llvm-6502/include/llvm/Analysis/ScalarEvolutionExpressions.h
David Blaikie 5401ba7099 Update SetVector to rely on the underlying set's insert to return a pair<iterator, bool>
This is to be consistent with StringSet and ultimately with the standard
library's associative container insert function.

This lead to updating SmallSet::insert to return pair<iterator, bool>,
and then to update SmallPtrSet::insert to return pair<iterator, bool>,
and then to update all the existing users of those functions...

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222334 91177308-0d34-0410-b5e6-96231b3b80d8
2014-11-19 07:49:26 +00:00

835 lines
30 KiB
C++

//===- llvm/Analysis/ScalarEvolutionExpressions.h - SCEV Exprs --*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the classes used to represent and build scalar expressions.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_SCALAREVOLUTIONEXPRESSIONS_H
#define LLVM_ANALYSIS_SCALAREVOLUTIONEXPRESSIONS_H
#include "llvm/ADT/iterator_range.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Support/ErrorHandling.h"
namespace llvm {
class ConstantInt;
class ConstantRange;
class DominatorTree;
enum SCEVTypes {
// These should be ordered in terms of increasing complexity to make the
// folders simpler.
scConstant, scTruncate, scZeroExtend, scSignExtend, scAddExpr, scMulExpr,
scUDivExpr, scAddRecExpr, scUMaxExpr, scSMaxExpr,
scUnknown, scCouldNotCompute
};
//===--------------------------------------------------------------------===//
/// SCEVConstant - This class represents a constant integer value.
///
class SCEVConstant : public SCEV {
friend class ScalarEvolution;
ConstantInt *V;
SCEVConstant(const FoldingSetNodeIDRef ID, ConstantInt *v) :
SCEV(ID, scConstant), V(v) {}
public:
ConstantInt *getValue() const { return V; }
Type *getType() const { return V->getType(); }
/// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const SCEV *S) {
return S->getSCEVType() == scConstant;
}
};
//===--------------------------------------------------------------------===//
/// SCEVCastExpr - This is the base class for unary cast operator classes.
///
class SCEVCastExpr : public SCEV {
protected:
const SCEV *Op;
Type *Ty;
SCEVCastExpr(const FoldingSetNodeIDRef ID,
unsigned SCEVTy, const SCEV *op, Type *ty);
public:
const SCEV *getOperand() const { return Op; }
Type *getType() const { return Ty; }
/// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const SCEV *S) {
return S->getSCEVType() == scTruncate ||
S->getSCEVType() == scZeroExtend ||
S->getSCEVType() == scSignExtend;
}
};
//===--------------------------------------------------------------------===//
/// SCEVTruncateExpr - This class represents a truncation of an integer value
/// to a smaller integer value.
///
class SCEVTruncateExpr : public SCEVCastExpr {
friend class ScalarEvolution;
SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
const SCEV *op, Type *ty);
public:
/// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const SCEV *S) {
return S->getSCEVType() == scTruncate;
}
};
//===--------------------------------------------------------------------===//
/// SCEVZeroExtendExpr - This class represents a zero extension of a small
/// integer value to a larger integer value.
///
class SCEVZeroExtendExpr : public SCEVCastExpr {
friend class ScalarEvolution;
SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
const SCEV *op, Type *ty);
public:
/// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const SCEV *S) {
return S->getSCEVType() == scZeroExtend;
}
};
//===--------------------------------------------------------------------===//
/// SCEVSignExtendExpr - This class represents a sign extension of a small
/// integer value to a larger integer value.
///
class SCEVSignExtendExpr : public SCEVCastExpr {
friend class ScalarEvolution;
SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
const SCEV *op, Type *ty);
public:
/// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const SCEV *S) {
return S->getSCEVType() == scSignExtend;
}
};
//===--------------------------------------------------------------------===//
/// SCEVNAryExpr - This node is a base class providing common
/// functionality for n'ary operators.
///
class SCEVNAryExpr : public SCEV {
protected:
// Since SCEVs are immutable, ScalarEvolution allocates operand
// arrays with its SCEVAllocator, so this class just needs a simple
// pointer rather than a more elaborate vector-like data structure.
// This also avoids the need for a non-trivial destructor.
const SCEV *const *Operands;
size_t NumOperands;
SCEVNAryExpr(const FoldingSetNodeIDRef ID,
enum SCEVTypes T, const SCEV *const *O, size_t N)
: SCEV(ID, T), Operands(O), NumOperands(N) {}
public:
size_t getNumOperands() const { return NumOperands; }
const SCEV *getOperand(unsigned i) const {
assert(i < NumOperands && "Operand index out of range!");
return Operands[i];
}
typedef const SCEV *const *op_iterator;
typedef iterator_range<op_iterator> op_range;
op_iterator op_begin() const { return Operands; }
op_iterator op_end() const { return Operands + NumOperands; }
op_range operands() const {
return make_range(op_begin(), op_end());
}
Type *getType() const { return getOperand(0)->getType(); }
NoWrapFlags getNoWrapFlags(NoWrapFlags Mask = NoWrapMask) const {
return (NoWrapFlags)(SubclassData & Mask);
}
/// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const SCEV *S) {
return S->getSCEVType() == scAddExpr ||
S->getSCEVType() == scMulExpr ||
S->getSCEVType() == scSMaxExpr ||
S->getSCEVType() == scUMaxExpr ||
S->getSCEVType() == scAddRecExpr;
}
};
//===--------------------------------------------------------------------===//
/// SCEVCommutativeExpr - This node is the base class for n'ary commutative
/// operators.
///
class SCEVCommutativeExpr : public SCEVNAryExpr {
protected:
SCEVCommutativeExpr(const FoldingSetNodeIDRef ID,
enum SCEVTypes T, const SCEV *const *O, size_t N)
: SCEVNAryExpr(ID, T, O, N) {}
public:
/// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const SCEV *S) {
return S->getSCEVType() == scAddExpr ||
S->getSCEVType() == scMulExpr ||
S->getSCEVType() == scSMaxExpr ||
S->getSCEVType() == scUMaxExpr;
}
/// Set flags for a non-recurrence without clearing previously set flags.
void setNoWrapFlags(NoWrapFlags Flags) {
SubclassData |= Flags;
}
};
//===--------------------------------------------------------------------===//
/// SCEVAddExpr - This node represents an addition of some number of SCEVs.
///
class SCEVAddExpr : public SCEVCommutativeExpr {
friend class ScalarEvolution;
SCEVAddExpr(const FoldingSetNodeIDRef ID,
const SCEV *const *O, size_t N)
: SCEVCommutativeExpr(ID, scAddExpr, O, N) {
}
public:
Type *getType() const {
// Use the type of the last operand, which is likely to be a pointer
// type, if there is one. This doesn't usually matter, but it can help
// reduce casts when the expressions are expanded.
return getOperand(getNumOperands() - 1)->getType();
}
/// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const SCEV *S) {
return S->getSCEVType() == scAddExpr;
}
};
//===--------------------------------------------------------------------===//
/// SCEVMulExpr - This node represents multiplication of some number of SCEVs.
///
class SCEVMulExpr : public SCEVCommutativeExpr {
friend class ScalarEvolution;
SCEVMulExpr(const FoldingSetNodeIDRef ID,
const SCEV *const *O, size_t N)
: SCEVCommutativeExpr(ID, scMulExpr, O, N) {
}
public:
/// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const SCEV *S) {
return S->getSCEVType() == scMulExpr;
}
};
//===--------------------------------------------------------------------===//
/// SCEVUDivExpr - This class represents a binary unsigned division operation.
///
class SCEVUDivExpr : public SCEV {
friend class ScalarEvolution;
const SCEV *LHS;
const SCEV *RHS;
SCEVUDivExpr(const FoldingSetNodeIDRef ID, const SCEV *lhs, const SCEV *rhs)
: SCEV(ID, scUDivExpr), LHS(lhs), RHS(rhs) {}
public:
const SCEV *getLHS() const { return LHS; }
const SCEV *getRHS() const { return RHS; }
Type *getType() const {
// In most cases the types of LHS and RHS will be the same, but in some
// crazy cases one or the other may be a pointer. ScalarEvolution doesn't
// depend on the type for correctness, but handling types carefully can
// avoid extra casts in the SCEVExpander. The LHS is more likely to be
// a pointer type than the RHS, so use the RHS' type here.
return getRHS()->getType();
}
/// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const SCEV *S) {
return S->getSCEVType() == scUDivExpr;
}
};
//===--------------------------------------------------------------------===//
/// SCEVAddRecExpr - This node represents a polynomial recurrence on the trip
/// count of the specified loop. This is the primary focus of the
/// ScalarEvolution framework; all the other SCEV subclasses are mostly just
/// supporting infrastructure to allow SCEVAddRecExpr expressions to be
/// created and analyzed.
///
/// All operands of an AddRec are required to be loop invariant.
///
class SCEVAddRecExpr : public SCEVNAryExpr {
friend class ScalarEvolution;
const Loop *L;
SCEVAddRecExpr(const FoldingSetNodeIDRef ID,
const SCEV *const *O, size_t N, const Loop *l)
: SCEVNAryExpr(ID, scAddRecExpr, O, N), L(l) {}
public:
const SCEV *getStart() const { return Operands[0]; }
const Loop *getLoop() const { return L; }
/// getStepRecurrence - This method constructs and returns the recurrence
/// indicating how much this expression steps by. If this is a polynomial
/// of degree N, it returns a chrec of degree N-1.
/// We cannot determine whether the step recurrence has self-wraparound.
const SCEV *getStepRecurrence(ScalarEvolution &SE) const {
if (isAffine()) return getOperand(1);
return SE.getAddRecExpr(SmallVector<const SCEV *, 3>(op_begin()+1,
op_end()),
getLoop(), FlagAnyWrap);
}
/// isAffine - Return true if this represents an expression
/// A + B*x where A and B are loop invariant values.
bool isAffine() const {
// We know that the start value is invariant. This expression is thus
// affine iff the step is also invariant.
return getNumOperands() == 2;
}
/// isQuadratic - Return true if this represents an expression
/// A + B*x + C*x^2 where A, B and C are loop invariant values.
/// This corresponds to an addrec of the form {L,+,M,+,N}
bool isQuadratic() const {
return getNumOperands() == 3;
}
/// Set flags for a recurrence without clearing any previously set flags.
/// For AddRec, either NUW or NSW implies NW. Keep track of this fact here
/// to make it easier to propagate flags.
void setNoWrapFlags(NoWrapFlags Flags) {
if (Flags & (FlagNUW | FlagNSW))
Flags = ScalarEvolution::setFlags(Flags, FlagNW);
SubclassData |= Flags;
}
/// evaluateAtIteration - Return the value of this chain of recurrences at
/// the specified iteration number.
const SCEV *evaluateAtIteration(const SCEV *It, ScalarEvolution &SE) const;
/// getNumIterationsInRange - Return the number of iterations of this loop
/// that produce values in the specified constant range. Another way of
/// looking at this is that it returns the first iteration number where the
/// value is not in the condition, thus computing the exit count. If the
/// iteration count can't be computed, an instance of SCEVCouldNotCompute is
/// returned.
const SCEV *getNumIterationsInRange(ConstantRange Range,
ScalarEvolution &SE) const;
/// getPostIncExpr - Return an expression representing the value of
/// this expression one iteration of the loop ahead.
const SCEVAddRecExpr *getPostIncExpr(ScalarEvolution &SE) const {
return cast<SCEVAddRecExpr>(SE.getAddExpr(this, getStepRecurrence(SE)));
}
/// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const SCEV *S) {
return S->getSCEVType() == scAddRecExpr;
}
/// Collect parametric terms occurring in step expressions.
void collectParametricTerms(ScalarEvolution &SE,
SmallVectorImpl<const SCEV *> &Terms) const;
/// Return in Subscripts the access functions for each dimension in Sizes.
void computeAccessFunctions(ScalarEvolution &SE,
SmallVectorImpl<const SCEV *> &Subscripts,
SmallVectorImpl<const SCEV *> &Sizes) const;
/// Split this SCEVAddRecExpr into two vectors of SCEVs representing the
/// subscripts and sizes of an array access.
///
/// The delinearization is a 3 step process: the first two steps compute the
/// sizes of each subscript and the third step computes the access functions
/// for the delinearized array:
///
/// 1. Find the terms in the step functions
/// 2. Compute the array size
/// 3. Compute the access function: divide the SCEV by the array size
/// starting with the innermost dimensions found in step 2. The Quotient
/// is the SCEV to be divided in the next step of the recursion. The
/// Remainder is the subscript of the innermost dimension. Loop over all
/// array dimensions computed in step 2.
///
/// To compute a uniform array size for several memory accesses to the same
/// object, one can collect in step 1 all the step terms for all the memory
/// accesses, and compute in step 2 a unique array shape. This guarantees
/// that the array shape will be the same across all memory accesses.
///
/// FIXME: We could derive the result of steps 1 and 2 from a description of
/// the array shape given in metadata.
///
/// Example:
///
/// A[][n][m]
///
/// for i
/// for j
/// for k
/// A[j+k][2i][5i] =
///
/// The initial SCEV:
///
/// A[{{{0,+,2*m+5}_i, +, n*m}_j, +, n*m}_k]
///
/// 1. Find the different terms in the step functions:
/// -> [2*m, 5, n*m, n*m]
///
/// 2. Compute the array size: sort and unique them
/// -> [n*m, 2*m, 5]
/// find the GCD of all the terms = 1
/// divide by the GCD and erase constant terms
/// -> [n*m, 2*m]
/// GCD = m
/// divide by GCD -> [n, 2]
/// remove constant terms
/// -> [n]
/// size of the array is A[unknown][n][m]
///
/// 3. Compute the access function
/// a. Divide {{{0,+,2*m+5}_i, +, n*m}_j, +, n*m}_k by the innermost size m
/// Quotient: {{{0,+,2}_i, +, n}_j, +, n}_k
/// Remainder: {{{0,+,5}_i, +, 0}_j, +, 0}_k
/// The remainder is the subscript of the innermost array dimension: [5i].
///
/// b. Divide Quotient: {{{0,+,2}_i, +, n}_j, +, n}_k by next outer size n
/// Quotient: {{{0,+,0}_i, +, 1}_j, +, 1}_k
/// Remainder: {{{0,+,2}_i, +, 0}_j, +, 0}_k
/// The Remainder is the subscript of the next array dimension: [2i].
///
/// The subscript of the outermost dimension is the Quotient: [j+k].
///
/// Overall, we have: A[][n][m], and the access function: A[j+k][2i][5i].
void delinearize(ScalarEvolution &SE,
SmallVectorImpl<const SCEV *> &Subscripts,
SmallVectorImpl<const SCEV *> &Sizes,
const SCEV *ElementSize) const;
};
//===--------------------------------------------------------------------===//
/// SCEVSMaxExpr - This class represents a signed maximum selection.
///
class SCEVSMaxExpr : public SCEVCommutativeExpr {
friend class ScalarEvolution;
SCEVSMaxExpr(const FoldingSetNodeIDRef ID,
const SCEV *const *O, size_t N)
: SCEVCommutativeExpr(ID, scSMaxExpr, O, N) {
// Max never overflows.
setNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW));
}
public:
/// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const SCEV *S) {
return S->getSCEVType() == scSMaxExpr;
}
};
//===--------------------------------------------------------------------===//
/// SCEVUMaxExpr - This class represents an unsigned maximum selection.
///
class SCEVUMaxExpr : public SCEVCommutativeExpr {
friend class ScalarEvolution;
SCEVUMaxExpr(const FoldingSetNodeIDRef ID,
const SCEV *const *O, size_t N)
: SCEVCommutativeExpr(ID, scUMaxExpr, O, N) {
// Max never overflows.
setNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW));
}
public:
/// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const SCEV *S) {
return S->getSCEVType() == scUMaxExpr;
}
};
//===--------------------------------------------------------------------===//
/// SCEVUnknown - This means that we are dealing with an entirely unknown SCEV
/// value, and only represent it as its LLVM Value. This is the "bottom"
/// value for the analysis.
///
class SCEVUnknown : public SCEV, private CallbackVH {
friend class ScalarEvolution;
// Implement CallbackVH.
void deleted() override;
void allUsesReplacedWith(Value *New) override;
/// SE - The parent ScalarEvolution value. This is used to update
/// the parent's maps when the value associated with a SCEVUnknown
/// is deleted or RAUW'd.
ScalarEvolution *SE;
/// Next - The next pointer in the linked list of all
/// SCEVUnknown instances owned by a ScalarEvolution.
SCEVUnknown *Next;
SCEVUnknown(const FoldingSetNodeIDRef ID, Value *V,
ScalarEvolution *se, SCEVUnknown *next) :
SCEV(ID, scUnknown), CallbackVH(V), SE(se), Next(next) {}
public:
Value *getValue() const { return getValPtr(); }
/// isSizeOf, isAlignOf, isOffsetOf - Test whether this is a special
/// constant representing a type size, alignment, or field offset in
/// a target-independent manner, and hasn't happened to have been
/// folded with other operations into something unrecognizable. This
/// is mainly only useful for pretty-printing and other situations
/// where it isn't absolutely required for these to succeed.
bool isSizeOf(Type *&AllocTy) const;
bool isAlignOf(Type *&AllocTy) const;
bool isOffsetOf(Type *&STy, Constant *&FieldNo) const;
Type *getType() const { return getValPtr()->getType(); }
/// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const SCEV *S) {
return S->getSCEVType() == scUnknown;
}
};
/// SCEVVisitor - This class defines a simple visitor class that may be used
/// for various SCEV analysis purposes.
template<typename SC, typename RetVal=void>
struct SCEVVisitor {
RetVal visit(const SCEV *S) {
switch (S->getSCEVType()) {
case scConstant:
return ((SC*)this)->visitConstant((const SCEVConstant*)S);
case scTruncate:
return ((SC*)this)->visitTruncateExpr((const SCEVTruncateExpr*)S);
case scZeroExtend:
return ((SC*)this)->visitZeroExtendExpr((const SCEVZeroExtendExpr*)S);
case scSignExtend:
return ((SC*)this)->visitSignExtendExpr((const SCEVSignExtendExpr*)S);
case scAddExpr:
return ((SC*)this)->visitAddExpr((const SCEVAddExpr*)S);
case scMulExpr:
return ((SC*)this)->visitMulExpr((const SCEVMulExpr*)S);
case scUDivExpr:
return ((SC*)this)->visitUDivExpr((const SCEVUDivExpr*)S);
case scAddRecExpr:
return ((SC*)this)->visitAddRecExpr((const SCEVAddRecExpr*)S);
case scSMaxExpr:
return ((SC*)this)->visitSMaxExpr((const SCEVSMaxExpr*)S);
case scUMaxExpr:
return ((SC*)this)->visitUMaxExpr((const SCEVUMaxExpr*)S);
case scUnknown:
return ((SC*)this)->visitUnknown((const SCEVUnknown*)S);
case scCouldNotCompute:
return ((SC*)this)->visitCouldNotCompute((const SCEVCouldNotCompute*)S);
default:
llvm_unreachable("Unknown SCEV type!");
}
}
RetVal visitCouldNotCompute(const SCEVCouldNotCompute *S) {
llvm_unreachable("Invalid use of SCEVCouldNotCompute!");
}
};
/// Visit all nodes in the expression tree using worklist traversal.
///
/// Visitor implements:
/// // return true to follow this node.
/// bool follow(const SCEV *S);
/// // return true to terminate the search.
/// bool isDone();
template<typename SV>
class SCEVTraversal {
SV &Visitor;
SmallVector<const SCEV *, 8> Worklist;
SmallPtrSet<const SCEV *, 8> Visited;
void push(const SCEV *S) {
if (Visited.insert(S).second && Visitor.follow(S))
Worklist.push_back(S);
}
public:
SCEVTraversal(SV& V): Visitor(V) {}
void visitAll(const SCEV *Root) {
push(Root);
while (!Worklist.empty() && !Visitor.isDone()) {
const SCEV *S = Worklist.pop_back_val();
switch (S->getSCEVType()) {
case scConstant:
case scUnknown:
break;
case scTruncate:
case scZeroExtend:
case scSignExtend:
push(cast<SCEVCastExpr>(S)->getOperand());
break;
case scAddExpr:
case scMulExpr:
case scSMaxExpr:
case scUMaxExpr:
case scAddRecExpr: {
const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
for (SCEVNAryExpr::op_iterator I = NAry->op_begin(),
E = NAry->op_end(); I != E; ++I) {
push(*I);
}
break;
}
case scUDivExpr: {
const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
push(UDiv->getLHS());
push(UDiv->getRHS());
break;
}
case scCouldNotCompute:
llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
default:
llvm_unreachable("Unknown SCEV kind!");
}
}
}
};
/// Use SCEVTraversal to visit all nodes in the given expression tree.
template<typename SV>
void visitAll(const SCEV *Root, SV& Visitor) {
SCEVTraversal<SV> T(Visitor);
T.visitAll(Root);
}
typedef DenseMap<const Value*, Value*> ValueToValueMap;
/// The SCEVParameterRewriter takes a scalar evolution expression and updates
/// the SCEVUnknown components following the Map (Value -> Value).
struct SCEVParameterRewriter
: public SCEVVisitor<SCEVParameterRewriter, const SCEV*> {
public:
static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE,
ValueToValueMap &Map,
bool InterpretConsts = false) {
SCEVParameterRewriter Rewriter(SE, Map, InterpretConsts);
return Rewriter.visit(Scev);
}
SCEVParameterRewriter(ScalarEvolution &S, ValueToValueMap &M, bool C)
: SE(S), Map(M), InterpretConsts(C) {}
const SCEV *visitConstant(const SCEVConstant *Constant) {
return Constant;
}
const SCEV *visitTruncateExpr(const SCEVTruncateExpr *Expr) {
const SCEV *Operand = visit(Expr->getOperand());
return SE.getTruncateExpr(Operand, Expr->getType());
}
const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
const SCEV *Operand = visit(Expr->getOperand());
return SE.getZeroExtendExpr(Operand, Expr->getType());
}
const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
const SCEV *Operand = visit(Expr->getOperand());
return SE.getSignExtendExpr(Operand, Expr->getType());
}
const SCEV *visitAddExpr(const SCEVAddExpr *Expr) {
SmallVector<const SCEV *, 2> Operands;
for (int i = 0, e = Expr->getNumOperands(); i < e; ++i)
Operands.push_back(visit(Expr->getOperand(i)));
return SE.getAddExpr(Operands);
}
const SCEV *visitMulExpr(const SCEVMulExpr *Expr) {
SmallVector<const SCEV *, 2> Operands;
for (int i = 0, e = Expr->getNumOperands(); i < e; ++i)
Operands.push_back(visit(Expr->getOperand(i)));
return SE.getMulExpr(Operands);
}
const SCEV *visitUDivExpr(const SCEVUDivExpr *Expr) {
return SE.getUDivExpr(visit(Expr->getLHS()), visit(Expr->getRHS()));
}
const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
SmallVector<const SCEV *, 2> Operands;
for (int i = 0, e = Expr->getNumOperands(); i < e; ++i)
Operands.push_back(visit(Expr->getOperand(i)));
return SE.getAddRecExpr(Operands, Expr->getLoop(),
Expr->getNoWrapFlags());
}
const SCEV *visitSMaxExpr(const SCEVSMaxExpr *Expr) {
SmallVector<const SCEV *, 2> Operands;
for (int i = 0, e = Expr->getNumOperands(); i < e; ++i)
Operands.push_back(visit(Expr->getOperand(i)));
return SE.getSMaxExpr(Operands);
}
const SCEV *visitUMaxExpr(const SCEVUMaxExpr *Expr) {
SmallVector<const SCEV *, 2> Operands;
for (int i = 0, e = Expr->getNumOperands(); i < e; ++i)
Operands.push_back(visit(Expr->getOperand(i)));
return SE.getUMaxExpr(Operands);
}
const SCEV *visitUnknown(const SCEVUnknown *Expr) {
Value *V = Expr->getValue();
if (Map.count(V)) {
Value *NV = Map[V];
if (InterpretConsts && isa<ConstantInt>(NV))
return SE.getConstant(cast<ConstantInt>(NV));
return SE.getUnknown(NV);
}
return Expr;
}
const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) {
return Expr;
}
private:
ScalarEvolution &SE;
ValueToValueMap &Map;
bool InterpretConsts;
};
typedef DenseMap<const Loop*, const SCEV*> LoopToScevMapT;
/// The SCEVApplyRewriter takes a scalar evolution expression and applies
/// the Map (Loop -> SCEV) to all AddRecExprs.
struct SCEVApplyRewriter
: public SCEVVisitor<SCEVApplyRewriter, const SCEV*> {
public:
static const SCEV *rewrite(const SCEV *Scev, LoopToScevMapT &Map,
ScalarEvolution &SE) {
SCEVApplyRewriter Rewriter(SE, Map);
return Rewriter.visit(Scev);
}
SCEVApplyRewriter(ScalarEvolution &S, LoopToScevMapT &M)
: SE(S), Map(M) {}
const SCEV *visitConstant(const SCEVConstant *Constant) {
return Constant;
}
const SCEV *visitTruncateExpr(const SCEVTruncateExpr *Expr) {
const SCEV *Operand = visit(Expr->getOperand());
return SE.getTruncateExpr(Operand, Expr->getType());
}
const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
const SCEV *Operand = visit(Expr->getOperand());
return SE.getZeroExtendExpr(Operand, Expr->getType());
}
const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
const SCEV *Operand = visit(Expr->getOperand());
return SE.getSignExtendExpr(Operand, Expr->getType());
}
const SCEV *visitAddExpr(const SCEVAddExpr *Expr) {
SmallVector<const SCEV *, 2> Operands;
for (int i = 0, e = Expr->getNumOperands(); i < e; ++i)
Operands.push_back(visit(Expr->getOperand(i)));
return SE.getAddExpr(Operands);
}
const SCEV *visitMulExpr(const SCEVMulExpr *Expr) {
SmallVector<const SCEV *, 2> Operands;
for (int i = 0, e = Expr->getNumOperands(); i < e; ++i)
Operands.push_back(visit(Expr->getOperand(i)));
return SE.getMulExpr(Operands);
}
const SCEV *visitUDivExpr(const SCEVUDivExpr *Expr) {
return SE.getUDivExpr(visit(Expr->getLHS()), visit(Expr->getRHS()));
}
const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
SmallVector<const SCEV *, 2> Operands;
for (int i = 0, e = Expr->getNumOperands(); i < e; ++i)
Operands.push_back(visit(Expr->getOperand(i)));
const Loop *L = Expr->getLoop();
const SCEV *Res = SE.getAddRecExpr(Operands, L, Expr->getNoWrapFlags());
if (0 == Map.count(L))
return Res;
const SCEVAddRecExpr *Rec = (const SCEVAddRecExpr *) Res;
return Rec->evaluateAtIteration(Map[L], SE);
}
const SCEV *visitSMaxExpr(const SCEVSMaxExpr *Expr) {
SmallVector<const SCEV *, 2> Operands;
for (int i = 0, e = Expr->getNumOperands(); i < e; ++i)
Operands.push_back(visit(Expr->getOperand(i)));
return SE.getSMaxExpr(Operands);
}
const SCEV *visitUMaxExpr(const SCEVUMaxExpr *Expr) {
SmallVector<const SCEV *, 2> Operands;
for (int i = 0, e = Expr->getNumOperands(); i < e; ++i)
Operands.push_back(visit(Expr->getOperand(i)));
return SE.getUMaxExpr(Operands);
}
const SCEV *visitUnknown(const SCEVUnknown *Expr) {
return Expr;
}
const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) {
return Expr;
}
private:
ScalarEvolution &SE;
LoopToScevMapT &Map;
};
/// Applies the Map (Loop -> SCEV) to the given Scev.
static inline const SCEV *apply(const SCEV *Scev, LoopToScevMapT &Map,
ScalarEvolution &SE) {
return SCEVApplyRewriter::rewrite(Scev, Map, SE);
}
}
#endif