SHRD32mri8 : Ii8<0xAC, MRMDestMem,
(outs), (ins i32mem:$dst, GR32:$src2, i8imm:$src3),
"shrd{l}\t{$src3, $src2, $dst|$dst, $src2, $src3}",
[(store (X86shrd (loadi32 addr:$dst), GR32:$src2,
(i8 imm:$src3)), addr:$dst)]>,
TB;
let Uses = [CL] in {
def SHLD16mrCL : I<0xA5, MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src2),
"shld{w}\t{%cl, $src2, $dst|$dst, $src2, CL}",
[(store (X86shld (loadi16 addr:$dst), GR16:$src2, CL),
addr:$dst)]>, TB, OpSize;
def SHRD16mrCL : I<0xAD, MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src2),
"shrd{w}\t{%cl, $src2, $dst|$dst, $src2, CL}",
[(store (X86shrd (loadi16 addr:$dst), GR16:$src2, CL),
addr:$dst)]>, TB, OpSize;
}
def SHLD16mri8 : Ii8<0xA4, MRMDestMem,
(outs), (ins i16mem:$dst, GR16:$src2, i8imm:$src3),
"shld{w}\t{$src3, $src2, $dst|$dst, $src2, $src3}",
[(store (X86shld (loadi16 addr:$dst), GR16:$src2,
(i8 imm:$src3)), addr:$dst)]>,
TB, OpSize;
def SHRD16mri8 : Ii8<0xAC, MRMDestMem,
(outs), (ins i16mem:$dst, GR16:$src2, i8imm:$src3),
"shrd{w}\t{$src3, $src2, $dst|$dst, $src2, $src3}",
[(store (X86shrd (loadi16 addr:$dst), GR16:$src2,
(i8 imm:$src3)), addr:$dst)]>,
TB, OpSize;
}
} // Defs = [EFLAGS]
// Arithmetic.
let Defs = [EFLAGS] in {
let isCommutable = 1 in { // X = ADD Y, Z --> X = ADD Z, Y
// Register-Register Addition
def ADD8rr : I<0x00, MRMDestReg, (outs GR8 :$dst),
(ins GR8 :$src1, GR8 :$src2),
"add{b}\t{$src2, $dst|$dst, $src2}",
[(set GR8:$dst, EFLAGS, (X86add_flag GR8:$src1, GR8:$src2))]>;
let isConvertibleToThreeAddress = 1 in { // Can transform into LEA.
// Register-Register Addition
def ADD16rr : I<0x01, MRMDestReg, (outs GR16:$dst),
(ins GR16:$src1, GR16:$src2),
"add{w}\t{$src2, $dst|$dst, $src2}",
[(set GR16:$dst, EFLAGS, (X86add_flag GR16:$src1,
GR16:$src2))]>, OpSize;
def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst),
(ins GR32:$src1, GR32:$src2),
"add{l}\t{$src2, $dst|$dst, $src2}",
[(set GR32:$dst, EFLAGS, (X86add_flag GR32:$src1,
GR32:$src2))]>;
} // end isConvertibleToThreeAddress
} // end isCommutable
// These are alternate spellings for use by the disassembler, we mark them as
// code gen only to ensure they aren't matched by the assembler.
let isCodeGenOnly = 1 in {
def ADD8rr_alt: I<0x02, MRMSrcReg, (outs GR8:$dst), (ins GR8:$src1, GR8:$src2),
"add{b}\t{$src2, $dst|$dst, $src2}", []>;
def ADD16rr_alt: I<0x03, MRMSrcReg,(outs GR16:$dst),(ins GR16:$src1, GR16:$src2),
"add{w}\t{$src2, $dst|$dst, $src2}", []>, OpSize;
def ADD32rr_alt: I<0x03, MRMSrcReg,(outs GR32:$dst),(ins GR32:$src1, GR32:$src2),
"add{l}\t{$src2, $dst|$dst, $src2}", []>;
}
// Register-Memory Addition
def ADD8rm : I<0x02, MRMSrcMem, (outs GR8 :$dst),
(ins GR8 :$src1, i8mem :$src2),
"add{b}\t{$src2, $dst|$dst, $src2}",
[(set GR8:$dst, EFLAGS, (X86add_flag GR8:$src1,
(load addr:$src2)))]>;
def ADD16rm : I<0x03, MRMSrcMem, (outs GR16:$dst),
(ins GR16:$src1, i16mem:$src2),
"add{w}\t{$src2, $dst|$dst, $src2}",
[(set GR16:$dst, EFLAGS, (X86add_flag GR16:$src1,
(load addr:$src2)))]>, OpSize;
def ADD32rm : I<0x03, MRMSrcMem, (outs GR32:$dst),
(ins GR32:$src1, i32mem:$src2),
"add{l}\t{$src2, $dst|$dst, $src2}",
[(set GR32:$dst, EFLAGS, (X86add_flag GR32:$src1,
(load addr:$src2)))]>;
// Register-Integer Addition
def ADD8ri : Ii8<0x80, MRM0r, (outs GR8:$dst), (ins GR8:$src1, i8imm:$src2),
"add{b}\t{$src2, $dst|$dst, $src2}",
[(set GR8:$dst, EFLAGS,
(X86add_flag GR8:$src1, imm:$src2))]>;
let isConvertibleToThreeAddress = 1 in { // Can transform into LEA.
// Register-Integer Addition
def ADD16ri : Ii16<0x81, MRM0r, (outs GR16:$dst),
(ins GR16:$src1, i16imm:$src2),
"add{w}\t{$src2, $dst|$dst, $src2}",
[(set GR16:$dst, EFLAGS,
(X86add_flag GR16:$src1, imm:$src2))]>, OpSize;
def ADD32ri : Ii32<0x81, MRM0r, (outs GR32:$dst),
(ins GR32:$src1, i32imm:$src2),
"add{l}\t{$src2, $dst|$dst, $src2}",
[(set GR32:$dst, EFLAGS,
(X86add_flag GR32:$src1, imm:$src2))]>;
def ADD16ri8 : Ii8<0x83, MRM0r, (outs GR16:$dst),
(ins GR16:$src1, i16i8imm:$src2),
"add{w}\t{$src2, $dst|$dst, $src2}",
[(set GR16:$dst, EFLAGS,
(X86add_flag GR16:$src1, i16immSExt8:$src2))]>, OpSize;
def ADD32ri8 : Ii8<0x83, MRM0r, (outs GR32:$dst),
(ins GR32:$src1, i32i8imm:$src2),
"add{l}\t{$src2, $dst|$dst, $src2}",
[(set GR32:$dst, EFLAGS,
(X86add_flag GR32:$src1, i32immSExt8:$src2))]>;
}
let isTwoAddress = 0 in {
// Memory-Register Addition
def ADD8mr : I<0x00, MRMDestMem, (outs), (ins i8mem:$dst, GR8:$src2),
"add{b}\t{$src2, $dst|$dst, $src2}",
[(store (add (load addr:$dst), GR8:$src2), addr:$dst),
(implicit EFLAGS)]>;
def ADD16mr : I<0x01, MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src2),
"add{w}\t{$src2, $dst|$dst, $src2}",
[(store (add (load addr:$dst), GR16:$src2), addr:$dst),
(implicit EFLAGS)]>, OpSize;
def ADD32mr : I<0x01, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src2),
"add{l}\t{$src2, $dst|$dst, $src2}",
[(store (add (load addr:$dst), GR32:$src2), addr:$dst),
(implicit EFLAGS)]>;
def ADD8mi : Ii8<0x80, MRM0m, (outs), (ins i8mem :$dst, i8imm :$src2),
"add{b}\t{$src2, $dst|$dst, $src2}",
[(store (add (loadi8 addr:$dst), imm:$src2), addr:$dst),
(implicit EFLAGS)]>;
def ADD16mi : Ii16<0x81, MRM0m, (outs), (ins i16mem:$dst, i16imm:$src2),
"add{w}\t{$src2, $dst|$dst, $src2}",
[(store (add (loadi16 addr:$dst), imm:$src2), addr:$dst),
(implicit EFLAGS)]>, OpSize;
def ADD32mi : Ii32<0x81, MRM0m, (outs), (ins i32mem:$dst, i32imm:$src2),
"add{l}\t{$src2, $dst|$dst, $src2}",
[(store (add (loadi32 addr:$dst), imm:$src2), addr:$dst),
(implicit EFLAGS)]>;
def ADD16mi8 : Ii8<0x83, MRM0m, (outs), (ins i16mem:$dst, i16i8imm :$src2),
"add{w}\t{$src2, $dst|$dst, $src2}",
[(store (add (load addr:$dst), i16immSExt8:$src2),
addr:$dst),
(implicit EFLAGS)]>, OpSize;
def ADD32mi8 : Ii8<0x83, MRM0m, (outs), (ins i32mem:$dst, i32i8imm :$src2),
"add{l}\t{$src2, $dst|$dst, $src2}",
[(store (add (load addr:$dst), i32immSExt8:$src2),
addr:$dst),
(implicit EFLAGS)]>;
// addition to rAX
def ADD8i8 : Ii8<0x04, RawFrm, (outs), (ins i8imm:$src),
"add{b}\t{$src, %al|%al, $src}", []>;
def ADD16i16 : Ii16<0x05, RawFrm, (outs), (ins i16imm:$src),
"add{w}\t{$src, %ax|%ax, $src}", []>, OpSize;
def ADD32i32 : Ii32<0x05, RawFrm, (outs), (ins i32imm:$src),
"add{l}\t{$src, %eax|%eax, $src}", []>;
}
let Uses = [EFLAGS] in {
let isCommutable = 1 in { // X = ADC Y, Z --> X = ADC Z, Y
def ADC8rr : I<0x10, MRMDestReg, (outs GR8:$dst), (ins GR8:$src1, GR8:$src2),
"adc{b}\t{$src2, $dst|$dst, $src2}",
[(set GR8:$dst, (adde GR8:$src1, GR8:$src2))]>;
def ADC16rr : I<0x11, MRMDestReg, (outs GR16:$dst),
(ins GR16:$src1, GR16:$src2),
"adc{w}\t{$src2, $dst|$dst, $src2}",
[(set GR16:$dst, (adde GR16:$src1, GR16:$src2))]>, OpSize;
def ADC32rr : I<0x11, MRMDestReg, (outs GR32:$dst),
(ins GR32:$src1, GR32:$src2),
"adc{l}\t{$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (adde GR32:$src1, GR32:$src2))]>;
}
def ADC8rr_REV : I<0x12, MRMSrcReg, (outs GR8:$dst), (ins GR8:$src1, GR8:$src2),
"adc{b}\t{$src2, $dst|$dst, $src2}", []>;
def ADC16rr_REV : I<0x13, MRMSrcReg, (outs GR16:$dst),
(ins GR16:$src1, GR16:$src2),
"adc{w}\t{$src2, $dst|$dst, $src2}", []>, OpSize;
def ADC32rr_REV : I<0x13, MRMSrcReg, (outs GR32:$dst),
(ins GR32:$src1, GR32:$src2),
"adc{l}\t{$src2, $dst|$dst, $src2}", []>;
def ADC8rm : I<0x12, MRMSrcMem , (outs GR8:$dst),
(ins GR8:$src1, i8mem:$src2),
"adc{b}\t{$src2, $dst|$dst, $src2}",
[(set GR8:$dst, (adde GR8:$src1, (load addr:$src2)))]>;
def ADC16rm : I<0x13, MRMSrcMem , (outs GR16:$dst),
(ins GR16:$src1, i16mem:$src2),
"adc{w}\t{$src2, $dst|$dst, $src2}",
[(set GR16:$dst, (adde GR16:$src1, (load addr:$src2)))]>,
OpSize;
def ADC32rm : I<0x13, MRMSrcMem , (outs GR32:$dst),
(ins GR32:$src1, i32mem:$src2),
"adc{l}\t{$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (adde GR32:$src1, (load addr:$src2)))]>;
def ADC8ri : Ii8<0x80, MRM2r, (outs GR8:$dst), (ins GR8:$src1, i8imm:$src2),
"adc{b}\t{$src2, $dst|$dst, $src2}",
[(set GR8:$dst, (adde GR8:$src1, imm:$src2))]>;
def ADC16ri : Ii16<0x81, MRM2r, (outs GR16:$dst),
(ins GR16:$src1, i16imm:$src2),
"adc{w}\t{$src2, $dst|$dst, $src2}",
[(set GR16:$dst, (adde GR16:$src1, imm:$src2))]>, OpSize;
def ADC16ri8 : Ii8<0x83, MRM2r, (outs GR16:$dst),
(ins GR16:$src1, i16i8imm:$src2),
"adc{w}\t{$src2, $dst|$dst, $src2}",
[(set GR16:$dst, (adde GR16:$src1, i16immSExt8:$src2))]>,
OpSize;
def ADC32ri : Ii32<0x81, MRM2r, (outs GR32:$dst),
(ins GR32:$src1, i32imm:$src2),
"adc{l}\t{$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (adde GR32:$src1, imm:$src2))]>;
def ADC32ri8 : Ii8<0x83, MRM2r, (outs GR32:$dst),
(ins GR32:$src1, i32i8imm:$src2),
"adc{l}\t{$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (adde GR32:$src1, i32immSExt8:$src2))]>;
let isTwoAddress = 0 in {
def ADC8mr : I<0x10, MRMDestMem, (outs), (ins i8mem:$dst, GR8:$src2),
"adc{b}\t{$src2, $dst|$dst, $src2}",
[(store (adde (load addr:$dst), GR8:$src2), addr:$dst)]>;
def ADC16mr : I<0x11, MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src2),
"adc{w}\t{$src2, $dst|$dst, $src2}",
[(store (adde (load addr:$dst), GR16:$src2), addr:$dst)]>,
OpSize;
def ADC32mr : I<0x11, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src2),
"adc{l}\t{$src2, $dst|$dst, $src2}",
[(store (adde (load addr:$dst), GR32:$src2), addr:$dst)]>;
def ADC8mi : Ii8<0x80, MRM2m, (outs), (ins i8mem:$dst, i8imm:$src2),
"adc{b}\t{$src2, $dst|$dst, $src2}",
[(store (adde (loadi8 addr:$dst), imm:$src2), addr:$dst)]>;
def ADC16mi : Ii16<0x81, MRM2m, (outs), (ins i16mem:$dst, i16imm:$src2),
"adc{w}\t{$src2, $dst|$dst, $src2}",
[(store (adde (loadi16 addr:$dst), imm:$src2), addr:$dst)]>,
OpSize;
def ADC16mi8 : Ii8<0x83, MRM2m, (outs), (ins i16mem:$dst, i16i8imm :$src2),
"adc{w}\t{$src2, $dst|$dst, $src2}",
[(store (adde (load addr:$dst), i16immSExt8:$src2), addr:$dst)]>,
OpSize;
def ADC32mi : Ii32<0x81, MRM2m, (outs), (ins i32mem:$dst, i32imm:$src2),
"adc{l}\t{$src2, $dst|$dst, $src2}",
[(store (adde (loadi32 addr:$dst), imm:$src2), addr:$dst)]>;
def ADC32mi8 : Ii8<0x83, MRM2m, (outs), (ins i32mem:$dst, i32i8imm :$src2),
"adc{l}\t{$src2, $dst|$dst, $src2}",
[(store (adde (load addr:$dst), i32immSExt8:$src2), addr:$dst)]>;
def ADC8i8 : Ii8<0x14, RawFrm, (outs), (ins i8imm:$src),
"adc{b}\t{$src, %al|%al, $src}", []>;
def ADC16i16 : Ii16<0x15, RawFrm, (outs), (ins i16imm:$src),
"adc{w}\t{$src, %ax|%ax, $src}", []>, OpSize;
def ADC32i32 : Ii32<0x15, RawFrm, (outs), (ins i32imm:$src),
"adc{l}\t{$src, %eax|%eax, $src}", []>;
}
} // Uses = [EFLAGS]
// Register-Register Subtraction
def SUB8rr : I<0x28, MRMDestReg, (outs GR8:$dst), (ins GR8:$src1, GR8:$src2),
"sub{b}\t{$src2, $dst|$dst, $src2}",
[(set GR8:$dst, EFLAGS,
(X86sub_flag GR8:$src1, GR8:$src2))]>;
def SUB16rr : I<0x29, MRMDestReg, (outs GR16:$dst), (ins GR16:$src1,GR16:$src2),
"sub{w}\t{$src2, $dst|$dst, $src2}",
[(set GR16:$dst, EFLAGS,
(X86sub_flag GR16:$src1, GR16:$src2))]>, OpSize;
def SUB32rr : I<0x29, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1,GR32:$src2),
"sub{l}\t{$src2, $dst|$dst, $src2}",
[(set GR32:$dst, EFLAGS,
(X86sub_flag GR32:$src1, GR32:$src2))]>;
def SUB8rr_REV : I<0x2A, MRMSrcReg, (outs GR8:$dst), (ins GR8:$src1, GR8:$src2),
"sub{b}\t{$src2, $dst|$dst, $src2}", []>;
def SUB16rr_REV : I<0x2B, MRMSrcReg, (outs GR16:$dst),
(ins GR16:$src1, GR16:$src2),
"sub{w}\t{$src2, $dst|$dst, $src2}", []>, OpSize;
def SUB32rr_REV : I<0x2B, MRMSrcReg, (outs GR32:$dst),
(ins GR32:$src1, GR32:$src2),
"sub{l}\t{$src2, $dst|$dst, $src2}", []>;
// Register-Memory Subtraction
def SUB8rm : I<0x2A, MRMSrcMem, (outs GR8 :$dst),
(ins GR8 :$src1, i8mem :$src2),
"sub{b}\t{$src2, $dst|$dst, $src2}",
[(set GR8:$dst, EFLAGS,
(X86sub_flag GR8:$src1, (load addr:$src2)))]>;
def SUB16rm : I<0x2B, MRMSrcMem, (outs GR16:$dst),
(ins GR16:$src1, i16mem:$src2),
"sub{w}\t{$src2, $dst|$dst, $src2}",
[(set GR16:$dst, EFLAGS,
(X86sub_flag GR16:$src1, (load addr:$src2)))]>, OpSize;
def SUB32rm : I<0x2B, MRMSrcMem, (outs GR32:$dst),
(ins GR32:$src1, i32mem:$src2),
"sub{l}\t{$src2, $dst|$dst, $src2}",
[(set GR32:$dst, EFLAGS,
(X86sub_flag GR32:$src1, (load addr:$src2)))]>;
// Register-Integer Subtraction
def SUB8ri : Ii8 <0x80, MRM5r, (outs GR8:$dst),
(ins GR8:$src1, i8imm:$src2),
"sub{b}\t{$src2, $dst|$dst, $src2}",
[(set GR8:$dst, EFLAGS,
(X86sub_flag GR8:$src1, imm:$src2))]>;
def SUB16ri : Ii16<0x81, MRM5r, (outs GR16:$dst),
(ins GR16:$src1, i16imm:$src2),
"sub{w}\t{$src2, $dst|$dst, $src2}",
[(set GR16:$dst, EFLAGS,
(X86sub_flag GR16:$src1, imm:$src2))]>, OpSize;
def SUB32ri : Ii32<0x81, MRM5r, (outs GR32:$dst),
(ins GR32:$src1, i32imm:$src2),
"sub{l}\t{$src2, $dst|$dst, $src2}",
[(set GR32:$dst, EFLAGS,
(X86sub_flag GR32:$src1, imm:$src2))]>;
def SUB16ri8 : Ii8<0x83, MRM5r, (outs GR16:$dst),
(ins GR16:$src1, i16i8imm:$src2),
"sub{w}\t{$src2, $dst|$dst, $src2}",
[(set GR16:$dst, EFLAGS,
(X86sub_flag GR16:$src1, i16immSExt8:$src2))]>, OpSize;
def SUB32ri8 : Ii8<0x83, MRM5r, (outs GR32:$dst),
(ins GR32:$src1, i32i8imm:$src2),
"sub{l}\t{$src2, $dst|$dst, $src2}",
[(set GR32:$dst, EFLAGS,
(X86sub_flag GR32:$src1, i32immSExt8:$src2))]>;
let isTwoAddress = 0 in {
// Memory-Register Subtraction
def SUB8mr : I<0x28, MRMDestMem, (outs), (ins i8mem :$dst, GR8 :$src2),
"sub{b}\t{$src2, $dst|$dst, $src2}",
[(store (sub (load addr:$dst), GR8:$src2), addr:$dst),
(implicit EFLAGS)]>;
def SUB16mr : I<0x29, MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src2),
"sub{w}\t{$src2, $dst|$dst, $src2}",
[(store (sub (load addr:$dst), GR16:$src2), addr:$dst),
(implicit EFLAGS)]>, OpSize;
def SUB32mr : I<0x29, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src2),
"sub{l}\t{$src2, $dst|$dst, $src2}",
[(store (sub (load addr:$dst), GR32:$src2), addr:$dst),
(implicit EFLAGS)]>;
// Memory-Integer Subtraction
def SUB8mi : Ii8<0x80, MRM5m, (outs), (ins i8mem :$dst, i8imm:$src2),
"sub{b}\t{$src2, $dst|$dst, $src2}",
[(store (sub (loadi8 addr:$dst), imm:$src2), addr:$dst),
(implicit EFLAGS)]>;
def SUB16mi : Ii16<0x81, MRM5m, (outs), (ins i16mem:$dst, i16imm:$src2),
"sub{w}\t{$src2, $dst|$dst, $src2}",
[(store (sub (loadi16 addr:$dst), imm:$src2),addr:$dst),
(implicit EFLAGS)]>, OpSize;
def SUB32mi : Ii32<0x81, MRM5m, (outs), (ins i32mem:$dst, i32imm:$src2),
"sub{l}\t{$src2, $dst|$dst, $src2}",
[(store (sub (loadi32 addr:$dst), imm:$src2),addr:$dst),
(implicit EFLAGS)]>;
def SUB16mi8 : Ii8<0x83, MRM5m, (outs), (ins i16mem:$dst, i16i8imm :$src2),
"sub{w}\t{$src2, $dst|$dst, $src2}",
[(store (sub (load addr:$dst), i16immSExt8:$src2),
addr:$dst),
(implicit EFLAGS)]>, OpSize;
def SUB32mi8 : Ii8<0x83, MRM5m, (outs), (ins i32mem:$dst, i32i8imm :$src2),
"sub{l}\t{$src2, $dst|$dst, $src2}",
[(store (sub (load addr:$dst), i32immSExt8:$src2),
addr:$dst),
(implicit EFLAGS)]>;
def SUB8i8 : Ii8<0x2C, RawFrm, (outs), (ins i8imm:$src),
"sub{b}\t{$src, %al|%al, $src}", []>;
def SUB16i16 : Ii16<0x2D, RawFrm, (outs), (ins i16imm:$src),
"sub{w}\t{$src, %ax|%ax, $src}", []>, OpSize;
def SUB32i32 : Ii32<0x2D, RawFrm, (outs), (ins i32imm:$src),
"sub{l}\t{$src, %eax|%eax, $src}", []>;
}
let Uses = [EFLAGS] in {
def SBB8rr : I<0x18, MRMDestReg, (outs GR8:$dst),
(ins GR8:$src1, GR8:$src2),
"sbb{b}\t{$src2, $dst|$dst, $src2}",
[(set GR8:$dst, (sube GR8:$src1, GR8:$src2))]>;
def SBB16rr : I<0x19, MRMDestReg, (outs GR16:$dst),
(ins GR16:$src1, GR16:$src2),
"sbb{w}\t{$src2, $dst|$dst, $src2}",
[(set GR16:$dst, (sube GR16:$src1, GR16:$src2))]>, OpSize;
def SBB32rr : I<0x19, MRMDestReg, (outs GR32:$dst),
(ins GR32:$src1, GR32:$src2),
"sbb{l}\t{$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (sube GR32:$src1, GR32:$src2))]>;
let isTwoAddress = 0 in {
def SBB8mr : I<0x18, MRMDestMem, (outs), (ins i8mem:$dst, GR8:$src2),
"sbb{b}\t{$src2, $dst|$dst, $src2}",
[(store (sube (load addr:$dst), GR8:$src2), addr:$dst)]>;
def SBB16mr : I<0x19, MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src2),
"sbb{w}\t{$src2, $dst|$dst, $src2}",
[(store (sube (load addr:$dst), GR16:$src2), addr:$dst)]>,
OpSize;
def SBB32mr : I<0x19, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src2),
"sbb{l}\t{$src2, $dst|$dst, $src2}",
[(store (sube (load addr:$dst), GR32:$src2), addr:$dst)]>;
def SBB8mi : Ii8<0x80, MRM3m, (outs), (ins i8mem:$dst, i8imm:$src2),
"sbb{b}\t{$src2, $dst|$dst, $src2}",
[(store (sube (loadi8 addr:$dst), imm:$src2), addr:$dst)]>;
def SBB16mi : Ii16<0x81, MRM3m, (outs), (ins i16mem:$dst, i16imm:$src2),
"sbb{w}\t{$src2, $dst|$dst, $src2}",
[(store (sube (loadi16 addr:$dst), imm:$src2), addr:$dst)]>,
OpSize;
def SBB16mi8 : Ii8<0x83, MRM3m, (outs), (ins i16mem:$dst, i16i8imm :$src2),
"sbb{w}\t{$src2, $dst|$dst, $src2}",
[(store (sube (load addr:$dst), i16immSExt8:$src2), addr:$dst)]>,
OpSize;
def SBB32mi : Ii32<0x81, MRM3m, (outs), (ins i32mem:$dst, i32imm:$src2),
"sbb{l}\t{$src2, $dst|$dst, $src2}",
[(store (sube (loadi32 addr:$dst), imm:$src2), addr:$dst)]>;
def SBB32mi8 : Ii8<0x83, MRM3m, (outs), (ins i32mem:$dst, i32i8imm :$src2),
"sbb{l}\t{$src2, $dst|$dst, $src2}",
[(store (sube (load addr:$dst), i32immSExt8:$src2), addr:$dst)]>;
def SBB8i8 : Ii8<0x1C, RawFrm, (outs), (ins i8imm:$src),
"sbb{b}\t{$src, %al|%al, $src}", []>;
def SBB16i16 : Ii16<0x1D, RawFrm, (outs), (ins i16imm:$src),
"sbb{w}\t{$src, %ax|%ax, $src}", []>, OpSize;
def SBB32i32 : Ii32<0x1D, RawFrm, (outs), (ins i32imm:$src),
"sbb{l}\t{$src, %eax|%eax, $src}", []>;
}
def SBB8rr_REV : I<0x1A, MRMSrcReg, (outs GR8:$dst), (ins GR8:$src1, GR8:$src2),
"sbb{b}\t{$src2, $dst|$dst, $src2}", []>;
def SBB16rr_REV : I<0x1B, MRMSrcReg, (outs GR16:$dst),
(ins GR16:$src1, GR16:$src2),
"sbb{w}\t{$src2, $dst|$dst, $src2}", []>, OpSize;
def SBB32rr_REV : I<0x1B, MRMSrcReg, (outs GR32:$dst),
(ins GR32:$src1, GR32:$src2),
"sbb{l}\t{$src2, $dst|$dst, $src2}", []>;
def SBB8rm : I<0x1A, MRMSrcMem, (outs GR8:$dst), (ins GR8:$src1, i8mem:$src2),
"sbb{b}\t{$src2, $dst|$dst, $src2}",
[(set GR8:$dst, (sube GR8:$src1, (load addr:$src2)))]>;
def SBB16rm : I<0x1B, MRMSrcMem, (outs GR16:$dst),
(ins GR16:$src1, i16mem:$src2),
"sbb{w}\t{$src2, $dst|$dst, $src2}",
[(set GR16:$dst, (sube GR16:$src1, (load addr:$src2)))]>,
OpSize;
def SBB32rm : I<0x1B, MRMSrcMem, (outs GR32:$dst),
(ins GR32:$src1, i32mem:$src2),
"sbb{l}\t{$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (sube GR32:$src1, (load addr:$src2)))]>;
def SBB8ri : Ii8<0x80, MRM3r, (outs GR8:$dst), (ins GR8:$src1, i8imm:$src2),
"sbb{b}\t{$src2, $dst|$dst, $src2}",
[(set GR8:$dst, (sube GR8:$src1, imm:$src2))]>;
def SBB16ri : Ii16<0x81, MRM3r, (outs GR16:$dst),
(ins GR16:$src1, i16imm:$src2),
"sbb{w}\t{$src2, $dst|$dst, $src2}",
[(set GR16:$dst, (sube GR16:$src1, imm:$src2))]>, OpSize;
def SBB16ri8 : Ii8<0x83, MRM3r, (outs GR16:$dst),
(ins GR16:$src1, i16i8imm:$src2),
"sbb{w}\t{$src2, $dst|$dst, $src2}",
[(set GR16:$dst, (sube GR16:$src1, i16immSExt8:$src2))]>,
OpSize;
def SBB32ri : Ii32<0x81, MRM3r, (outs GR32:$dst),
(ins GR32:$src1, i32imm:$src2),
"sbb{l}\t{$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (sube GR32:$src1, imm:$src2))]>;
def SBB32ri8 : Ii8<0x83, MRM3r, (outs GR32:$dst),
(ins GR32:$src1, i32i8imm:$src2),
"sbb{l}\t{$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (sube GR32:$src1, i32immSExt8:$src2))]>;
} // Uses = [EFLAGS]
} // Defs = [EFLAGS]
let Defs = [EFLAGS] in {
let isCommutable = 1 in { // X = IMUL Y, Z --> X = IMUL Z, Y
// Register-Register Signed Integer Multiply
def IMUL16rr : I<0xAF, MRMSrcReg, (outs GR16:$dst), (ins GR16:$src1,GR16:$src2),
"imul{w}\t{$src2, $dst|$dst, $src2}",
[(set GR16:$dst, EFLAGS,
(X86smul_flag GR16:$src1, GR16:$src2))]>, TB, OpSize;
def IMUL32rr : I<0xAF, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src1,GR32:$src2),
"imul{l}\t{$src2, $dst|$dst, $src2}",
[(set GR32:$dst, EFLAGS,
(X86smul_flag GR32:$src1, GR32:$src2))]>, TB;
}
// Register-Memory Signed Integer Multiply
def IMUL16rm : I<0xAF, MRMSrcMem, (outs GR16:$dst),
(ins GR16:$src1, i16mem:$src2),
"imul{w}\t{$src2, $dst|$dst, $src2}",
[(set GR16:$dst, EFLAGS,
(X86smul_flag GR16:$src1, (load addr:$src2)))]>,
TB, OpSize;
def IMUL32rm : I<0xAF, MRMSrcMem, (outs GR32:$dst),
(ins GR32:$src1, i32mem:$src2),
"imul{l}\t{$src2, $dst|$dst, $src2}",
[(set GR32:$dst, EFLAGS,
(X86smul_flag GR32:$src1, (load addr:$src2)))]>, TB;
} // Defs = [EFLAGS]
} // end Two Address instructions
// Suprisingly enough, these are not two address instructions!
let Defs = [EFLAGS] in {
// Register-Integer Signed Integer Multiply
def IMUL16rri : Ii16<0x69, MRMSrcReg, // GR16 = GR16*I16
(outs GR16:$dst), (ins GR16:$src1, i16imm:$src2),
"imul{w}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[(set GR16:$dst, EFLAGS,
(X86smul_flag GR16:$src1, imm:$src2))]>, OpSize;
def IMUL32rri : Ii32<0x69, MRMSrcReg, // GR32 = GR32*I32
(outs GR32:$dst), (ins GR32:$src1, i32imm:$src2),
"imul{l}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[(set GR32:$dst, EFLAGS,
(X86smul_flag GR32:$src1, imm:$src2))]>;
def IMUL16rri8 : Ii8<0x6B, MRMSrcReg, // GR16 = GR16*I8
(outs GR16:$dst), (ins GR16:$src1, i16i8imm:$src2),
"imul{w}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[(set GR16:$dst, EFLAGS,
(X86smul_flag GR16:$src1, i16immSExt8:$src2))]>,
OpSize;
def IMUL32rri8 : Ii8<0x6B, MRMSrcReg, // GR32 = GR32*I8
(outs GR32:$dst), (ins GR32:$src1, i32i8imm:$src2),
"imul{l}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[(set GR32:$dst, EFLAGS,
(X86smul_flag GR32:$src1, i32immSExt8:$src2))]>;
// Memory-Integer Signed Integer Multiply
def IMUL16rmi : Ii16<0x69, MRMSrcMem, // GR16 = [mem16]*I16
(outs GR16:$dst), (ins i16mem:$src1, i16imm:$src2),
"imul{w}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[(set GR16:$dst, EFLAGS,
(X86smul_flag (load addr:$src1), imm:$src2))]>,
OpSize;
def IMUL32rmi : Ii32<0x69, MRMSrcMem, // GR32 = [mem32]*I32
(outs GR32:$dst), (ins i32mem:$src1, i32imm:$src2),
"imul{l}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[(set GR32:$dst, EFLAGS,
(X86smul_flag (load addr:$src1), imm:$src2))]>;
def IMUL16rmi8 : Ii8<0x6B, MRMSrcMem, // GR16 = [mem16]*I8
(outs GR16:$dst), (ins i16mem:$src1, i16i8imm :$src2),
"imul{w}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[(set GR16:$dst, EFLAGS,
(X86smul_flag (load addr:$src1),
i16immSExt8:$src2))]>, OpSize;
def IMUL32rmi8 : Ii8<0x6B, MRMSrcMem, // GR32 = [mem32]*I8
(outs GR32:$dst), (ins i32mem:$src1, i32i8imm: $src2),
"imul{l}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[(set GR32:$dst, EFLAGS,
(X86smul_flag (load addr:$src1),
i32immSExt8:$src2))]>;
} // Defs = [EFLAGS]
//===----------------------------------------------------------------------===//
// Test instructions are just like AND, except they don't generate a result.
//
let Defs = [EFLAGS] in {
let isCommutable = 1 in { // TEST X, Y --> TEST Y, X
def TEST8rr : I<0x84, MRMSrcReg, (outs), (ins GR8:$src1, GR8:$src2),
"test{b}\t{$src2, $src1|$src1, $src2}",
[(set EFLAGS, (X86cmp (and_su GR8:$src1, GR8:$src2), 0))]>;
def TEST16rr : I<0x85, MRMSrcReg, (outs), (ins GR16:$src1, GR16:$src2),
"test{w}\t{$src2, $src1|$src1, $src2}",
[(set EFLAGS, (X86cmp (and_su GR16:$src1, GR16:$src2),
0))]>,
OpSize;
def TEST32rr : I<0x85, MRMSrcReg, (outs), (ins GR32:$src1, GR32:$src2),
"test{l}\t{$src2, $src1|$src1, $src2}",
[(set EFLAGS, (X86cmp (and_su GR32:$src1, GR32:$src2),
0))]>;
}
def TEST8i8 : Ii8<0xA8, RawFrm, (outs), (ins i8imm:$src),
"test{b}\t{$src, %al|%al, $src}", []>;
def TEST16i16 : Ii16<0xA9, RawFrm, (outs), (ins i16imm:$src),
"test{w}\t{$src, %ax|%ax, $src}", []>, OpSize;
def TEST32i32 : Ii32<0xA9, RawFrm, (outs), (ins i32imm:$src),
"test{l}\t{$src, %eax|%eax, $src}", []>;
def TEST8rm : I<0x84, MRMSrcMem, (outs), (ins GR8 :$src1, i8mem :$src2),
"test{b}\t{$src2, $src1|$src1, $src2}",
[(set EFLAGS, (X86cmp (and GR8:$src1, (loadi8 addr:$src2)),
0))]>;
def TEST16rm : I<0x85, MRMSrcMem, (outs), (ins GR16:$src1, i16mem:$src2),
"test{w}\t{$src2, $src1|$src1, $src2}",
[(set EFLAGS, (X86cmp (and GR16:$src1,
(loadi16 addr:$src2)), 0))]>, OpSize;
def TEST32rm : I<0x85, MRMSrcMem, (outs), (ins GR32:$src1, i32mem:$src2),
"test{l}\t{$src2, $src1|$src1, $src2}",
[(set EFLAGS, (X86cmp (and GR32:$src1,
(loadi32 addr:$src2)), 0))]>;
def TEST8ri : Ii8 <0xF6, MRM0r, // flags = GR8 & imm8
(outs), (ins GR8:$src1, i8imm:$src2),
"test{b}\t{$src2, $src1|$src1, $src2}",
[(set EFLAGS, (X86cmp (and_su GR8:$src1, imm:$src2), 0))]>;
def TEST16ri : Ii16<0xF7, MRM0r, // flags = GR16 & imm16
(outs), (ins GR16:$src1, i16imm:$src2),
"test{w}\t{$src2, $src1|$src1, $src2}",
[(set EFLAGS, (X86cmp (and_su GR16:$src1, imm:$src2), 0))]>,
OpSize;
def TEST32ri : Ii32<0xF7, MRM0r, // flags = GR32 & imm32
(outs), (ins GR32:$src1, i32imm:$src2),
"test{l}\t{$src2, $src1|$src1, $src2}",
[(set EFLAGS, (X86cmp (and_su GR32:$src1, imm:$src2), 0))]>;
def TEST8mi : Ii8 <0xF6, MRM0m, // flags = [mem8] & imm8
(outs), (ins i8mem:$src1, i8imm:$src2),
"test{b}\t{$src2, $src1|$src1, $src2}",
[(set EFLAGS, (X86cmp (and (loadi8 addr:$src1), imm:$src2),
0))]>;
def TEST16mi : Ii16<0xF7, MRM0m, // flags = [mem16] & imm16
(outs), (ins i16mem:$src1, i16imm:$src2),
"test{w}\t{$src2, $src1|$src1, $src2}",
[(set EFLAGS, (X86cmp (and (loadi16 addr:$src1), imm:$src2),
0))]>, OpSize;
def TEST32mi : Ii32<0xF7, MRM0m, // flags = [mem32] & imm32
(outs), (ins i32mem:$src1, i32imm:$src2),
"test{l}\t{$src2, $src1|$src1, $src2}",
[(set EFLAGS, (X86cmp (and (loadi32 addr:$src1), imm:$src2),
0))]>;
} // Defs = [EFLAGS]
// Condition code ops, incl. set if equal/not equal/...
let Defs = [EFLAGS], Uses = [AH], neverHasSideEffects = 1 in
def SAHF : I<0x9E, RawFrm, (outs), (ins), "sahf", []>; // flags = AH
let Defs = [AH], Uses = [EFLAGS], neverHasSideEffects = 1 in
def LAHF : I<0x9F, RawFrm, (outs), (ins), "lahf", []>; // AH = flags
let Uses = [EFLAGS] in {
// Use sbb to materialize carry bit.
let Defs = [EFLAGS], isCodeGenOnly = 1 in {
// FIXME: These are pseudo ops that should be replaced with Pat<> patterns.
// However, Pat<> can't replicate the destination reg into the inputs of the
// result.
// FIXME: Change these to have encoding Pseudo when X86MCCodeEmitter replaces
// X86CodeEmitter.
def SETB_C8r : I<0x18, MRMInitReg, (outs GR8:$dst), (ins), "",
[(set GR8:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
def SETB_C16r : I<0x19, MRMInitReg, (outs GR16:$dst), (ins), "",
[(set GR16:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>,
OpSize;
def SETB_C32r : I<0x19, MRMInitReg, (outs GR32:$dst), (ins), "",
[(set GR32:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
} // isCodeGenOnly
def SETEr : I<0x94, MRM0r,
(outs GR8 :$dst), (ins),
"sete\t$dst",
[(set GR8:$dst, (X86setcc X86_COND_E, EFLAGS))]>,
TB; // GR8 = ==
def SETEm : I<0x94, MRM0m,
(outs), (ins i8mem:$dst),
"sete\t$dst",
[(store (X86setcc X86_COND_E, EFLAGS), addr:$dst)]>,
TB; // [mem8] = ==
def SETNEr : I<0x95, MRM0r,
(outs GR8 :$dst), (ins),
"setne\t$dst",
[(set GR8:$dst, (X86setcc X86_COND_NE, EFLAGS))]>,
TB; // GR8 = !=
def SETNEm : I<0x95, MRM0m,
(outs), (ins i8mem:$dst),
"setne\t$dst",
[(store (X86setcc X86_COND_NE, EFLAGS), addr:$dst)]>,
TB; // [mem8] = !=
def SETLr : I<0x9C, MRM0r,
(outs GR8 :$dst), (ins),
"setl\t$dst",
[(set GR8:$dst, (X86setcc X86_COND_L, EFLAGS))]>,
TB; // GR8 = < signed
def SETLm : I<0x9C, MRM0m,
(outs), (ins i8mem:$dst),
"setl\t$dst",
[(store (X86setcc X86_COND_L, EFLAGS), addr:$dst)]>,
TB; // [mem8] = < signed
def SETGEr : I<0x9D, MRM0r,
(outs GR8 :$dst), (ins),
"setge\t$dst",
[(set GR8:$dst, (X86setcc X86_COND_GE, EFLAGS))]>,
TB; // GR8 = >= signed
def SETGEm : I<0x9D, MRM0m,
(outs), (ins i8mem:$dst),
"setge\t$dst",
[(store (X86setcc X86_COND_GE, EFLAGS), addr:$dst)]>,
TB; // [mem8] = >= signed
def SETLEr : I<0x9E, MRM0r,
(outs GR8 :$dst), (ins),
"setle\t$dst",
[(set GR8:$dst, (X86setcc X86_COND_LE, EFLAGS))]>,
TB; // GR8 = <= signed
def SETLEm : I<0x9E, MRM0m,
(outs), (ins i8mem:$dst),
"setle\t$dst",
[(store (X86setcc X86_COND_LE, EFLAGS), addr:$dst)]>,
TB; // [mem8] = <= signed
def SETGr : I<0x9F, MRM0r,
(outs GR8 :$dst), (ins),
"setg\t$dst",
[(set GR8:$dst, (X86setcc X86_COND_G, EFLAGS))]>,
TB; // GR8 = > signed
def SETGm : I<0x9F, MRM0m,
(outs), (ins i8mem:$dst),
"setg\t$dst",
[(store (X86setcc X86_COND_G, EFLAGS), addr:$dst)]>,
TB; // [mem8] = > signed
def SETBr : I<0x92, MRM0r,
(outs GR8 :$dst), (ins),
"setb\t$dst",
[(set GR8:$dst, (X86setcc X86_COND_B, EFLAGS))]>,
TB; // GR8 = < unsign
def SETBm : I<0x92, MRM0m,
(outs), (ins i8mem:$dst),
"setb\t$dst",
[(store (X86setcc X86_COND_B, EFLAGS), addr:$dst)]>,
TB; // [mem8] = < unsign
def SETAEr : I<0x93, MRM0r,
(outs GR8 :$dst), (ins),
"setae\t$dst",
[(set GR8:$dst, (X86setcc X86_COND_AE, EFLAGS))]>,
TB; // GR8 = >= unsign
def SETAEm : I<0x93, MRM0m,
(outs), (ins i8mem:$dst),
"setae\t$dst",
[(store (X86setcc X86_COND_AE, EFLAGS), addr:$dst)]>,
TB; // [mem8] = >= unsign
def SETBEr : I<0x96, MRM0r,
(outs GR8 :$dst), (ins),
"setbe\t$dst",
[(set GR8:$dst, (X86setcc X86_COND_BE, EFLAGS))]>,
TB; // GR8 = <= unsign
def SETBEm : I<0x96, MRM0m,
(outs), (ins i8mem:$dst),
"setbe\t$dst",
[(store (X86setcc X86_COND_BE, EFLAGS), addr:$dst)]>,
TB; // [mem8] = <= unsign
def SETAr : I<0x97, MRM0r,
(outs GR8 :$dst), (ins),
"seta\t$dst",
[(set GR8:$dst, (X86setcc X86_COND_A, EFLAGS))]>,
TB; // GR8 = > signed
def SETAm : I<0x97, MRM0m,
(outs), (ins i8mem:$dst),
"seta\t$dst",
[(store (X86setcc X86_COND_A, EFLAGS), addr:$dst)]>,
TB; // [mem8] = > signed
def SETSr : I<0x98, MRM0r,
(outs GR8 :$dst), (ins),
"sets\t$dst",
[(set GR8:$dst, (X86setcc X86_COND_S, EFLAGS))]>,
TB; // GR8 = <sign bit>
def SETSm : I<0x98, MRM0m,
(outs), (ins i8mem:$dst),
"sets\t$dst",
[(store (X86setcc X86_COND_S, EFLAGS), addr:$dst)]>,
TB; // [mem8] = <sign bit>
def SETNSr : I<0x99, MRM0r,
(outs GR8 :$dst), (ins),
"setns\t$dst",
[(set GR8:$dst, (X86setcc X86_COND_NS, EFLAGS))]>,
TB; // GR8 = !<sign bit>
def SETNSm : I<0x99, MRM0m,
(outs), (ins i8mem:$dst),
"setns\t$dst",
[(store (X86setcc X86_COND_NS, EFLAGS), addr:$dst)]>,
TB; // [mem8] = !<sign bit>
def SETPr : I<0x9A, MRM0r,
(outs GR8 :$dst), (ins),
"setp\t$dst",
[(set GR8:$dst, (X86setcc X86_COND_P, EFLAGS))]>,
TB; // GR8 = parity
def SETPm : I<0x9A, MRM0m,
(outs), (ins i8mem:$dst),
"setp\t$dst",
[(store (X86setcc X86_COND_P, EFLAGS), addr:$dst)]>,
TB; // [mem8] = parity
def SETNPr : I<0x9B, MRM0r,
(outs GR8 :$dst), (ins),
"setnp\t$dst",
[(set GR8:$dst, (X86setcc X86_COND_NP, EFLAGS))]>,
TB; // GR8 = not parity
def SETNPm : I<0x9B, MRM0m,
(outs), (ins i8mem:$dst),
"setnp\t$dst",
[(store (X86setcc X86_COND_NP, EFLAGS), addr:$dst)]>,
TB; // [mem8] = not parity
def SETOr : I<0x90, MRM0r,
(outs GR8 :$dst), (ins),
"seto\t$dst",
[(set GR8:$dst, (X86setcc X86_COND_O, EFLAGS))]>,
TB; // GR8 = overflow
def SETOm : I<0x90, MRM0m,
(outs), (ins i8mem:$dst),
"seto\t$dst",
[(store (X86setcc X86_COND_O, EFLAGS), addr:$dst)]>,
TB; // [mem8] = overflow
def SETNOr : I<0x91, MRM0r,
(outs GR8 :$dst), (ins),
"setno\t$dst",
[(set GR8:$dst, (X86setcc X86_COND_NO, EFLAGS))]>,
TB; // GR8 = not overflow
def SETNOm : I<0x91, MRM0m,
(outs), (ins i8mem:$dst),
"setno\t$dst",
[(store (X86setcc X86_COND_NO, EFLAGS), addr:$dst)]>,
TB; // [mem8] = not overflow
} // Uses = [EFLAGS]
// Integer comparisons
let Defs = [EFLAGS] in {
def CMP8i8 : Ii8<0x3C, RawFrm, (outs), (ins i8imm:$src),
"cmp{b}\t{$src, %al|%al, $src}", []>;
def CMP16i16 : Ii16<0x3D, RawFrm, (outs), (ins i16imm:$src),
"cmp{w}\t{$src, %ax|%ax, $src}", []>, OpSize;
def CMP32i32 : Ii32<0x3D, RawFrm, (outs), (ins i32imm:$src),
"cmp{l}\t{$src, %eax|%eax, $src}", []>;
def CMP8rr : I<0x38, MRMDestReg,
(outs), (ins GR8 :$src1, GR8 :$src2),
"cmp{b}\t{$src2, $src1|$src1, $src2}",
[(set EFLAGS, (X86cmp GR8:$src1, GR8:$src2))]>;
def CMP16rr : I<0x39, MRMDestReg,
(outs), (ins GR16:$src1, GR16:$src2),
"cmp{w}\t{$src2, $src1|$src1, $src2}",
[(set EFLAGS, (X86cmp GR16:$src1, GR16:$src2))]>, OpSize;
def CMP32rr : I<0x39, MRMDestReg,
(outs), (ins GR32:$src1, GR32:$src2),
"cmp{l}\t{$src2, $src1|$src1, $src2}",
[(set EFLAGS, (X86cmp GR32:$src1, GR32:$src2))]>;
def CMP8mr : I<0x38, MRMDestMem,
(outs), (ins i8mem :$src1, GR8 :$src2),
"cmp{b}\t{$src2, $src1|$src1, $src2}",
[(set EFLAGS, (X86cmp (loadi8 addr:$src1), GR8:$src2))]>;
def CMP16mr : I<0x39, MRMDestMem,
(outs), (ins i16mem:$src1, GR16:$src2),
"cmp{w}\t{$src2, $src1|$src1, $src2}",
[(set EFLAGS, (X86cmp (loadi16 addr:$src1), GR16:$src2))]>,
OpSize;
def CMP32mr : I<0x39, MRMDestMem,
(outs), (ins i32mem:$src1, GR32:$src2),
"cmp{l}\t{$src2, $src1|$src1, $src2}",
[(set EFLAGS, (X86cmp (loadi32 addr:$src1), GR32:$src2))]>;
def CMP8rm : I<0x3A, MRMSrcMem,
(outs), (ins GR8 :$src1, i8mem :$src2),
"cmp{b}\t{$src2, $src1|$src1, $src2}",
[(set EFLAGS, (X86cmp GR8:$src1, (loadi8 addr:$src2)))]>;
def CMP16rm : I<0x3B, MRMSrcMem,
(outs), (ins GR16:$src1, i16mem:$src2),
"cmp{w}\t{$src2, $src1|$src1, $src2}",
[(set EFLAGS, (X86cmp GR16:$src1, (loadi16 addr:$src2)))]>,
OpSize;
def CMP32rm : I<0x3B, MRMSrcMem,
(outs), (ins GR32:$src1, i32mem:$src2),
"cmp{l}\t{$src2, $src1|$src1, $src2}",
[(set EFLAGS, (X86cmp GR32:$src1, (loadi32 addr:$src2)))]>;
// These are alternate spellings for use by the disassembler, we mark them as
// code gen only to ensure they aren't matched by the assembler.
let isCodeGenOnly = 1 in {
def CMP8rr_alt : I<0x3A, MRMSrcReg, (outs), (ins GR8:$src1, GR8:$src2),
"cmp{b}\t{$src2, $src1|$src1, $src2}", []>;
def CMP16rr_alt : I<0x3B, MRMSrcReg, (outs), (ins GR16:$src1, GR16:$src2),
"cmp{w}\t{$src2, $src1|$src1, $src2}", []>, OpSize;
def CMP32rr_alt : I<0x3B, MRMSrcReg, (outs), (ins GR32:$src1, GR32:$src2),
"cmp{l}\t{$src2, $src1|$src1, $src2}", []>;
}
def CMP8ri : Ii8<0x80, MRM7r,
(outs), (ins GR8:$src1, i8imm:$src2),
"cmp{b}\t{$src2, $src1|$src1, $src2}",
[(set EFLAGS, (X86cmp GR8:$src1, imm:$src2))]>;
def CMP16ri : Ii16<0x81, MRM7r,
(outs), (ins GR16:$src1, i16imm:$src2),
"cmp{w}\t{$src2, $src1|$src1, $src2}",
[(set EFLAGS, (X86cmp GR16:$src1, imm:$src2))]>, OpSize;
def CMP32ri : Ii32<0x81, MRM7r,
(outs), (ins GR32:$src1, i32imm:$src2),
"cmp{l}\t{$src2, $src1|$src1, $src2}",
[(set EFLAGS, (X86cmp GR32:$src1, imm:$src2))]>;
def CMP8mi : Ii8 <0x80, MRM7m,
(outs), (ins i8mem :$src1, i8imm :$src2),
"cmp{b}\t{$src2, $src1|$src1, $src2}",
[(set EFLAGS, (X86cmp (loadi8 addr:$src1), imm:$src2))]>;
def CMP16mi : Ii16<0x81, MRM7m,
(outs), (ins i16mem:$src1, i16imm:$src2),
"cmp{w}\t{$src2, $src1|$src1, $src2}",
[(set EFLAGS, (X86cmp (loadi16 addr:$src1), imm:$src2))]>,
OpSize;
def CMP32mi : Ii32<0x81, MRM7m,
(outs), (ins i32mem:$src1, i32imm:$src2),
"cmp{l}\t{$src2, $src1|$src1, $src2}",
[(set EFLAGS, (X86cmp (loadi32 addr:$src1), imm:$src2))]>;
def CMP16ri8 : Ii8<0x83, MRM7r,
(outs), (ins GR16:$src1, i16i8imm:$src2),
"cmp{w}\t{$src2, $src1|$src1, $src2}",
[(set EFLAGS, (X86cmp GR16:$src1, i16immSExt8:$src2))]>,
OpSize;
def CMP16mi8 : Ii8<0x83, MRM7m,
(outs), (ins i16mem:$src1, i16i8imm:$src2),
"cmp{w}\t{$src2, $src1|$src1, $src2}",
[(set EFLAGS, (X86cmp (loadi16 addr:$src1),
i16immSExt8:$src2))]>, OpSize;
def CMP32mi8 : Ii8<0x83, MRM7m,
(outs), (ins i32mem:$src1, i32i8imm:$src2),
"cmp{l}\t{$src2, $src1|$src1, $src2}",
[(set EFLAGS, (X86cmp (loadi32 addr:$src1),
i32immSExt8:$src2))]>;
def CMP32ri8 : Ii8<0x83, MRM7r,
(outs), (ins GR32:$src1, i32i8imm:$src2),
"cmp{l}\t{$src2, $src1|$src1, $src2}",
[(set EFLAGS, (X86cmp GR32:$src1, i32immSExt8:$src2))]>;
} // Defs = [EFLAGS]
// Bit tests.
// TODO: BTC, BTR, and BTS
let Defs = [EFLAGS] in {
def BT16rr : I<0xA3, MRMDestReg, (outs), (ins GR16:$src1, GR16:$src2),
"bt{w}\t{$src2, $src1|$src1, $src2}",
[(set EFLAGS, (X86bt GR16:$src1, GR16:$src2))]>, OpSize, TB;
def BT32rr : I<0xA3, MRMDestReg, (outs), (ins GR32:$src1, GR32:$src2),
"bt{l}\t{$src2, $src1|$src1, $src2}",
[(set EFLAGS, (X86bt GR32:$src1, GR32:$src2))]>, TB;
// Unlike with the register+register form, the memory+register form of the
// bt instruction does not ignore the high bits of the index. From ISel's
// perspective, this is pretty bizarre. Make these instructions disassembly
// only for now.
def BT16mr : I<0xA3, MRMDestMem, (outs), (ins i16mem:$src1, GR16:$src2),
"bt{w}\t{$src2, $src1|$src1, $src2}",
// [(X86bt (loadi16 addr:$src1), GR16:$src2),
// (implicit EFLAGS)]
[]
>, OpSize, TB, Requires<[FastBTMem]>;
def BT32mr : I<0xA3, MRMDestMem, (outs), (ins i32mem:$src1, GR32:$src2),
"bt{l}\t{$src2, $src1|$src1, $src2}",
// [(X86bt (loadi32 addr:$src1), GR32:$src2),
// (implicit EFLAGS)]
[]
>, TB, Requires<[FastBTMem]>;
def BT16ri8 : Ii8<0xBA, MRM4r, (outs), (ins GR16:$src1, i16i8imm:$src2),
"bt{w}\t{$src2, $src1|$src1, $src2}",
[(set EFLAGS, (X86bt GR16:$src1, i16immSExt8:$src2))]>,
OpSize, TB;
def BT32ri8 : Ii8<0xBA, MRM4r, (outs), (ins GR32:$src1, i32i8imm:$src2),
"bt{l}\t{$src2, $src1|$src1, $src2}",
[(set EFLAGS, (X86bt GR32:$src1, i32immSExt8:$src2))]>, TB;
// Note that these instructions don't need FastBTMem because that
// only applies when the other operand is in a register. When it's
// an immediate, bt is still fast.
def BT16mi8 : Ii8<0xBA, MRM4m, (outs), (ins i16mem:$src1, i16i8imm:$src2),
"bt{w}\t{$src2, $src1|$src1, $src2}",
[(set EFLAGS, (X86bt (loadi16 addr:$src1), i16immSExt8:$src2))
]>, OpSize, TB;
def BT32mi8 : Ii8<0xBA, MRM4m, (outs), (ins i32mem:$src1, i32i8imm:$src2),
"bt{l}\t{$src2, $src1|$src1, $src2}",
[(set EFLAGS, (X86bt (loadi32 addr:$src1), i32immSExt8:$src2))
]>, TB;
def BTC16rr : I<0xBB, MRMDestReg, (outs), (ins GR16:$src1, GR16:$src2),
"btc{w}\t{$src2, $src1|$src1, $src2}", []>, OpSize, TB;
def BTC32rr : I<0xBB, MRMDestReg, (outs), (ins GR32:$src1, GR32:$src2),
"btc{l}\t{$src2, $src1|$src1, $src2}", []>, TB;
def BTC16mr : I<0xBB, MRMDestMem, (outs), (ins i16mem:$src1, GR16:$src2),
"btc{w}\t{$src2, $src1|$src1, $src2}", []>, OpSize, TB;
def BTC32mr : I<0xBB, MRMDestMem, (outs), (ins i32mem:$src1, GR32:$src2),
"btc{l}\t{$src2, $src1|$src1, $src2}", []>, TB;
def BTC16ri8 : Ii8<0xBA, MRM7r, (outs), (ins GR16:$src1, i16i8imm:$src2),
"btc{w}\t{$src2, $src1|$src1, $src2}", []>, OpSize, TB;
def BTC32ri8 : Ii8<0xBA, MRM7r, (outs), (ins GR32:$src1, i32i8imm:$src2),
"btc{l}\t{$src2, $src1|$src1, $src2}", []>, TB;
def BTC16mi8 : Ii8<0xBA, MRM7m, (outs), (ins i16mem:$src1, i16i8imm:$src2),
"btc{w}\t{$src2, $src1|$src1, $src2}", []>, OpSize, TB;
def BTC32mi8 : Ii8<0xBA, MRM7m, (outs), (ins i32mem:$src1, i32i8imm:$src2),
"btc{l}\t{$src2, $src1|$src1, $src2}", []>, TB;
def BTR16rr : I<0xB3, MRMDestReg, (outs), (ins GR16:$src1, GR16:$src2),
"btr{w}\t{$src2, $src1|$src1, $src2}", []>, OpSize, TB;
def BTR32rr : I<0xB3, MRMDestReg, (outs), (ins GR32:$src1, GR32:$src2),
"btr{l}\t{$src2, $src1|$src1, $src2}", []>, TB;
def BTR16mr : I<0xB3, MRMDestMem, (outs), (ins i16mem:$src1, GR16:$src2),
"btr{w}\t{$src2, $src1|$src1, $src2}", []>, OpSize, TB;
def BTR32mr : I<0xB3, MRMDestMem, (outs), (ins i32mem:$src1, GR32:$src2),
"btr{l}\t{$src2, $src1|$src1, $src2}", []>, TB;
def BTR16ri8 : Ii8<0xBA, MRM6r, (outs), (ins GR16:$src1, i16i8imm:$src2),
"btr{w}\t{$src2, $src1|$src1, $src2}", []>, OpSize, TB;
def BTR32ri8 : Ii8<0xBA, MRM6r, (outs), (ins GR32:$src1, i32i8imm:$src2),
"btr{l}\t{$src2, $src1|$src1, $src2}", []>, TB;
def BTR16mi8 : Ii8<0xBA, MRM6m, (outs), (ins i16mem:$src1, i16i8imm:$src2),
"btr{w}\t{$src2, $src1|$src1, $src2}", []>, OpSize, TB;
def BTR32mi8 : Ii8<0xBA, MRM6m, (outs), (ins i32mem:$src1, i32i8imm:$src2),
"btr{l}\t{$src2, $src1|$src1, $src2}", []>, TB;
def BTS16rr : I<0xAB, MRMDestReg, (outs), (ins GR16:$src1, GR16:$src2),
"bts{w}\t{$src2, $src1|$src1, $src2}", []>, OpSize, TB;
def BTS32rr : I<0xAB, MRMDestReg, (outs), (ins GR32:$src1, GR32:$src2),
"bts{l}\t{$src2, $src1|$src1, $src2}", []>, TB;
def BTS16mr : I<0xAB, MRMDestMem, (outs), (ins i16mem:$src1, GR16:$src2),
"bts{w}\t{$src2, $src1|$src1, $src2}", []>, OpSize, TB;
def BTS32mr : I<0xAB, MRMDestMem, (outs), (ins i32mem:$src1, GR32:$src2),
"bts{l}\t{$src2, $src1|$src1, $src2}", []>, TB;
def BTS16ri8 : Ii8<0xBA, MRM5r, (outs), (ins GR16:$src1, i16i8imm:$src2),
"bts{w}\t{$src2, $src1|$src1, $src2}", []>, OpSize, TB;
def BTS32ri8 : Ii8<0xBA, MRM5r, (outs), (ins GR32:$src1, i32i8imm:$src2),
"bts{l}\t{$src2, $src1|$src1, $src2}", []>, TB;
def BTS16mi8 : Ii8<0xBA, MRM5m, (outs), (ins i16mem:$src1, i16i8imm:$src2),
"bts{w}\t{$src2, $src1|$src1, $src2}", []>, OpSize, TB;
def BTS32mi8 : Ii8<0xBA, MRM5m, (outs), (ins i32mem:$src1, i32i8imm:$src2),
"bts{l}\t{$src2, $src1|$src1, $src2}", []>, TB;
} // Defs = [EFLAGS]
// Sign/Zero extenders
// Use movsbl intead of movsbw; we don't care about the high 16 bits
// of the register here. This has a smaller encoding and avoids a
// partial-register update. Actual movsbw included for the disassembler.
def MOVSX16rr8W : I<0xBE, MRMSrcReg, (outs GR16:$dst), (ins GR8:$src),
"movs{bw|x}\t{$src, $dst|$dst, $src}", []>, TB, OpSize;
def MOVSX16rm8W : I<0xBE, MRMSrcMem, (outs GR16:$dst), (ins i8mem:$src),
"movs{bw|x}\t{$src, $dst|$dst, $src}", []>, TB, OpSize;
def MOVSX16rr8 : I<0xBE, MRMSrcReg, (outs GR16:$dst), (ins GR8 :$src),
"", [(set GR16:$dst, (sext GR8:$src))]>, TB;
def MOVSX16rm8 : I<0xBE, MRMSrcMem, (outs GR16:$dst), (ins i8mem :$src),
"", [(set GR16:$dst, (sextloadi16i8 addr:$src))]>, TB;
def MOVSX32rr8 : I<0xBE, MRMSrcReg, (outs GR32:$dst), (ins GR8 :$src),
"movs{bl|x}\t{$src, $dst|$dst, $src}",
[(set GR32:$dst, (sext GR8:$src))]>, TB;
def MOVSX32rm8 : I<0xBE, MRMSrcMem, (outs GR32:$dst), (ins i8mem :$src),
"movs{bl|x}\t{$src, $dst|$dst, $src}",
[(set GR32:$dst, (sextloadi32i8 addr:$src))]>, TB;
def MOVSX32rr16: I<0xBF, MRMSrcReg, (outs GR32:$dst), (ins GR16:$src),
"movs{wl|x}\t{$src, $dst|$dst, $src}",
[(set GR32:$dst, (sext GR16:$src))]>, TB;
def MOVSX32rm16: I<0xBF, MRMSrcMem, (outs GR32:$dst), (ins i16mem:$src),
"movs{wl|x}\t{$src, $dst|$dst, $src}",
[(set GR32:$dst, (sextloadi32i16 addr:$src))]>, TB;
// Use movzbl intead of movzbw; we don't care about the high 16 bits
// of the register here. This has a smaller encoding and avoids a
// partial-register update. Actual movzbw included for the disassembler.
def MOVZX16rr8W : I<0xB6, MRMSrcReg, (outs GR16:$dst), (ins GR8:$src),
"movz{bw|x}\t{$src, $dst|$dst, $src}", []>, TB, OpSize;
def MOVZX16rm8W : I<0xB6, MRMSrcMem, (outs GR16:$dst), (ins i8mem:$src),
"movz{bw|x}\t{$src, $dst|$dst, $src}", []>, TB, OpSize;
def MOVZX16rr8 : I<0xB6, MRMSrcReg, (outs GR16:$dst), (ins GR8 :$src),
"", [(set GR16:$dst, (zext GR8:$src))]>, TB;
def MOVZX16rm8 : I<0xB6, MRMSrcMem, (outs GR16:$dst), (ins i8mem :$src),
"", [(set GR16:$dst, (zextloadi16i8 addr:$src))]>, TB;
def MOVZX32rr8 : I<0xB6, MRMSrcReg, (outs GR32:$dst), (ins GR8 :$src),
"movz{bl|x}\t{$src, $dst|$dst, $src}",
[(set GR32:$dst, (zext GR8:$src))]>, TB;
def MOVZX32rm8 : I<0xB6, MRMSrcMem, (outs GR32:$dst), (ins i8mem :$src),
"movz{bl|x}\t{$src, $dst|$dst, $src}",
[(set GR32:$dst, (zextloadi32i8 addr:$src))]>, TB;
def MOVZX32rr16: I<0xB7, MRMSrcReg, (outs GR32:$dst), (ins GR16:$src),
"movz{wl|x}\t{$src, $dst|$dst, $src}",
[(set GR32:$dst, (zext GR16:$src))]>, TB;
def MOVZX32rm16: I<0xB7, MRMSrcMem, (outs GR32:$dst), (ins i16mem:$src),
"movz{wl|x}\t{$src, $dst|$dst, $src}",
[(set GR32:$dst, (zextloadi32i16 addr:$src))]>, TB;
// These are the same as the regular MOVZX32rr8 and MOVZX32rm8
// except that they use GR32_NOREX for the output operand register class
// instead of GR32. This allows them to operate on h registers on x86-64.
def MOVZX32_NOREXrr8 : I<0xB6, MRMSrcReg,
(outs GR32_NOREX:$dst), (ins GR8:$src),
"movz{bl|x}\t{$src, $dst|$dst, $src} # NOREX",
[]>, TB;
let mayLoad = 1 in
def MOVZX32_NOREXrm8 : I<0xB6, MRMSrcMem,
(outs GR32_NOREX:$dst), (ins i8mem:$src),
"movz{bl|x}\t{$src, $dst|$dst, $src} # NOREX",
[]>, TB;
let neverHasSideEffects = 1 in {
let Defs = [AX], Uses = [AL] in
def CBW : I<0x98, RawFrm, (outs), (ins),
"{cbtw|cbw}", []>, OpSize; // AX = signext(AL)
let Defs = [EAX], Uses = [AX] in
def CWDE : I<0x98, RawFrm, (outs), (ins),
"{cwtl|cwde}", []>; // EAX = signext(AX)
let Defs = [AX,DX], Uses = [AX] in
def CWD : I<0x99, RawFrm, (outs), (ins),
"{cwtd|cwd}", []>, OpSize; // DX:AX = signext(AX)
let Defs = [EAX,EDX], Uses = [EAX] in
def CDQ : I<0x99, RawFrm, (outs), (ins),
"{cltd|cdq}", []>; // EDX:EAX = signext(EAX)
}
//===----------------------------------------------------------------------===//
// Alias Instructions
//===----------------------------------------------------------------------===//
// Alias instructions that map movr0 to xor.
// FIXME: remove when we can teach regalloc that xor reg, reg is ok.
// FIXME: Set encoding to pseudo.
let Defs = [EFLAGS], isReMaterializable = 1, isAsCheapAsAMove = 1,
isCodeGenOnly = 1 in {
def MOV8r0 : I<0x30, MRMInitReg, (outs GR8 :$dst), (ins), "",
[(set GR8:$dst, 0)]>;
// We want to rewrite MOV16r0 in terms of MOV32r0, because it's a smaller
// encoding and avoids a partial-register update sometimes, but doing so
// at isel time interferes with rematerialization in the current register
// allocator. For now, this is rewritten when the instruction is lowered
// to an MCInst.
def MOV16r0 : I<0x31, MRMInitReg, (outs GR16:$dst), (ins),
"",
[(set GR16:$dst, 0)]>, OpSize;
// FIXME: Set encoding to pseudo.
def MOV32r0 : I<0x31, MRMInitReg, (outs GR32:$dst), (ins), "",
[(set GR32:$dst, 0)]>;
}
//===----------------------------------------------------------------------===//
// Thread Local Storage Instructions
//
// All calls clobber the non-callee saved registers. ESP is marked as
// a use to prevent stack-pointer assignments that appear immediately
// before calls from potentially appearing dead.
let Defs = [EAX, ECX, EDX, FP0, FP1, FP2, FP3, FP4, FP5, FP6, ST0,
MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS],
Uses = [ESP] in
def TLS_addr32 : I<0, Pseudo, (outs), (ins lea32mem:$sym),
"leal\t$sym, %eax; "
"call\t___tls_get_addr@PLT",
[(X86tlsaddr tls32addr:$sym)]>,
Requires<[In32BitMode]>;
let AddedComplexity = 5, isCodeGenOnly = 1 in
def GS_MOV32rm : I<0x8B, MRMSrcMem, (outs GR32:$dst), (ins i32mem:$src),
"movl\t%gs:$src, $dst",
[(set GR32:$dst, (gsload addr:$src))]>, SegGS;
let AddedComplexity = 5, isCodeGenOnly = 1 in
def FS_MOV32rm : I<0x8B, MRMSrcMem, (outs GR32:$dst), (ins i32mem:$src),
"movl\t%fs:$src, $dst",
[(set GR32:$dst, (fsload addr:$src))]>, SegFS;
//===----------------------------------------------------------------------===//
// EH Pseudo Instructions
//
let isTerminator = 1, isReturn = 1, isBarrier = 1,
hasCtrlDep = 1, isCodeGenOnly = 1 in {
def EH_RETURN : I<0xC3, RawFrm, (outs), (ins GR32:$addr),
"ret\t#eh_return, addr: $addr",
[(X86ehret GR32:$addr)]>;
}
//===----------------------------------------------------------------------===//
// Atomic support
//
// Atomic swap. These are just normal xchg instructions. But since a memory
// operand is referenced, the atomicity is ensured.
let Constraints = "$val = $dst" in {
def XCHG32rm : I<0x87, MRMSrcMem, (outs GR32:$dst),
(ins GR32:$val, i32mem:$ptr),
"xchg{l}\t{$val, $ptr|$ptr, $val}",
[(set GR32:$dst, (atomic_swap_32 addr:$ptr, GR32:$val))]>;
def XCHG16rm : I<0x87, MRMSrcMem, (outs GR16:$dst),
(ins GR16:$val, i16mem:$ptr),
"xchg{w}\t{$val, $ptr|$ptr, $val}",
[(set GR16:$dst, (atomic_swap_16 addr:$ptr, GR16:$val))]>,
OpSize;
def XCHG8rm : I<0x86, MRMSrcMem, (outs GR8:$dst), (ins GR8:$val, i8mem:$ptr),
"xchg{b}\t{$val, $ptr|$ptr, $val}",
[(set GR8:$dst, (atomic_swap_8 addr:$ptr, GR8:$val))]>;
def XCHG32rr : I<0x87, MRMSrcReg, (outs GR32:$dst), (ins GR32:$val, GR32:$src),
"xchg{l}\t{$val, $src|$src, $val}", []>;
def XCHG16rr : I<0x87, MRMSrcReg, (outs GR16:$dst), (ins GR16:$val, GR16:$src),
"xchg{w}\t{$val, $src|$src, $val}", []>, OpSize;
def XCHG8rr : I<0x86, MRMSrcReg, (outs GR8:$dst), (ins GR8:$val, GR8:$src),
"xchg{b}\t{$val, $src|$src, $val}", []>;
}
def XCHG16ar : I<0x90, AddRegFrm, (outs), (ins GR16:$src),
"xchg{w}\t{$src, %ax|%ax, $src}", []>, OpSize;
def XCHG32ar : I<0x90, AddRegFrm, (outs), (ins GR32:$src),
"xchg{l}\t{$src, %eax|%eax, $src}", []>;
// Atomic compare and swap.
let Defs = [EAX, EFLAGS], Uses = [EAX] in {
def LCMPXCHG32 : I<0xB1, MRMDestMem, (outs), (ins i32mem:$ptr, GR32:$swap),
"lock\n\t"
"cmpxchg{l}\t{$swap, $ptr|$ptr, $swap}",
[(X86cas addr:$ptr, GR32:$swap, 4)]>, TB, LOCK;
}
let Defs = [EAX, EDX, EFLAGS], Uses = [EAX, EBX, ECX, EDX] in {
def LCMPXCHG8B : I<0xC7, MRM1m, (outs), (ins i64mem:$ptr),
"lock\n\t"
"cmpxchg8b\t$ptr",
[(X86cas8 addr:$ptr)]>, TB, LOCK;
}
let Defs = [AX, EFLAGS], Uses = [AX] in {
def LCMPXCHG16 : I<0xB1, MRMDestMem, (outs), (ins i16mem:$ptr, GR16:$swap),
"lock\n\t"
"cmpxchg{w}\t{$swap, $ptr|$ptr, $swap}",
[(X86cas addr:$ptr, GR16:$swap, 2)]>, TB, OpSize, LOCK;
}
let Defs = [AL, EFLAGS], Uses = [AL] in {
def LCMPXCHG8 : I<0xB0, MRMDestMem, (outs), (ins i8mem:$ptr, GR8:$swap),
"lock\n\t"
"cmpxchg{b}\t{$swap, $ptr|$ptr, $swap}",
[(X86cas addr:$ptr, GR8:$swap, 1)]>, TB, LOCK;
}
// Atomic exchange and add
let Constraints = "$val = $dst", Defs = [EFLAGS] in {
def LXADD32 : I<0xC1, MRMSrcMem, (outs GR32:$dst), (ins GR32:$val, i32mem:$ptr),
"lock\n\t"
"xadd{l}\t{$val, $ptr|$ptr, $val}",
[(set GR32:$dst, (atomic_load_add_32 addr:$ptr, GR32:$val))]>,
TB, LOCK;
def LXADD16 : I<0xC1, MRMSrcMem, (outs GR16:$dst), (ins GR16:$val, i16mem:$ptr),
"lock\n\t"
"xadd{w}\t{$val, $ptr|$ptr, $val}",
[(set GR16:$dst, (atomic_load_add_16 addr:$ptr, GR16:$val))]>,
TB, OpSize, LOCK;
def LXADD8 : I<0xC0, MRMSrcMem, (outs GR8:$dst), (ins GR8:$val, i8mem:$ptr),
"lock\n\t"
"xadd{b}\t{$val, $ptr|$ptr, $val}",
[(set GR8:$dst, (atomic_load_add_8 addr:$ptr, GR8:$val))]>,
TB, LOCK;
}
def XADD8rr : I<0xC0, MRMDestReg, (outs GR8:$dst), (ins GR8:$src),
"xadd{b}\t{$src, $dst|$dst, $src}", []>, TB;
def XADD16rr : I<0xC1, MRMDestReg, (outs GR16:$dst), (ins GR16:$src),
"xadd{w}\t{$src, $dst|$dst, $src}", []>, TB, OpSize;
def XADD32rr : I<0xC1, MRMDestReg, (outs GR32:$dst), (ins GR32:$src),
"xadd{l}\t{$src, $dst|$dst, $src}", []>, TB;
def XADD8rm : I<0xC0, MRMDestMem, (outs), (ins i8mem:$dst, GR8:$src),
"xadd{b}\t{$src, $dst|$dst, $src}", []>, TB;
def XADD16rm : I<0xC1, MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src),
"xadd{w}\t{$src, $dst|$dst, $src}", []>, TB, OpSize;
def XADD32rm : I<0xC1, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src),
"xadd{l}\t{$src, $dst|$dst, $src}", []>, TB;
def CMPXCHG8rr : I<0xB0, MRMDestReg, (outs GR8:$dst), (ins GR8:$src),
"cmpxchg{b}\t{$src, $dst|$dst, $src}", []>, TB;
def CMPXCHG16rr : I<0xB1, MRMDestReg, (outs GR16:$dst), (ins GR16:$src),
"cmpxchg{w}\t{$src, $dst|$dst, $src}", []>, TB, OpSize;
def CMPXCHG32rr : I<0xB1, MRMDestReg, (outs GR32:$dst), (ins GR32:$src),
"cmpxchg{l}\t{$src, $dst|$dst, $src}", []>, TB;
def CMPXCHG8rm : I<0xB0, MRMDestMem, (outs), (ins i8mem:$dst, GR8:$src),
"cmpxchg{b}\t{$src, $dst|$dst, $src}", []>, TB;
def CMPXCHG16rm : I<0xB1, MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src),
"cmpxchg{w}\t{$src, $dst|$dst, $src}", []>, TB, OpSize;
def CMPXCHG32rm : I<0xB1, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src),
"cmpxchg{l}\t{$src, $dst|$dst, $src}", []>, TB;
let Defs = [EAX, EDX, EFLAGS], Uses = [EAX, EBX, ECX, EDX] in
def CMPXCHG8B : I<0xC7, MRM1m, (outs), (ins i64mem:$dst),
"cmpxchg8b\t$dst", []>, TB;
// Optimized codegen when the non-memory output is not used.
// FIXME: Use normal add / sub instructions and add lock prefix dynamically.
let Defs = [EFLAGS] in {
def LOCK_ADD8mr : I<0x00, MRMDestMem, (outs), (ins i8mem:$dst, GR8:$src2),
"lock\n\t"
"add{b}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
def LOCK_ADD16mr : I<0x01, MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src2),
"lock\n\t"
"add{w}\t{$src2, $dst|$dst, $src2}", []>, OpSize, LOCK;
def LOCK_ADD32mr : I<0x01, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src2),
"lock\n\t"
"add{l}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
def LOCK_ADD8mi : Ii8<0x80, MRM0m, (outs), (ins i8mem :$dst, i8imm :$src2),
"lock\n\t"
"add{b}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
def LOCK_ADD16mi : Ii16<0x81, MRM0m, (outs), (ins i16mem:$dst, i16imm:$src2),
"lock\n\t"
"add{w}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
def LOCK_ADD32mi : Ii32<0x81, MRM0m, (outs), (ins i32mem:$dst, i32imm:$src2),
"lock\n\t"
"add{l}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
def LOCK_ADD16mi8 : Ii8<0x83, MRM0m, (outs), (ins i16mem:$dst, i16i8imm :$src2),
"lock\n\t"
"add{w}\t{$src2, $dst|$dst, $src2}", []>, OpSize, LOCK;
def LOCK_ADD32mi8 : Ii8<0x83, MRM0m, (outs), (ins i32mem:$dst, i32i8imm :$src2),
"lock\n\t"
"add{l}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
def LOCK_INC8m : I<0xFE, MRM0m, (outs), (ins i8mem :$dst),
"lock\n\t"
"inc{b}\t$dst", []>, LOCK;
def LOCK_INC16m : I<0xFF, MRM0m, (outs), (ins i16mem:$dst),
"lock\n\t"
"inc{w}\t$dst", []>, OpSize, LOCK;
def LOCK_INC32m : I<0xFF, MRM0m, (outs), (ins i32mem:$dst),
"lock\n\t"
"inc{l}\t$dst", []>, LOCK;
def LOCK_SUB8mr : I<0x28, MRMDestMem, (outs), (ins i8mem :$dst, GR8 :$src2),
"lock\n\t"
"sub{b}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
def LOCK_SUB16mr : I<0x29, MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src2),
"lock\n\t"
"sub{w}\t{$src2, $dst|$dst, $src2}", []>, OpSize, LOCK;
def LOCK_SUB32mr : I<0x29, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src2),
"lock\n\t"
"sub{l}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
def LOCK_SUB8mi : Ii8<0x80, MRM5m, (outs), (ins i8mem :$dst, i8imm:$src2),
"lock\n\t"
"sub{b}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
def LOCK_SUB16mi : Ii16<0x81, MRM5m, (outs), (ins i16mem:$dst, i16imm:$src2),
"lock\n\t"
"sub{w}\t{$src2, $dst|$dst, $src2}", []>, OpSize, LOCK;
def LOCK_SUB32mi : Ii32<0x81, MRM5m, (outs), (ins i32mem:$dst, i32imm:$src2),
"lock\n\t"
"sub{l}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
def LOCK_SUB16mi8 : Ii8<0x83, MRM5m, (outs), (ins i16mem:$dst, i16i8imm :$src2),
"lock\n\t"
"sub{w}\t{$src2, $dst|$dst, $src2}", []>, OpSize, LOCK;
def LOCK_SUB32mi8 : Ii8<0x83, MRM5m, (outs), (ins i32mem:$dst, i32i8imm :$src2),
"lock\n\t"
"sub{l}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
def LOCK_DEC8m : I<0xFE, MRM1m, (outs), (ins i8mem :$dst),
"lock\n\t"
"dec{b}\t$dst", []>, LOCK;
def LOCK_DEC16m : I<0xFF, MRM1m, (outs), (ins i16mem:$dst),
"lock\n\t"
"dec{w}\t$dst", []>, OpSize, LOCK;
def LOCK_DEC32m : I<0xFF, MRM1m, (outs), (ins i32mem:$dst),
"lock\n\t"
"dec{l}\t$dst", []>, LOCK;
}
// Atomic exchange, and, or, xor
let Constraints = "$val = $dst", Defs = [EFLAGS],
usesCustomInserter = 1 in {
def ATOMAND32 : I<0, Pseudo, (outs GR32:$dst),(ins i32mem:$ptr, GR32:$val),
"#ATOMAND32 PSEUDO!",
[(set GR32:$dst, (atomic_load_and_32 addr:$ptr, GR32:$val))]>;
def ATOMOR32 : I<0, Pseudo, (outs GR32:$dst),(ins i32mem:$ptr, GR32:$val),
"#ATOMOR32 PSEUDO!",
[(set GR32:$dst, (atomic_load_or_32 addr:$ptr, GR32:$val))]>;
def ATOMXOR32 : I<0, Pseudo,(outs GR32:$dst),(ins i32mem:$ptr, GR32:$val),
"#ATOMXOR32 PSEUDO!",
[(set GR32:$dst, (atomic_load_xor_32 addr:$ptr, GR32:$val))]>;
def ATOMNAND32 : I<0, Pseudo,(outs GR32:$dst),(ins i32mem:$ptr, GR32:$val),
"#ATOMNAND32 PSEUDO!",
[(set GR32:$dst, (atomic_load_nand_32 addr:$ptr, GR32:$val))]>;
def ATOMMIN32: I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$ptr, GR32:$val),
"#ATOMMIN32 PSEUDO!",
[(set GR32:$dst, (atomic_load_min_32 addr:$ptr, GR32:$val))]>;
def ATOMMAX32: I<0, Pseudo, (outs GR32:$dst),(ins i32mem:$ptr, GR32:$val),
"#ATOMMAX32 PSEUDO!",
[(set GR32:$dst, (atomic_load_max_32 addr:$ptr, GR32:$val))]>;
def ATOMUMIN32: I<0, Pseudo, (outs GR32:$dst),(ins i32mem:$ptr, GR32:$val),
"#ATOMUMIN32 PSEUDO!",
[(set GR32:$dst, (atomic_load_umin_32 addr:$ptr, GR32:$val))]>;
def ATOMUMAX32: I<0, Pseudo, (outs GR32:$dst),(ins i32mem:$ptr, GR32:$val),
"#ATOMUMAX32 PSEUDO!",
[(set GR32:$dst, (atomic_load_umax_32 addr:$ptr, GR32:$val))]>;
def ATOMAND16 : I<0, Pseudo, (outs GR16:$dst),(ins i16mem:$ptr, GR16:$val),
"#ATOMAND16 PSEUDO!",
[(set GR16:$dst, (atomic_load_and_16 addr:$ptr, GR16:$val))]>;
def ATOMOR16 : I<0, Pseudo, (outs GR16:$dst),(ins i16mem:$ptr, GR16:$val),
"#ATOMOR16 PSEUDO!",
[(set GR16:$dst, (atomic_load_or_16 addr:$ptr, GR16:$val))]>;
def ATOMXOR16 : I<0, Pseudo,(outs GR16:$dst),(ins i16mem:$ptr, GR16:$val),
"#ATOMXOR16 PSEUDO!",
[(set GR16:$dst, (atomic_load_xor_16 addr:$ptr, GR16:$val))]>;
def ATOMNAND16 : I<0, Pseudo,(outs GR16:$dst),(ins i16mem:$ptr, GR16:$val),
"#ATOMNAND16 PSEUDO!",
[(set GR16:$dst, (atomic_load_nand_16 addr:$ptr, GR16:$val))]>;
def ATOMMIN16: I<0, Pseudo, (outs GR16:$dst), (ins i16mem:$ptr, GR16:$val),
"#ATOMMIN16 PSEUDO!",
[(set GR16:$dst, (atomic_load_min_16 addr:$ptr, GR16:$val))]>;
def ATOMMAX16: I<0, Pseudo, (outs GR16:$dst),(ins i16mem:$ptr, GR16:$val),
"#ATOMMAX16 PSEUDO!",
[(set GR16:$dst, (atomic_load_max_16 addr:$ptr, GR16:$val))]>;
def ATOMUMIN16: I<0, Pseudo, (outs GR16:$dst),(ins i16mem:$ptr, GR16:$val),
"#ATOMUMIN16 PSEUDO!",
[(set GR16:$dst, (atomic_load_umin_16 addr:$ptr, GR16:$val))]>;
def ATOMUMAX16: I<0, Pseudo, (outs GR16:$dst),(ins i16mem:$ptr, GR16:$val),
"#ATOMUMAX16 PSEUDO!",
[(set GR16:$dst, (atomic_load_umax_16 addr:$ptr, GR16:$val))]>;
def ATOMAND8 : I<0, Pseudo, (outs GR8:$dst),(ins i8mem:$ptr, GR8:$val),
"#ATOMAND8 PSEUDO!",
[(set GR8:$dst, (atomic_load_and_8 addr:$ptr, GR8:$val))]>;
def ATOMOR8 : I<0, Pseudo, (outs GR8:$dst),(ins i8mem:$ptr, GR8:$val),
"#ATOMOR8 PSEUDO!",
[(set GR8:$dst, (atomic_load_or_8 addr:$ptr, GR8:$val))]>;
def ATOMXOR8 : I<0, Pseudo,(outs GR8:$dst),(ins i8mem:$ptr, GR8:$val),
"#ATOMXOR8 PSEUDO!",
[(set GR8:$dst, (atomic_load_xor_8 addr:$ptr, GR8:$val))]>;
def ATOMNAND8 : I<0, Pseudo,(outs GR8:$dst),(ins i8mem:$ptr, GR8:$val),
"#ATOMNAND8 PSEUDO!",
[(set GR8:$dst, (atomic_load_nand_8 addr:$ptr, GR8:$val))]>;
}
let Constraints = "$val1 = $dst1, $val2 = $dst2",
Defs = [EFLAGS, EAX, EBX, ECX, EDX],
Uses = [EAX, EBX, ECX, EDX],
mayLoad = 1, mayStore = 1,
usesCustomInserter = 1 in {
def ATOMAND6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2),
(ins i64mem:$ptr, GR32:$val1, GR32:$val2),
"#ATOMAND6432 PSEUDO!", []>;
def ATOMOR6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2),
(ins i64mem:$ptr, GR32:$val1, GR32:$val2),
"#ATOMOR6432 PSEUDO!", []>;
def ATOMXOR6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2),
(ins i64mem:$ptr, GR32:$val1, GR32:$val2),
"#ATOMXOR6432 PSEUDO!", []>;
def ATOMNAND6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2),
(ins i64mem:$ptr, GR32:$val1, GR32:$val2),
"#ATOMNAND6432 PSEUDO!", []>;
def ATOMADD6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2),
(ins i64mem:$ptr, GR32:$val1, GR32:$val2),
"#ATOMADD6432 PSEUDO!", []>;
def ATOMSUB6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2),
(ins i64mem:$ptr, GR32:$val1, GR32:$val2),
"#ATOMSUB6432 PSEUDO!", []>;
def ATOMSWAP6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2),
(ins i64mem:$ptr, GR32:$val1, GR32:$val2),
"#ATOMSWAP6432 PSEUDO!", []>;
}
// Segmentation support instructions.
def LAR16rm : I<0x02, MRMSrcMem, (outs GR16:$dst), (ins i16mem:$src),
"lar{w}\t{$src, $dst|$dst, $src}", []>, TB, OpSize;
def LAR16rr : I<0x02, MRMSrcReg, (outs GR16:$dst), (ins GR16:$src),
"lar{w}\t{$src, $dst|$dst, $src}", []>, TB, OpSize;
// i16mem operand in LAR32rm and GR32 operand in LAR32rr is not a typo.
def LAR32rm : I<0x02, MRMSrcMem, (outs GR32:$dst), (ins i16mem:$src),
"lar{l}\t{$src, $dst|$dst, $src}", []>, TB;
def LAR32rr : I<0x02, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src),
"lar{l}\t{$src, $dst|$dst, $src}", []>, TB;
def LSL16rm : I<0x03, MRMSrcMem, (outs GR16:$dst), (ins i16mem:$src),
"lsl{w}\t{$src, $dst|$dst, $src}", []>, TB, OpSize;
def LSL16rr : I<0x03, MRMSrcReg, (outs GR16:$dst), (ins GR16:$src),
"lsl{w}\t{$src, $dst|$dst, $src}", []>, TB, OpSize;
def LSL32rm : I<0x03, MRMSrcMem, (outs GR32:$dst), (ins i32mem:$src),
"lsl{l}\t{$src, $dst|$dst, $src}", []>, TB;
def LSL32rr : I<0x03, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src),
"lsl{l}\t{$src, $dst|$dst, $src}", []>, TB;
def INVLPG : I<0x01, MRM7m, (outs), (ins i8mem:$addr), "invlpg\t$addr", []>, TB;
def STRr : I<0x00, MRM1r, (outs GR16:$dst), (ins),
"str{w}\t{$dst}", []>, TB;
def STRm : I<0x00, MRM1m, (outs i16mem:$dst), (ins),
"str{w}\t{$dst}", []>, TB;
def LTRr : I<0x00, MRM3r, (outs), (ins GR16:$src),
"ltr{w}\t{$src}", []>, TB;
def LTRm : I<0x00, MRM3m, (outs), (ins i16mem:$src),
"ltr{w}\t{$src}", []>, TB;
def PUSHFS16 : I<0xa0, RawFrm, (outs), (ins),
"push{w}\t%fs", []>, OpSize, TB;
def PUSHFS32 : I<0xa0, RawFrm, (outs), (ins),
"push{l}\t%fs", []>, TB;
def PUSHGS16 : I<0xa8, RawFrm, (outs), (ins),
"push{w}\t%gs", []>, OpSize, TB;
def PUSHGS32 : I<0xa8, RawFrm, (outs), (ins),
"push{l}\t%gs", []>, TB;
def POPFS16 : I<0xa1, RawFrm, (outs), (ins),
"pop{w}\t%fs", []>, OpSize, TB;
def POPFS32 : I<0xa1, RawFrm, (outs), (ins),
"pop{l}\t%fs", []>, TB;
def POPGS16 : I<0xa9, RawFrm, (outs), (ins),
"pop{w}\t%gs", []>, OpSize, TB;
def POPGS32 : I<0xa9, RawFrm, (outs), (ins),
"pop{l}\t%gs", []>, TB;
def LDS16rm : I<0xc5, MRMSrcMem, (outs GR16:$dst), (ins opaque32mem:$src),
"lds{w}\t{$src, $dst|$dst, $src}", []>, OpSize;
def LDS32rm : I<0xc5, MRMSrcMem, (outs GR32:$dst), (ins opaque48mem:$src),
"lds{l}\t{$src, $dst|$dst, $src}", []>;
def LSS16rm : I<0xb2, MRMSrcMem, (outs GR16:$dst), (ins opaque32mem:$src),
"lss{w}\t{$src, $dst|$dst, $src}", []>, TB, OpSize;
def LSS32rm : I<0xb2, MRMSrcMem, (outs GR32:$dst), (ins opaque48mem:$src),
"lss{l}\t{$src, $dst|$dst, $src}", []>, TB;
def LES16rm : I<0xc4, MRMSrcMem, (outs GR16:$dst), (ins opaque32mem:$src),
"les{w}\t{$src, $dst|$dst, $src}", []>, OpSize;
def LES32rm : I<0xc4, MRMSrcMem, (outs GR32:$dst), (ins opaque48mem:$src),
"les{l}\t{$src, $dst|$dst, $src}", []>;
def LFS16rm : I<0xb4, MRMSrcMem, (outs GR16:$dst), (ins opaque32mem:$src),
"lfs{w}\t{$src, $dst|$dst, $src}", []>, TB, OpSize;
def LFS32rm : I<0xb4, MRMSrcMem, (outs GR32:$dst), (ins opaque48mem:$src),
"lfs{l}\t{$src, $dst|$dst, $src}", []>, TB;
def LGS16rm : I<0xb5, MRMSrcMem, (outs GR16:$dst), (ins opaque32mem:$src),
"lgs{w}\t{$src, $dst|$dst, $src}", []>, TB, OpSize;
def LGS32rm : I<0xb5, MRMSrcMem, (outs GR32:$dst), (ins opaque48mem:$src),
"lgs{l}\t{$src, $dst|$dst, $src}", []>, TB;
def VERRr : I<0x00, MRM4r, (outs), (ins GR16:$seg),
"verr\t$seg", []>, TB;
def VERRm : I<0x00, MRM4m, (outs), (ins i16mem:$seg),
"verr\t$seg", []>, TB;
def VERWr : I<0x00, MRM5r, (outs), (ins GR16:$seg),
"verw\t$seg", []>, TB;
def VERWm : I<0x00, MRM5m, (outs), (ins i16mem:$seg),
"verw\t$seg", []>, TB;
// Descriptor-table support instructions
def SGDTm : I<0x01, MRM0m, (outs opaque48mem:$dst), (ins),
"sgdt\t$dst", []>, TB;
def SIDTm : I<0x01, MRM1m, (outs opaque48mem:$dst), (ins),
"sidt\t$dst", []>, TB;
def SLDT16r : I<0x00, MRM0r, (outs GR16:$dst), (ins),
"sldt{w}\t$dst", []>, TB;
def SLDT16m : I<0x00, MRM0m, (outs i16mem:$dst), (ins),
"sldt{w}\t$dst", []>, TB;
def LGDTm : I<0x01, MRM2m, (outs), (ins opaque48mem:$src),
"lgdt\t$src", []>, TB;
def LIDTm : I<0x01, MRM3m, (outs), (ins opaque48mem:$src),
"lidt\t$src", []>, TB;
def LLDT16r : I<0x00, MRM2r, (outs), (ins GR16:$src),
"lldt{w}\t$src", []>, TB;
def LLDT16m : I<0x00, MRM2m, (outs), (ins i16mem:$src),
"lldt{w}\t$src", []>, TB;
// Lock instruction prefix
def LOCK_PREFIX : I<0xF0, RawFrm, (outs), (ins), "lock", []>;
// Repeat string operation instruction prefixes
// These uses the DF flag in the EFLAGS register to inc or dec ECX
let Defs = [ECX], Uses = [ECX,EFLAGS] in {
// Repeat (used with INS, OUTS, MOVS, LODS and STOS)
def REP_PREFIX : I<0xF3, RawFrm, (outs), (ins), "rep", []>;
// Repeat while not equal (used with CMPS and SCAS)
def REPNE_PREFIX : I<0xF2, RawFrm, (outs), (ins), "repne", []>;
}
// Segment override instruction prefixes
def CS_PREFIX : I<0x2E, RawFrm, (outs), (ins), "cs", []>;
def SS_PREFIX : I<0x36, RawFrm, (outs), (ins), "ss", []>;
def DS_PREFIX : I<0x3E, RawFrm, (outs), (ins), "ds", []>;
def ES_PREFIX : I<0x26, RawFrm, (outs), (ins), "es", []>;
def FS_PREFIX : I<0x64, RawFrm, (outs), (ins), "fs", []>;
def GS_PREFIX : I<0x65, RawFrm, (outs), (ins), "gs", []>;
// String manipulation instructions
def LODSB : I<0xAC, RawFrm, (outs), (ins), "lodsb", []>;
def LODSW : I<0xAD, RawFrm, (outs), (ins), "lodsw", []>, OpSize;
def LODSD : I<0xAD, RawFrm, (outs), (ins), "lods{l|d}", []>;
def OUTSB : I<0x6E, RawFrm, (outs), (ins), "outsb", []>;
def OUTSW : I<0x6F, RawFrm, (outs), (ins), "outsw", []>, OpSize;
def OUTSD : I<0x6F, RawFrm, (outs), (ins), "outs{l|d}", []>;
// CPU flow control instructions
def HLT : I<0xF4, RawFrm, (outs), (ins), "hlt", []>;
def RSM : I<0xAA, RawFrm, (outs), (ins), "rsm", []>, TB;
// FPU control instructions
def FNINIT : I<0xE3, RawFrm, (outs), (ins), "fninit", []>, DB;
// Flag instructions
def CLC : I<0xF8, RawFrm, (outs), (ins), "clc", []>;
def STC : I<0xF9, RawFrm, (outs), (ins), "stc", []>;
def CLI : I<0xFA, RawFrm, (outs), (ins), "cli", []>;
def STI : I<0xFB, RawFrm, (outs), (ins), "sti", []>;
def CLD : I<0xFC, RawFrm, (outs), (ins), "cld", []>;
def STD : I<0xFD, RawFrm, (outs), (ins), "std", []>;
def CMC : I<0xF5, RawFrm, (outs), (ins), "cmc", []>;
def CLTS : I<0x06, RawFrm, (outs), (ins), "clts", []>, TB;
// Table lookup instructions
def XLAT : I<0xD7, RawFrm, (outs), (ins), "xlatb", []>;
// Specialized register support
def WRMSR : I<0x30, RawFrm, (outs), (ins), "wrmsr", []>, TB;
def RDMSR : I<0x32, RawFrm, (outs), (ins), "rdmsr", []>, TB;
def RDPMC : I<0x33, RawFrm, (outs), (ins), "rdpmc", []>, TB;
def SMSW16r : I<0x01, MRM4r, (outs GR16:$dst), (ins),
"smsw{w}\t$dst", []>, OpSize, TB;
def SMSW32r : I<0x01, MRM4r, (outs GR32:$dst), (ins),
"smsw{l}\t$dst", []>, TB;
// For memory operands, there is only a 16-bit form
def SMSW16m : I<0x01, MRM4m, (outs i16mem:$dst), (ins),
"smsw{w}\t$dst", []>, TB;
def LMSW16r : I<0x01, MRM6r, (outs), (ins GR16:$src),
"lmsw{w}\t$src", []>, TB;
def LMSW16m : I<0x01, MRM6m, (outs), (ins i16mem:$src),
"lmsw{w}\t$src", []>, TB;
def CPUID : I<0xA2, RawFrm, (outs), (ins), "cpuid", []>, TB;
// Cache instructions
def INVD : I<0x08, RawFrm, (outs), (ins), "invd", []>, TB;
def WBINVD : I<0x09, RawFrm, (outs), (ins), "wbinvd", []>, TB;
// VMX instructions
// 66 0F 38 80
def INVEPT : I<0x80, RawFrm, (outs), (ins), "invept", []>, OpSize, T8;
// 66 0F 38 81
def INVVPID : I<0x81, RawFrm, (outs), (ins), "invvpid", []>, OpSize, T8;
// 0F 01 C1
def VMCALL : I<0x01, MRM_C1, (outs), (ins), "vmcall", []>, TB;
def VMCLEARm : I<0xC7, MRM6m, (outs), (ins i64mem:$vmcs),
"vmclear\t$vmcs", []>, OpSize, TB;
// 0F 01 C2
def VMLAUNCH : I<0x01, MRM_C2, (outs), (ins), "vmlaunch", []>, TB;
// 0F 01 C3
def VMRESUME : I<0x01, MRM_C3, (outs), (ins), "vmresume", []>, TB;
def VMPTRLDm : I<0xC7, MRM6m, (outs), (ins i64mem:$vmcs),
"vmptrld\t$vmcs", []>, TB;
def VMPTRSTm : I<0xC7, MRM7m, (outs i64mem:$vmcs), (ins),
"vmptrst\t$vmcs", []>, TB;
def VMREAD64rm : I<0x78, MRMDestMem, (outs i64mem:$dst), (ins GR64:$src),
"vmread{q}\t{$src, $dst|$dst, $src}", []>, TB;
def VMREAD64rr : I<0x78, MRMDestReg, (outs GR64:$dst), (ins GR64:$src),
"vmread{q}\t{$src, $dst|$dst, $src}", []>, TB;
def VMREAD32rm : I<0x78, MRMDestMem, (outs i32mem:$dst), (ins GR32:$src),
"vmread{l}\t{$src, $dst|$dst, $src}", []>, TB;
def VMREAD32rr : I<0x78, MRMDestReg, (outs GR32:$dst), (ins GR32:$src),
"vmread{l}\t{$src, $dst|$dst, $src}", []>, TB;
def VMWRITE64rm : I<0x79, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$src),
"vmwrite{q}\t{$src, $dst|$dst, $src}", []>, TB;
def VMWRITE64rr : I<0x79, MRMSrcReg, (outs GR64:$dst), (ins GR64:$src),
"vmwrite{q}\t{$src, $dst|$dst, $src}", []>, TB;
def VMWRITE32rm : I<0x79, MRMSrcMem, (outs GR32:$dst), (ins i32mem:$src),
"vmwrite{l}\t{$src, $dst|$dst, $src}", []>, TB;
def VMWRITE32rr : I<0x79, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src),
"vmwrite{l}\t{$src, $dst|$dst, $src}", []>, TB;
// 0F 01 C4
def VMXOFF : I<0x01, MRM_C4, (outs), (ins), "vmxoff", []>, TB;
def VMXON : I<0xC7, MRM6m, (outs), (ins i64mem:$vmxon),
"vmxon\t{$vmxon}", []>, XS;
//===----------------------------------------------------------------------===//
// Non-Instruction Patterns
//===----------------------------------------------------------------------===//
// ConstantPool GlobalAddress, ExternalSymbol, and JumpTable
def : Pat<(i32 (X86Wrapper tconstpool :$dst)), (MOV32ri tconstpool :$dst)>;
def : Pat<(i32 (X86Wrapper tjumptable :$dst)), (MOV32ri tjumptable :$dst)>;
def : Pat<(i32 (X86Wrapper tglobaltlsaddr:$dst)),(MOV32ri tglobaltlsaddr:$dst)>;
def : Pat<(i32 (X86Wrapper tglobaladdr :$dst)), (MOV32ri tglobaladdr :$dst)>;
def : Pat<(i32 (X86Wrapper texternalsym:$dst)), (MOV32ri texternalsym:$dst)>;
def : Pat<(i32 (X86Wrapper tblockaddress:$dst)), (MOV32ri tblockaddress:$dst)>;
def : Pat<(add GR32:$src1, (X86Wrapper tconstpool:$src2)),
(ADD32ri GR32:$src1, tconstpool:$src2)>;
def : Pat<(add GR32:$src1, (X86Wrapper tjumptable:$src2)),
(ADD32ri GR32:$src1, tjumptable:$src2)>;
def : Pat<(add GR32:$src1, (X86Wrapper tglobaladdr :$src2)),
(ADD32ri GR32:$src1, tglobaladdr:$src2)>;
def : Pat<(add GR32:$src1, (X86Wrapper texternalsym:$src2)),
(ADD32ri GR32:$src1, texternalsym:$src2)>;
def : Pat<(add GR32:$src1, (X86Wrapper tblockaddress:$src2)),
(ADD32ri GR32:$src1, tblockaddress:$src2)>;
def : Pat<(store (i32 (X86Wrapper tglobaladdr:$src)), addr:$dst),
(MOV32mi addr:$dst, tglobaladdr:$src)>;
def : Pat<(store (i32 (X86Wrapper texternalsym:$src)), addr:$dst),
(MOV32mi addr:$dst, texternalsym:$src)>;
def : Pat<(store (i32 (X86Wrapper tblockaddress:$src)), addr:$dst),
(MOV32mi addr:$dst, tblockaddress:$src)>;
// Calls
// tailcall stuff
def : Pat<(X86tcret GR32_TC:$dst, imm:$off),
(TCRETURNri GR32_TC:$dst, imm:$off)>,
Requires<[In32BitMode]>;
// FIXME: This is disabled for 32-bit PIC mode because the global base
// register which is part of the address mode may be assigned a
// callee-saved register.
def : Pat<(X86tcret (load addr:$dst), imm:$off),
(TCRETURNmi addr:$dst, imm:$off)>,
Requires<[In32BitMode, IsNotPIC]>;
def : Pat<(X86tcret (i32 tglobaladdr:$dst), imm:$off),
(TCRETURNdi texternalsym:$dst, imm:$off)>,
Requires<[In32BitMode]>;
def : Pat<(X86tcret (i32 texternalsym:$dst), imm:$off),
(TCRETURNdi texternalsym:$dst, imm:$off)>,
Requires<[In32BitMode]>;
// Normal calls, with various flavors of addresses.
def : Pat<(X86call (i32 tglobaladdr:$dst)),
(CALLpcrel32 tglobaladdr:$dst)>;
def : Pat<(X86call (i32 texternalsym:$dst)),
(CALLpcrel32 texternalsym:$dst)>;
def : Pat<(X86call (i32 imm:$dst)),
(CALLpcrel32 imm:$dst)>, Requires<[CallImmAddr]>;
// X86 specific add which produces a flag.
def : Pat<(addc GR32:$src1, GR32:$src2),
(ADD32rr GR32:$src1, GR32:$src2)>;
def : Pat<(addc GR32:$src1, (load addr:$src2)),
(ADD32rm GR32:$src1, addr:$src2)>;
def : Pat<(addc GR32:$src1, imm:$src2),
(ADD32ri GR32:$src1, imm:$src2)>;
def : Pat<(addc GR32:$src1, i32immSExt8:$src2),
(ADD32ri8 GR32:$src1, i32immSExt8:$src2)>;
def : Pat<(subc GR32:$src1, GR32:$src2),
(SUB32rr GR32:$src1, GR32:$src2)>;
def : Pat<(subc GR32:$src1, (load addr:$src2)),
(SUB32rm GR32:$src1, addr:$src2)>;
def : Pat<(subc GR32:$src1, imm:$src2),
(SUB32ri GR32:$src1, imm:$src2)>;
def : Pat<(subc GR32:$src1, i32immSExt8:$src2),
(SUB32ri8 GR32:$src1, i32immSExt8:$src2)>;
// Comparisons.
// TEST R,R is smaller than CMP R,0
def : Pat<(X86cmp GR8:$src1, 0),
(TEST8rr GR8:$src1, GR8:$src1)>;
def : Pat<(X86cmp GR16:$src1, 0),
(TEST16rr GR16:$src1, GR16:$src1)>;
def : Pat<(X86cmp GR32:$src1, 0),
(TEST32rr GR32:$src1, GR32:$src1)>;
// Conditional moves with folded loads with operands swapped and conditions
// inverted.
def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_B, EFLAGS),
(CMOVAE16rm GR16:$src2, addr:$src1)>;
def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_B, EFLAGS),
(CMOVAE32rm GR32:$src2, addr:$src1)>;
def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_AE, EFLAGS),
(CMOVB16rm GR16:$src2, addr:$src1)>;
def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_AE, EFLAGS),
(CMOVB32rm GR32:$src2, addr:$src1)>;
def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_E, EFLAGS),
(CMOVNE16rm GR16:$src2, addr:$src1)>;
def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_E, EFLAGS),
(CMOVNE32rm GR32:$src2, addr:$src1)>;
def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_NE, EFLAGS),
(CMOVE16rm GR16:$src2, addr:$src1)>;
def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_NE, EFLAGS),
(CMOVE32rm GR32:$src2, addr:$src1)>;
def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_BE, EFLAGS),
(CMOVA16rm GR16:$src2, addr:$src1)>;
def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_BE, EFLAGS),
(CMOVA32rm GR32:$src2, addr:$src1)>;
def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_A, EFLAGS),
(CMOVBE16rm GR16:$src2, addr:$src1)>;
def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_A, EFLAGS),
(CMOVBE32rm GR32:$src2, addr:$src1)>;
def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_L, EFLAGS),
(CMOVGE16rm GR16:$src2, addr:$src1)>;
def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_L, EFLAGS),
(CMOVGE32rm GR32:$src2, addr:$src1)>;
def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_GE, EFLAGS),
(CMOVL16rm GR16:$src2, addr:$src1)>;
def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_GE, EFLAGS),
(CMOVL32rm GR32:$src2, addr:$src1)>;
def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_LE, EFLAGS),
(CMOVG16rm GR16:$src2, addr:$src1)>;
def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_LE, EFLAGS),
(CMOVG32rm GR32:$src2, addr:$src1)>;
def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_G, EFLAGS),
(CMOVLE16rm GR16:$src2, addr:$src1)>;
def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_G, EFLAGS),
(CMOVLE32rm GR32:$src2, addr:$src1)>;
def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_P, EFLAGS),
(CMOVNP16rm GR16:$src2, addr:$src1)>;
def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_P, EFLAGS),
(CMOVNP32rm GR32:$src2, addr:$src1)>;
def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_NP, EFLAGS),
(CMOVP16rm GR16:$src2, addr:$src1)>;
def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_NP, EFLAGS),
(CMOVP32rm GR32:$src2, addr:$src1)>;
def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_S, EFLAGS),
(CMOVNS16rm GR16:$src2, addr:$src1)>;
def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_S, EFLAGS),
(CMOVNS32rm GR32:$src2, addr:$src1)>;
def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_NS, EFLAGS),
(CMOVS16rm GR16:$src2, addr:$src1)>;
def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_NS, EFLAGS),
(CMOVS32rm GR32:$src2, addr:$src1)>;
def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_O, EFLAGS),
(CMOVNO16rm GR16:$src2, addr:$src1)>;
def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_O, EFLAGS),
(CMOVNO32rm GR32:$src2, addr:$src1)>;
def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_NO, EFLAGS),
(CMOVO16rm GR16:$src2, addr:$src1)>;
def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_NO, EFLAGS),
(CMOVO32rm GR32:$src2, addr:$src1)>;
// zextload bool -> zextload byte
def : Pat<(zextloadi8i1 addr:$src), (MOV8rm addr:$src)>;
def : Pat<(zextloadi16i1 addr:$src), (MOVZX16rm8 addr:$src)>;
def : Pat<(zextloadi32i1 addr:$src), (MOVZX32rm8 addr:$src)>;
// extload bool -> extload byte
def : Pat<(extloadi8i1 addr:$src), (MOV8rm addr:$src)>;
def : Pat<(extloadi16i1 addr:$src), (MOVZX16rm8 addr:$src)>;
def : Pat<(extloadi32i1 addr:$src), (MOVZX32rm8 addr:$src)>;
def : Pat<(extloadi16i8 addr:$src), (MOVZX16rm8 addr:$src)>;
def : Pat<(extloadi32i8 addr:$src), (MOVZX32rm8 addr:$src)>;
def : Pat<(extloadi32i16 addr:$src), (MOVZX32rm16 addr:$src)>;
// anyext. Define these to do an explicit zero-extend to
// avoid partial-register updates.
def : Pat<(i16 (anyext GR8 :$src)), (MOVZX16rr8 GR8 :$src)>;
def : Pat<(i32 (anyext GR8 :$src)), (MOVZX32rr8 GR8 :$src)>;
// Except for i16 -> i32 since isel expect i16 ops to be promoted to i32.
def : Pat<(i32 (anyext GR16:$src)),
(INSERT_SUBREG (i32 (IMPLICIT_DEF)), GR16:$src, x86_subreg_16bit)>;
//===----------------------------------------------------------------------===//
// Some peepholes
//===----------------------------------------------------------------------===//
// Odd encoding trick: -128 fits into an 8-bit immediate field while
// +128 doesn't, so in this special case use a sub instead of an add.
def : Pat<(add GR16:$src1, 128),
(SUB16ri8 GR16:$src1, -128)>;
def : Pat<(store (add (loadi16 addr:$dst), 128), addr:$dst),
(SUB16mi8 addr:$dst, -128)>;
def : Pat<(add GR32:$src1, 128),
(SUB32ri8 GR32:$src1, -128)>;
def : Pat<(store (add (loadi32 addr:$dst), 128), addr:$dst),
(SUB32mi8 addr:$dst, -128)>;
// r & (2^16-1) ==> movz
def : Pat<(and GR32:$src1, 0xffff),
(MOVZX32rr16 (EXTRACT_SUBREG GR32:$src1, x86_subreg_16bit))>;
// r & (2^8-1) ==> movz
def : Pat<(and GR32:$src1, 0xff),
(MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src1,
GR32_ABCD)),
x86_subreg_8bit))>,
Requires<[In32BitMode]>;
// r & (2^8-1) ==> movz
def : Pat<(and GR16:$src1, 0xff),
(MOVZX16rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src1,
GR16_ABCD)),
x86_subreg_8bit))>,
Requires<[In32BitMode]>;
// sext_inreg patterns
def : Pat<(sext_inreg GR32:$src, i16),
(MOVSX32rr16 (EXTRACT_SUBREG GR32:$src, x86_subreg_16bit))>;
def : Pat<(sext_inreg GR32:$src, i8),
(MOVSX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
GR32_ABCD)),
x86_subreg_8bit))>,
Requires<[In32BitMode]>;
def : Pat<(sext_inreg GR16:$src, i8),
(MOVSX16rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src,
GR16_ABCD)),
x86_subreg_8bit))>,
Requires<[In32BitMode]>;
// trunc patterns
def : Pat<(i16 (trunc GR32:$src)),
(EXTRACT_SUBREG GR32:$src, x86_subreg_16bit)>;
def : Pat<(i8 (trunc GR32:$src)),
(EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
x86_subreg_8bit)>,
Requires<[In32BitMode]>;
def : Pat<(i8 (trunc GR16:$src)),
(EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
x86_subreg_8bit)>,
Requires<[In32BitMode]>;
// h-register tricks
def : Pat<(i8 (trunc (srl_su GR16:$src, (i8 8)))),
(EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
x86_subreg_8bit_hi)>,
Requires<[In32BitMode]>;
def : Pat<(i8 (trunc (srl_su GR32:$src, (i8 8)))),
(EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
x86_subreg_8bit_hi)>,
Requires<[In32BitMode]>;
def : Pat<(srl GR16:$src, (i8 8)),
(EXTRACT_SUBREG
(MOVZX32rr8
(EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
x86_subreg_8bit_hi)),
x86_subreg_16bit)>,
Requires<[In32BitMode]>;
def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))),
(MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src,
GR16_ABCD)),
x86_subreg_8bit_hi))>,
Requires<[In32BitMode]>;
def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))),
(MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src,
GR16_ABCD)),
x86_subreg_8bit_hi))>,
Requires<[In32BitMode]>;
def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)),
(MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
GR32_ABCD)),
x86_subreg_8bit_hi))>,
Requires<[In32BitMode]>;
def : Pat<(srl (and_su GR32:$src, 0xff00), (i8 8)),
(MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
GR32_ABCD)),
x86_subreg_8bit_hi))>,
Requires<[In32BitMode]>;
// (shl x, 1) ==> (add x, x)
def : Pat<(shl GR8 :$src1, (i8 1)), (ADD8rr GR8 :$src1, GR8 :$src1)>;
def : Pat<(shl GR16:$src1, (i8 1)), (ADD16rr GR16:$src1, GR16:$src1)>;
def : Pat<(shl GR32:$src1, (i8 1)), (ADD32rr GR32:$src1, GR32:$src1)>;
// (shl x (and y, 31)) ==> (shl x, y)
def : Pat<(shl GR8:$src1, (and CL, 31)),
(SHL8rCL GR8:$src1)>;
def : Pat<(shl GR16:$src1, (and CL, 31)),
(SHL16rCL GR16:$src1)>;
def : Pat<(shl GR32:$src1, (and CL, 31)),
(SHL32rCL GR32:$src1)>;
def : Pat<(store (shl (loadi8 addr:$dst), (and CL, 31)), addr:$dst),
(SHL8mCL addr:$dst)>;
def : Pat<(store (shl (loadi16 addr:$dst), (and CL, 31)), addr:$dst),
(SHL16mCL addr:$dst)>;
def : Pat<(store (shl (loadi32 addr:$dst), (and CL, 31)), addr:$dst),
(SHL32mCL addr:$dst)>;
def : Pat<(srl GR8:$src1, (and CL, 31)),
(SHR8rCL GR8:$src1)>;
def : Pat<(srl GR16:$src1, (and CL, 31)),
(SHR16rCL GR16:$src1)>;
def : Pat<(srl GR32:$src1, (and CL, 31)),
(SHR32rCL GR32:$src1)>;
def : Pat<(store (srl (loadi8 addr:$dst), (and CL, 31)), addr:$dst),
(SHR8mCL addr:$dst)>;
def : Pat<(store (srl (loadi16 addr:$dst), (and CL, 31)), addr:$dst),
(SHR16mCL addr:$dst)>;
def : Pat<(store (srl (loadi32 addr:$dst), (and CL, 31)), addr:$dst),
(SHR32mCL addr:$dst)>;
def : Pat<(sra GR8:$src1, (and CL, 31)),
(SAR8rCL GR8:$src1)>;
def : Pat<(sra GR16:$src1, (and CL, 31)),
(SAR16rCL GR16:$src1)>;
def : Pat<(sra GR32:$src1, (and CL, 31)),
(SAR32rCL GR32:$src1)>;
def : Pat<(store (sra (loadi8 addr:$dst), (and CL, 31)), addr:$dst),
(SAR8mCL addr:$dst)>;
def : Pat<(store (sra (loadi16 addr:$dst), (and CL, 31)), addr:$dst),
(SAR16mCL addr:$dst)>;
def : Pat<(store (sra (loadi32 addr:$dst), (and CL, 31)), addr:$dst),
(SAR32mCL addr:$dst)>;
// (anyext (setcc_carry)) -> (setcc_carry)
def : Pat<(i16 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
(SETB_C16r)>;
def : Pat<(i32 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
(SETB_C32r)>;
def : Pat<(i32 (anyext (i16 (X86setcc_c X86_COND_B, EFLAGS)))),
(SETB_C32r)>;
// (or x1, x2) -> (add x1, x2) if two operands are known not to share bits.
let AddedComplexity = 5 in { // Try this before the selecting to OR
def : Pat<(or_is_add GR16:$src1, imm:$src2),
(ADD16ri GR16:$src1, imm:$src2)>;
def : Pat<(or_is_add GR32:$src1, imm:$src2),
(ADD32ri GR32:$src1, imm:$src2)>;
def : Pat<(or_is_add GR16:$src1, i16immSExt8:$src2),
(ADD16ri8 GR16:$src1, i16immSExt8:$src2)>;
def : Pat<(or_is_add GR32:$src1, i32immSExt8:$src2),
(ADD32ri8 GR32:$src1, i32immSExt8:$src2)>;
def : Pat<(or_is_add GR16:$src1, GR16:$src2),
(ADD16rr GR16:$src1, GR16:$src2)>;
def : Pat<(or_is_add GR32:$src1, GR32:$src2),
(ADD32rr GR32:$src1, GR32:$src2)>;
} // AddedComplexity
//===----------------------------------------------------------------------===//
// EFLAGS-defining Patterns
//===----------------------------------------------------------------------===//
// add reg, reg
def : Pat<(add GR8 :$src1, GR8 :$src2), (ADD8rr GR8 :$src1, GR8 :$src2)>;
def : Pat<(add GR16:$src1, GR16:$src2), (ADD16rr GR16:$src1, GR16:$src2)>;
def : Pat<(add GR32:$src1, GR32:$src2), (ADD32rr GR32:$src1, GR32:$src2)>;
// add reg, mem
def : Pat<(add GR8:$src1, (loadi8 addr:$src2)),
(ADD8rm GR8:$src1, addr:$src2)>;
def : Pat<(add GR16:$src1, (loadi16 addr:$src2)),
(ADD16rm GR16:$src1, addr:$src2)>;
def : Pat<(add GR32:$src1, (loadi32 addr:$src2)),
(ADD32rm GR32:$src1, addr:$src2)>;
// add reg, imm
def : Pat<(add GR8 :$src1, imm:$src2), (ADD8ri GR8:$src1 , imm:$src2)>;
def : Pat<(add GR16:$src1, imm:$src2), (ADD16ri GR16:$src1, imm:$src2)>;
def : Pat<(add GR32:$src1, imm:$src2), (ADD32ri GR32:$src1, imm:$src2)>;
def : Pat<(add GR16:$src1, i16immSExt8:$src2),
(ADD16ri8 GR16:$src1, i16immSExt8:$src2)>;
def : Pat<(add GR32:$src1, i32immSExt8:$src2),
(ADD32ri8 GR32:$src1, i32immSExt8:$src2)>;
// sub reg, reg
def : Pat<(sub GR8 :$src1, GR8 :$src2), (SUB8rr GR8 :$src1, GR8 :$src2)>;
def : Pat<(sub GR16:$src1, GR16:$src2), (SUB16rr GR16:$src1, GR16:$src2)>;
def : Pat<(sub GR32:$src1, GR32:$src2), (SUB32rr GR32:$src1, GR32:$src2)>;
// sub reg, mem
def : Pat<(sub GR8:$src1, (loadi8 addr:$src2)),
(SUB8rm GR8:$src1, addr:$src2)>;
def : Pat<(sub GR16:$src1, (loadi16 addr:$src2)),
(SUB16rm GR16:$src1, addr:$src2)>;
def : Pat<(sub GR32:$src1, (loadi32 addr:$src2)),
(SUB32rm GR32:$src1, addr:$src2)>;
// sub reg, imm
def : Pat<(sub GR8:$src1, imm:$src2),
(SUB8ri GR8:$src1, imm:$src2)>;
def : Pat<(sub GR16:$src1, imm:$src2),
(SUB16ri GR16:$src1, imm:$src2)>;
def : Pat<(sub GR32:$src1, imm:$src2),
(SUB32ri GR32:$src1, imm:$src2)>;
def : Pat<(sub GR16:$src1, i16immSExt8:$src2),
(SUB16ri8 GR16:$src1, i16immSExt8:$src2)>;
def : Pat<(sub GR32:$src1, i32immSExt8:$src2),
(SUB32ri8 GR32:$src1, i32immSExt8:$src2)>;
// mul reg, reg
def : Pat<(mul GR16:$src1, GR16:$src2),
(IMUL16rr GR16:$src1, GR16:$src2)>;
def : Pat<(mul GR32:$src1, GR32:$src2),
(IMUL32rr GR32:$src1, GR32:$src2)>;
// mul reg, mem
def : Pat<(mul GR16:$src1, (loadi16 addr:$src2)),
(IMUL16rm GR16:$src1, addr:$src2)>;
def : Pat<(mul GR32:$src1, (loadi32 addr:$src2)),
(IMUL32rm GR32:$src1, addr:$src2)>;
// mul reg, imm
def : Pat<(mul GR16:$src1, imm:$src2),
(IMUL16rri GR16:$src1, imm:$src2)>;
def : Pat<(mul GR32:$src1, imm:$src2),
(IMUL32rri GR32:$src1, imm:$src2)>;
def : Pat<(mul GR16:$src1, i16immSExt8:$src2),
(IMUL16rri8 GR16:$src1, i16immSExt8:$src2)>;
def : Pat<(mul GR32:$src1, i32immSExt8:$src2),
(IMUL32rri8 GR32:$src1, i32immSExt8:$src2)>;
// reg = mul mem, imm
def : Pat<(mul (loadi16 addr:$src1), imm:$src2),
(IMUL16rmi addr:$src1, imm:$src2)>;
def : Pat<(mul (loadi32 addr:$src1), imm:$src2),
(IMUL32rmi addr:$src1, imm:$src2)>;
def : Pat<(mul (loadi16 addr:$src1), i16immSExt8:$src2),
(IMUL16rmi8 addr:$src1, i16immSExt8:$src2)>;
def : Pat<(mul (loadi32 addr:$src1), i32immSExt8:$src2),
(IMUL32rmi8 addr:$src1, i32immSExt8:$src2)>;
// Optimize multiply by 2 with EFLAGS result.
let AddedComplexity = 2 in {
def : Pat<(X86smul_flag GR16:$src1, 2), (ADD16rr GR16:$src1, GR16:$src1)>;
def : Pat<(X86smul_flag GR32:$src1, 2), (ADD32rr GR32:$src1, GR32:$src1)>;
}
// Patterns for nodes that do not produce flags, for instructions that do.
// Increment reg.
def : Pat<(add GR8:$src , 1), (INC8r GR8:$src)>;
def : Pat<(add GR16:$src, 1), (INC16r GR16:$src)>, Requires<[In32BitMode]>;
def : Pat<(add GR32:$src, 1), (INC32r GR32:$src)>, Requires<[In32BitMode]>;
// Decrement reg.
def : Pat<(add GR8:$src , -1), (DEC8r GR8:$src)>;
def : Pat<(add GR16:$src, -1), (DEC16r GR16:$src)>, Requires<[In32BitMode]>;
def : Pat<(add GR32:$src, -1), (DEC32r GR32:$src)>, Requires<[In32BitMode]>;
// or reg/reg.
def : Pat<(or GR8 :$src1, GR8 :$src2), (OR8rr GR8 :$src1, GR8 :$src2)>;
def : Pat<(or GR16:$src1, GR16:$src2), (OR16rr GR16:$src1, GR16:$src2)>;
def : Pat<(or GR32:$src1, GR32:$src2), (OR32rr GR32:$src1, GR32:$src2)>;
// or reg/mem
def : Pat<(or GR8:$src1, (loadi8 addr:$src2)),
(OR8rm GR8:$src1, addr:$src2)>;
def : Pat<(or GR16:$src1, (loadi16 addr:$src2)),
(OR16rm GR16:$src1, addr:$src2)>;
def : Pat<(or GR32:$src1, (loadi32 addr:$src2)),
(OR32rm GR32:$src1, addr:$src2)>;
// or reg/imm
def : Pat<(or GR8:$src1 , imm:$src2), (OR8ri GR8 :$src1, imm:$src2)>;
def : Pat<(or GR16:$src1, imm:$src2), (OR16ri GR16:$src1, imm:$src2)>;
def : Pat<(or GR32:$src1, imm:$src2), (OR32ri GR32:$src1, imm:$src2)>;
def : Pat<(or GR16:$src1, i16immSExt8:$src2),
(OR16ri8 GR16:$src1, i16immSExt8:$src2)>;
def : Pat<(or GR32:$src1, i32immSExt8:$src2),
(OR32ri8 GR32:$src1, i32immSExt8:$src2)>;
// xor reg/reg
def : Pat<(xor GR8 :$src1, GR8 :$src2), (XOR8rr GR8 :$src1, GR8 :$src2)>;
def : Pat<(xor GR16:$src1, GR16:$src2), (XOR16rr GR16:$src1, GR16:$src2)>;
def : Pat<(xor GR32:$src1, GR32:$src2), (XOR32rr GR32:$src1, GR32:$src2)>;
// xor reg/mem
def : Pat<(xor GR8:$src1, (loadi8 addr:$src2)),
(XOR8rm GR8:$src1, addr:$src2)>;
def : Pat<(xor GR16:$src1, (loadi16 addr:$src2)),
(XOR16rm GR16:$src1, addr:$src2)>;
def : Pat<(xor GR32:$src1, (loadi32 addr:$src2)),
(XOR32rm GR32:$src1, addr:$src2)>;
// xor reg/imm
def : Pat<(xor GR8:$src1, imm:$src2),
(XOR8ri GR8:$src1, imm:$src2)>;
def : Pat<(xor GR16:$src1, imm:$src2),
(XOR16ri GR16:$src1, imm:$src2)>;
def : Pat<(xor GR32:$src1, imm:$src2),
(XOR32ri GR32:$src1, imm:$src2)>;
def : Pat<(xor GR16:$src1, i16immSExt8:$src2),
(XOR16ri8 GR16:$src1, i16immSExt8:$src2)>;
def : Pat<(xor GR32:$src1, i32immSExt8:$src2),
(XOR32ri8 GR32:$src1, i32immSExt8:$src2)>;
// and reg/reg
def : Pat<(and GR8 :$src1, GR8 :$src2), (AND8rr GR8 :$src1, GR8 :$src2)>;
def : Pat<(and GR16:$src1, GR16:$src2), (AND16rr GR16:$src1, GR16:$src2)>;
def : Pat<(and GR32:$src1, GR32:$src2), (AND32rr GR32:$src1, GR32:$src2)>;
// and reg/mem
def : Pat<(and GR8:$src1, (loadi8 addr:$src2)),
(AND8rm GR8:$src1, addr:$src2)>;
def : Pat<(and GR16:$src1, (loadi16 addr:$src2)),
(AND16rm GR16:$src1, addr:$src2)>;
def : Pat<(and GR32:$src1, (loadi32 addr:$src2)),
(AND32rm GR32:$src1, addr:$src2)>;
// and reg/imm
def : Pat<(and GR8:$src1, imm:$src2),
(AND8ri GR8:$src1, imm:$src2)>;
def : Pat<(and GR16:$src1, imm:$src2),
(AND16ri GR16:$src1, imm:$src2)>;
def : Pat<(and GR32:$src1, imm:$src2),
(AND32ri GR32:$src1, imm:$src2)>;
def : Pat<(and GR16:$src1, i16immSExt8:$src2),
(AND16ri8 GR16:$src1, i16immSExt8:$src2)>;
def : Pat<(and GR32:$src1, i32immSExt8:$src2),
(AND32ri8 GR32:$src1, i32immSExt8:$src2)>;
//===----------------------------------------------------------------------===//
// Floating Point Stack Support
//===----------------------------------------------------------------------===//
include "X86InstrFPStack.td"
//===----------------------------------------------------------------------===//
// X86-64 Support
//===----------------------------------------------------------------------===//
include "X86Instr64bit.td"
//===----------------------------------------------------------------------===//
// SIMD support (SSE, MMX and AVX)
//===----------------------------------------------------------------------===//
include "X86InstrFragmentsSIMD.td"
//===----------------------------------------------------------------------===//
// XMM Floating point support (requires SSE / SSE2)
//===----------------------------------------------------------------------===//
include "X86InstrSSE.td"
//===----------------------------------------------------------------------===//
// MMX and XMM Packed Integer support (requires MMX, SSE, and SSE2)
//===----------------------------------------------------------------------===//
include "X86InstrMMX.td"