mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-11-01 00:11:00 +00:00
1997473cf7
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@36662 91177308-0d34-0410-b5e6-96231b3b80d8
825 lines
29 KiB
C++
825 lines
29 KiB
C++
//===-- X86/X86CodeEmitter.cpp - Convert X86 code to machine code ---------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by the LLVM research group and is distributed under
|
|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains the pass that transforms the X86 machine instructions into
|
|
// relocatable machine code.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "x86-emitter"
|
|
#include "X86InstrInfo.h"
|
|
#include "X86Subtarget.h"
|
|
#include "X86TargetMachine.h"
|
|
#include "X86Relocations.h"
|
|
#include "X86.h"
|
|
#include "llvm/PassManager.h"
|
|
#include "llvm/CodeGen/MachineCodeEmitter.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/CodeGen/Passes.h"
|
|
#include "llvm/Function.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Target/TargetOptions.h"
|
|
using namespace llvm;
|
|
|
|
STATISTIC(NumEmitted, "Number of machine instructions emitted");
|
|
|
|
namespace {
|
|
class VISIBILITY_HIDDEN Emitter : public MachineFunctionPass {
|
|
const X86InstrInfo *II;
|
|
const TargetData *TD;
|
|
TargetMachine &TM;
|
|
MachineCodeEmitter &MCE;
|
|
bool Is64BitMode;
|
|
public:
|
|
static char ID;
|
|
explicit Emitter(TargetMachine &tm, MachineCodeEmitter &mce)
|
|
: MachineFunctionPass((intptr_t)&ID), II(0), TD(0), TM(tm),
|
|
MCE(mce), Is64BitMode(false) {}
|
|
Emitter(TargetMachine &tm, MachineCodeEmitter &mce,
|
|
const X86InstrInfo &ii, const TargetData &td, bool is64)
|
|
: MachineFunctionPass((intptr_t)&ID), II(&ii), TD(&td), TM(tm),
|
|
MCE(mce), Is64BitMode(is64) {}
|
|
|
|
bool runOnMachineFunction(MachineFunction &MF);
|
|
|
|
virtual const char *getPassName() const {
|
|
return "X86 Machine Code Emitter";
|
|
}
|
|
|
|
void emitInstruction(const MachineInstr &MI);
|
|
|
|
private:
|
|
void emitPCRelativeBlockAddress(MachineBasicBlock *MBB);
|
|
void emitPCRelativeValue(intptr_t Address);
|
|
void emitGlobalAddressForCall(GlobalValue *GV, bool DoesntNeedStub);
|
|
void emitGlobalAddressForPtr(GlobalValue *GV, unsigned Reloc,
|
|
int Disp = 0, unsigned PCAdj = 0);
|
|
void emitExternalSymbolAddress(const char *ES, unsigned Reloc);
|
|
void emitConstPoolAddress(unsigned CPI, unsigned Reloc, int Disp = 0,
|
|
unsigned PCAdj = 0);
|
|
void emitJumpTableAddress(unsigned JTI, unsigned Reloc, unsigned PCAdj = 0);
|
|
|
|
void emitDisplacementField(const MachineOperand *RelocOp, int DispVal,
|
|
unsigned PCAdj = 0);
|
|
|
|
void emitRegModRMByte(unsigned ModRMReg, unsigned RegOpcodeField);
|
|
void emitSIBByte(unsigned SS, unsigned Index, unsigned Base);
|
|
void emitConstant(uint64_t Val, unsigned Size);
|
|
|
|
void emitMemModRMByte(const MachineInstr &MI,
|
|
unsigned Op, unsigned RegOpcodeField,
|
|
unsigned PCAdj = 0);
|
|
|
|
unsigned getX86RegNum(unsigned RegNo);
|
|
bool isX86_64ExtendedReg(const MachineOperand &MO);
|
|
unsigned determineREX(const MachineInstr &MI);
|
|
};
|
|
char Emitter::ID = 0;
|
|
}
|
|
|
|
/// createX86CodeEmitterPass - Return a pass that emits the collected X86 code
|
|
/// to the specified MCE object.
|
|
FunctionPass *llvm::createX86CodeEmitterPass(X86TargetMachine &TM,
|
|
MachineCodeEmitter &MCE) {
|
|
return new Emitter(TM, MCE);
|
|
}
|
|
|
|
bool Emitter::runOnMachineFunction(MachineFunction &MF) {
|
|
assert((MF.getTarget().getRelocationModel() != Reloc::Default ||
|
|
MF.getTarget().getRelocationModel() != Reloc::Static) &&
|
|
"JIT relocation model must be set to static or default!");
|
|
II = ((X86TargetMachine&)MF.getTarget()).getInstrInfo();
|
|
TD = ((X86TargetMachine&)MF.getTarget()).getTargetData();
|
|
Is64BitMode =
|
|
((X86TargetMachine&)MF.getTarget()).getSubtarget<X86Subtarget>().is64Bit();
|
|
|
|
do {
|
|
MCE.startFunction(MF);
|
|
for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
|
|
MBB != E; ++MBB) {
|
|
MCE.StartMachineBasicBlock(MBB);
|
|
for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end();
|
|
I != E; ++I)
|
|
emitInstruction(*I);
|
|
}
|
|
} while (MCE.finishFunction(MF));
|
|
|
|
return false;
|
|
}
|
|
|
|
/// emitPCRelativeValue - Emit a PC relative address.
|
|
///
|
|
void Emitter::emitPCRelativeValue(intptr_t Address) {
|
|
MCE.emitWordLE(Address-MCE.getCurrentPCValue()-4);
|
|
}
|
|
|
|
/// emitPCRelativeBlockAddress - This method keeps track of the information
|
|
/// necessary to resolve the address of this block later and emits a dummy
|
|
/// value.
|
|
///
|
|
void Emitter::emitPCRelativeBlockAddress(MachineBasicBlock *MBB) {
|
|
// Remember where this reference was and where it is to so we can
|
|
// deal with it later.
|
|
MCE.addRelocation(MachineRelocation::getBB(MCE.getCurrentPCOffset(),
|
|
X86::reloc_pcrel_word, MBB));
|
|
MCE.emitWordLE(0);
|
|
}
|
|
|
|
/// emitGlobalAddressForCall - Emit the specified address to the code stream
|
|
/// assuming this is part of a function call, which is PC relative.
|
|
///
|
|
void Emitter::emitGlobalAddressForCall(GlobalValue *GV, bool DoesntNeedStub) {
|
|
MCE.addRelocation(MachineRelocation::getGV(MCE.getCurrentPCOffset(),
|
|
X86::reloc_pcrel_word, GV, 0,
|
|
DoesntNeedStub));
|
|
MCE.emitWordLE(0);
|
|
}
|
|
|
|
/// emitGlobalAddress - Emit the specified address to the code stream assuming
|
|
/// this is part of a "take the address of a global" instruction.
|
|
///
|
|
void Emitter::emitGlobalAddressForPtr(GlobalValue *GV, unsigned Reloc,
|
|
int Disp /* = 0 */,
|
|
unsigned PCAdj /* = 0 */) {
|
|
MCE.addRelocation(MachineRelocation::getGV(MCE.getCurrentPCOffset(), Reloc,
|
|
GV, PCAdj));
|
|
if (Reloc == X86::reloc_absolute_dword)
|
|
MCE.emitWordLE(0);
|
|
MCE.emitWordLE(Disp); // The relocated value will be added to the displacement
|
|
}
|
|
|
|
/// emitExternalSymbolAddress - Arrange for the address of an external symbol to
|
|
/// be emitted to the current location in the function, and allow it to be PC
|
|
/// relative.
|
|
void Emitter::emitExternalSymbolAddress(const char *ES, unsigned Reloc) {
|
|
MCE.addRelocation(MachineRelocation::getExtSym(MCE.getCurrentPCOffset(),
|
|
Reloc, ES));
|
|
if (Reloc == X86::reloc_absolute_dword)
|
|
MCE.emitWordLE(0);
|
|
MCE.emitWordLE(0);
|
|
}
|
|
|
|
/// emitConstPoolAddress - Arrange for the address of an constant pool
|
|
/// to be emitted to the current location in the function, and allow it to be PC
|
|
/// relative.
|
|
void Emitter::emitConstPoolAddress(unsigned CPI, unsigned Reloc,
|
|
int Disp /* = 0 */,
|
|
unsigned PCAdj /* = 0 */) {
|
|
MCE.addRelocation(MachineRelocation::getConstPool(MCE.getCurrentPCOffset(),
|
|
Reloc, CPI, PCAdj));
|
|
if (Reloc == X86::reloc_absolute_dword)
|
|
MCE.emitWordLE(0);
|
|
MCE.emitWordLE(Disp); // The relocated value will be added to the displacement
|
|
}
|
|
|
|
/// emitJumpTableAddress - Arrange for the address of a jump table to
|
|
/// be emitted to the current location in the function, and allow it to be PC
|
|
/// relative.
|
|
void Emitter::emitJumpTableAddress(unsigned JTI, unsigned Reloc,
|
|
unsigned PCAdj /* = 0 */) {
|
|
MCE.addRelocation(MachineRelocation::getJumpTable(MCE.getCurrentPCOffset(),
|
|
Reloc, JTI, PCAdj));
|
|
if (Reloc == X86::reloc_absolute_dword)
|
|
MCE.emitWordLE(0);
|
|
MCE.emitWordLE(0); // The relocated value will be added to the displacement
|
|
}
|
|
|
|
/// N86 namespace - Native X86 Register numbers... used by X86 backend.
|
|
///
|
|
namespace N86 {
|
|
enum {
|
|
EAX = 0, ECX = 1, EDX = 2, EBX = 3, ESP = 4, EBP = 5, ESI = 6, EDI = 7
|
|
};
|
|
}
|
|
|
|
// getX86RegNum - This function maps LLVM register identifiers to their X86
|
|
// specific numbering, which is used in various places encoding instructions.
|
|
//
|
|
unsigned Emitter::getX86RegNum(unsigned RegNo) {
|
|
switch(RegNo) {
|
|
case X86::RAX: case X86::EAX: case X86::AX: case X86::AL: return N86::EAX;
|
|
case X86::RCX: case X86::ECX: case X86::CX: case X86::CL: return N86::ECX;
|
|
case X86::RDX: case X86::EDX: case X86::DX: case X86::DL: return N86::EDX;
|
|
case X86::RBX: case X86::EBX: case X86::BX: case X86::BL: return N86::EBX;
|
|
case X86::RSP: case X86::ESP: case X86::SP: case X86::SPL: case X86::AH:
|
|
return N86::ESP;
|
|
case X86::RBP: case X86::EBP: case X86::BP: case X86::BPL: case X86::CH:
|
|
return N86::EBP;
|
|
case X86::RSI: case X86::ESI: case X86::SI: case X86::SIL: case X86::DH:
|
|
return N86::ESI;
|
|
case X86::RDI: case X86::EDI: case X86::DI: case X86::DIL: case X86::BH:
|
|
return N86::EDI;
|
|
|
|
case X86::R8: case X86::R8D: case X86::R8W: case X86::R8B:
|
|
return N86::EAX;
|
|
case X86::R9: case X86::R9D: case X86::R9W: case X86::R9B:
|
|
return N86::ECX;
|
|
case X86::R10: case X86::R10D: case X86::R10W: case X86::R10B:
|
|
return N86::EDX;
|
|
case X86::R11: case X86::R11D: case X86::R11W: case X86::R11B:
|
|
return N86::EBX;
|
|
case X86::R12: case X86::R12D: case X86::R12W: case X86::R12B:
|
|
return N86::ESP;
|
|
case X86::R13: case X86::R13D: case X86::R13W: case X86::R13B:
|
|
return N86::EBP;
|
|
case X86::R14: case X86::R14D: case X86::R14W: case X86::R14B:
|
|
return N86::ESI;
|
|
case X86::R15: case X86::R15D: case X86::R15W: case X86::R15B:
|
|
return N86::EDI;
|
|
|
|
case X86::ST0: case X86::ST1: case X86::ST2: case X86::ST3:
|
|
case X86::ST4: case X86::ST5: case X86::ST6: case X86::ST7:
|
|
return RegNo-X86::ST0;
|
|
|
|
case X86::XMM0: case X86::XMM1: case X86::XMM2: case X86::XMM3:
|
|
case X86::XMM4: case X86::XMM5: case X86::XMM6: case X86::XMM7:
|
|
return II->getRegisterInfo().getDwarfRegNum(RegNo) -
|
|
II->getRegisterInfo().getDwarfRegNum(X86::XMM0);
|
|
case X86::XMM8: case X86::XMM9: case X86::XMM10: case X86::XMM11:
|
|
case X86::XMM12: case X86::XMM13: case X86::XMM14: case X86::XMM15:
|
|
return II->getRegisterInfo().getDwarfRegNum(RegNo) -
|
|
II->getRegisterInfo().getDwarfRegNum(X86::XMM8);
|
|
|
|
default:
|
|
assert(MRegisterInfo::isVirtualRegister(RegNo) &&
|
|
"Unknown physical register!");
|
|
assert(0 && "Register allocator hasn't allocated reg correctly yet!");
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
|
|
unsigned RM) {
|
|
assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
|
|
return RM | (RegOpcode << 3) | (Mod << 6);
|
|
}
|
|
|
|
void Emitter::emitRegModRMByte(unsigned ModRMReg, unsigned RegOpcodeFld){
|
|
MCE.emitByte(ModRMByte(3, RegOpcodeFld, getX86RegNum(ModRMReg)));
|
|
}
|
|
|
|
void Emitter::emitSIBByte(unsigned SS, unsigned Index, unsigned Base) {
|
|
// SIB byte is in the same format as the ModRMByte...
|
|
MCE.emitByte(ModRMByte(SS, Index, Base));
|
|
}
|
|
|
|
void Emitter::emitConstant(uint64_t Val, unsigned Size) {
|
|
// Output the constant in little endian byte order...
|
|
for (unsigned i = 0; i != Size; ++i) {
|
|
MCE.emitByte(Val & 255);
|
|
Val >>= 8;
|
|
}
|
|
}
|
|
|
|
/// isDisp8 - Return true if this signed displacement fits in a 8-bit
|
|
/// sign-extended field.
|
|
static bool isDisp8(int Value) {
|
|
return Value == (signed char)Value;
|
|
}
|
|
|
|
void Emitter::emitDisplacementField(const MachineOperand *RelocOp,
|
|
int DispVal, unsigned PCAdj) {
|
|
// If this is a simple integer displacement that doesn't require a relocation,
|
|
// emit it now.
|
|
if (!RelocOp) {
|
|
emitConstant(DispVal, 4);
|
|
return;
|
|
}
|
|
|
|
// Otherwise, this is something that requires a relocation. Emit it as such
|
|
// now.
|
|
if (RelocOp->isGlobalAddress()) {
|
|
// In 64-bit static small code model, we could potentially emit absolute.
|
|
// But it's probably not beneficial.
|
|
// 89 05 00 00 00 00 mov %eax,0(%rip) # PC-relative
|
|
// 89 04 25 00 00 00 00 mov %eax,0x0 # Absolute
|
|
unsigned rt= Is64BitMode ? X86::reloc_pcrel_word : X86::reloc_absolute_word;
|
|
emitGlobalAddressForPtr(RelocOp->getGlobal(), rt,
|
|
RelocOp->getOffset(), PCAdj);
|
|
} else if (RelocOp->isConstantPoolIndex()) {
|
|
// Must be in 64-bit mode.
|
|
emitConstPoolAddress(RelocOp->getConstantPoolIndex(), X86::reloc_pcrel_word,
|
|
RelocOp->getOffset(), PCAdj);
|
|
} else if (RelocOp->isJumpTableIndex()) {
|
|
// Must be in 64-bit mode.
|
|
emitJumpTableAddress(RelocOp->getJumpTableIndex(), X86::reloc_pcrel_word,
|
|
PCAdj);
|
|
} else {
|
|
assert(0 && "Unknown value to relocate!");
|
|
}
|
|
}
|
|
|
|
void Emitter::emitMemModRMByte(const MachineInstr &MI,
|
|
unsigned Op, unsigned RegOpcodeField,
|
|
unsigned PCAdj) {
|
|
const MachineOperand &Op3 = MI.getOperand(Op+3);
|
|
int DispVal = 0;
|
|
const MachineOperand *DispForReloc = 0;
|
|
|
|
// Figure out what sort of displacement we have to handle here.
|
|
if (Op3.isGlobalAddress()) {
|
|
DispForReloc = &Op3;
|
|
} else if (Op3.isConstantPoolIndex()) {
|
|
if (Is64BitMode) {
|
|
DispForReloc = &Op3;
|
|
} else {
|
|
DispVal += MCE.getConstantPoolEntryAddress(Op3.getConstantPoolIndex());
|
|
DispVal += Op3.getOffset();
|
|
}
|
|
} else if (Op3.isJumpTableIndex()) {
|
|
if (Is64BitMode) {
|
|
DispForReloc = &Op3;
|
|
} else {
|
|
DispVal += MCE.getJumpTableEntryAddress(Op3.getJumpTableIndex());
|
|
}
|
|
} else {
|
|
DispVal = Op3.getImm();
|
|
}
|
|
|
|
const MachineOperand &Base = MI.getOperand(Op);
|
|
const MachineOperand &Scale = MI.getOperand(Op+1);
|
|
const MachineOperand &IndexReg = MI.getOperand(Op+2);
|
|
|
|
unsigned BaseReg = Base.getReg();
|
|
|
|
// Is a SIB byte needed?
|
|
if (IndexReg.getReg() == 0 &&
|
|
(BaseReg == 0 || getX86RegNum(BaseReg) != N86::ESP)) {
|
|
if (BaseReg == 0) { // Just a displacement?
|
|
// Emit special case [disp32] encoding
|
|
MCE.emitByte(ModRMByte(0, RegOpcodeField, 5));
|
|
|
|
emitDisplacementField(DispForReloc, DispVal, PCAdj);
|
|
} else {
|
|
unsigned BaseRegNo = getX86RegNum(BaseReg);
|
|
if (!DispForReloc && DispVal == 0 && BaseRegNo != N86::EBP) {
|
|
// Emit simple indirect register encoding... [EAX] f.e.
|
|
MCE.emitByte(ModRMByte(0, RegOpcodeField, BaseRegNo));
|
|
} else if (!DispForReloc && isDisp8(DispVal)) {
|
|
// Emit the disp8 encoding... [REG+disp8]
|
|
MCE.emitByte(ModRMByte(1, RegOpcodeField, BaseRegNo));
|
|
emitConstant(DispVal, 1);
|
|
} else {
|
|
// Emit the most general non-SIB encoding: [REG+disp32]
|
|
MCE.emitByte(ModRMByte(2, RegOpcodeField, BaseRegNo));
|
|
emitDisplacementField(DispForReloc, DispVal, PCAdj);
|
|
}
|
|
}
|
|
|
|
} else { // We need a SIB byte, so start by outputting the ModR/M byte first
|
|
assert(IndexReg.getReg() != X86::ESP &&
|
|
IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
|
|
|
|
bool ForceDisp32 = false;
|
|
bool ForceDisp8 = false;
|
|
if (BaseReg == 0) {
|
|
// If there is no base register, we emit the special case SIB byte with
|
|
// MOD=0, BASE=5, to JUST get the index, scale, and displacement.
|
|
MCE.emitByte(ModRMByte(0, RegOpcodeField, 4));
|
|
ForceDisp32 = true;
|
|
} else if (DispForReloc) {
|
|
// Emit the normal disp32 encoding.
|
|
MCE.emitByte(ModRMByte(2, RegOpcodeField, 4));
|
|
ForceDisp32 = true;
|
|
} else if (DispVal == 0 && getX86RegNum(BaseReg) != N86::EBP) {
|
|
// Emit no displacement ModR/M byte
|
|
MCE.emitByte(ModRMByte(0, RegOpcodeField, 4));
|
|
} else if (isDisp8(DispVal)) {
|
|
// Emit the disp8 encoding...
|
|
MCE.emitByte(ModRMByte(1, RegOpcodeField, 4));
|
|
ForceDisp8 = true; // Make sure to force 8 bit disp if Base=EBP
|
|
} else {
|
|
// Emit the normal disp32 encoding...
|
|
MCE.emitByte(ModRMByte(2, RegOpcodeField, 4));
|
|
}
|
|
|
|
// Calculate what the SS field value should be...
|
|
static const unsigned SSTable[] = { ~0, 0, 1, ~0, 2, ~0, ~0, ~0, 3 };
|
|
unsigned SS = SSTable[Scale.getImm()];
|
|
|
|
if (BaseReg == 0) {
|
|
// Handle the SIB byte for the case where there is no base. The
|
|
// displacement has already been output.
|
|
assert(IndexReg.getReg() && "Index register must be specified!");
|
|
emitSIBByte(SS, getX86RegNum(IndexReg.getReg()), 5);
|
|
} else {
|
|
unsigned BaseRegNo = getX86RegNum(BaseReg);
|
|
unsigned IndexRegNo;
|
|
if (IndexReg.getReg())
|
|
IndexRegNo = getX86RegNum(IndexReg.getReg());
|
|
else
|
|
IndexRegNo = 4; // For example [ESP+1*<noreg>+4]
|
|
emitSIBByte(SS, IndexRegNo, BaseRegNo);
|
|
}
|
|
|
|
// Do we need to output a displacement?
|
|
if (ForceDisp8) {
|
|
emitConstant(DispVal, 1);
|
|
} else if (DispVal != 0 || ForceDisp32) {
|
|
emitDisplacementField(DispForReloc, DispVal, PCAdj);
|
|
}
|
|
}
|
|
}
|
|
|
|
static unsigned sizeOfImm(const TargetInstrDescriptor *Desc) {
|
|
switch (Desc->TSFlags & X86II::ImmMask) {
|
|
case X86II::Imm8: return 1;
|
|
case X86II::Imm16: return 2;
|
|
case X86II::Imm32: return 4;
|
|
case X86II::Imm64: return 8;
|
|
default: assert(0 && "Immediate size not set!");
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended register?
|
|
/// e.g. r8, xmm8, etc.
|
|
bool Emitter::isX86_64ExtendedReg(const MachineOperand &MO) {
|
|
if (!MO.isRegister()) return false;
|
|
unsigned RegNo = MO.getReg();
|
|
int DWNum = II->getRegisterInfo().getDwarfRegNum(RegNo);
|
|
if (DWNum >= II->getRegisterInfo().getDwarfRegNum(X86::R8) &&
|
|
DWNum <= II->getRegisterInfo().getDwarfRegNum(X86::R15))
|
|
return true;
|
|
if (DWNum >= II->getRegisterInfo().getDwarfRegNum(X86::XMM8) &&
|
|
DWNum <= II->getRegisterInfo().getDwarfRegNum(X86::XMM15))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
inline static bool isX86_64TruncToByte(unsigned oc) {
|
|
return (oc == X86::TRUNC_64to8 || oc == X86::TRUNC_32to8 ||
|
|
oc == X86::TRUNC_16to8);
|
|
}
|
|
|
|
|
|
inline static bool isX86_64NonExtLowByteReg(unsigned reg) {
|
|
return (reg == X86::SPL || reg == X86::BPL ||
|
|
reg == X86::SIL || reg == X86::DIL);
|
|
}
|
|
|
|
/// determineREX - Determine if the MachineInstr has to be encoded with a X86-64
|
|
/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
|
|
/// size, and 3) use of X86-64 extended registers.
|
|
unsigned Emitter::determineREX(const MachineInstr &MI) {
|
|
unsigned REX = 0;
|
|
const TargetInstrDescriptor *Desc = MI.getInstrDescriptor();
|
|
unsigned Opcode = Desc->Opcode;
|
|
|
|
// Pseudo instructions do not need REX prefix byte.
|
|
if ((Desc->TSFlags & X86II::FormMask) == X86II::Pseudo)
|
|
return 0;
|
|
if (Desc->TSFlags & X86II::REX_W)
|
|
REX |= 1 << 3;
|
|
|
|
unsigned NumOps = Desc->numOperands;
|
|
if (NumOps) {
|
|
bool isTwoAddr = NumOps > 1 &&
|
|
Desc->getOperandConstraint(1, TOI::TIED_TO) != -1;
|
|
|
|
// If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
|
|
bool isTrunc8 = isX86_64TruncToByte(Opcode);
|
|
unsigned i = isTwoAddr ? 1 : 0;
|
|
for (unsigned e = NumOps; i != e; ++i) {
|
|
const MachineOperand& MO = MI.getOperand(i);
|
|
if (MO.isRegister()) {
|
|
unsigned Reg = MO.getReg();
|
|
// Trunc to byte are actually movb. The real source operand is the low
|
|
// byte of the register.
|
|
if (isTrunc8 && i == 1)
|
|
Reg = getX86SubSuperRegister(Reg, MVT::i8);
|
|
if (isX86_64NonExtLowByteReg(Reg))
|
|
REX |= 0x40;
|
|
}
|
|
}
|
|
|
|
switch (Desc->TSFlags & X86II::FormMask) {
|
|
case X86II::MRMInitReg:
|
|
if (isX86_64ExtendedReg(MI.getOperand(0)))
|
|
REX |= (1 << 0) | (1 << 2);
|
|
break;
|
|
case X86II::MRMSrcReg: {
|
|
if (isX86_64ExtendedReg(MI.getOperand(0)))
|
|
REX |= 1 << 2;
|
|
i = isTwoAddr ? 2 : 1;
|
|
for (unsigned e = NumOps; i != e; ++i) {
|
|
const MachineOperand& MO = MI.getOperand(i);
|
|
if (isX86_64ExtendedReg(MO))
|
|
REX |= 1 << 0;
|
|
}
|
|
break;
|
|
}
|
|
case X86II::MRMSrcMem: {
|
|
if (isX86_64ExtendedReg(MI.getOperand(0)))
|
|
REX |= 1 << 2;
|
|
unsigned Bit = 0;
|
|
i = isTwoAddr ? 2 : 1;
|
|
for (; i != NumOps; ++i) {
|
|
const MachineOperand& MO = MI.getOperand(i);
|
|
if (MO.isRegister()) {
|
|
if (isX86_64ExtendedReg(MO))
|
|
REX |= 1 << Bit;
|
|
Bit++;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case X86II::MRM0m: case X86II::MRM1m:
|
|
case X86II::MRM2m: case X86II::MRM3m:
|
|
case X86II::MRM4m: case X86II::MRM5m:
|
|
case X86II::MRM6m: case X86II::MRM7m:
|
|
case X86II::MRMDestMem: {
|
|
unsigned e = isTwoAddr ? 5 : 4;
|
|
i = isTwoAddr ? 1 : 0;
|
|
if (NumOps > e && isX86_64ExtendedReg(MI.getOperand(e)))
|
|
REX |= 1 << 2;
|
|
unsigned Bit = 0;
|
|
for (; i != e; ++i) {
|
|
const MachineOperand& MO = MI.getOperand(i);
|
|
if (MO.isRegister()) {
|
|
if (isX86_64ExtendedReg(MO))
|
|
REX |= 1 << Bit;
|
|
Bit++;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
default: {
|
|
if (isX86_64ExtendedReg(MI.getOperand(0)))
|
|
REX |= 1 << 0;
|
|
i = isTwoAddr ? 2 : 1;
|
|
for (unsigned e = NumOps; i != e; ++i) {
|
|
const MachineOperand& MO = MI.getOperand(i);
|
|
if (isX86_64ExtendedReg(MO))
|
|
REX |= 1 << 2;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
return REX;
|
|
}
|
|
|
|
void Emitter::emitInstruction(const MachineInstr &MI) {
|
|
NumEmitted++; // Keep track of the # of mi's emitted
|
|
|
|
const TargetInstrDescriptor *Desc = MI.getInstrDescriptor();
|
|
unsigned Opcode = Desc->Opcode;
|
|
|
|
// Emit the repeat opcode prefix as needed.
|
|
if ((Desc->TSFlags & X86II::Op0Mask) == X86II::REP) MCE.emitByte(0xF3);
|
|
|
|
// Emit the operand size opcode prefix as needed.
|
|
if (Desc->TSFlags & X86II::OpSize) MCE.emitByte(0x66);
|
|
|
|
// Emit the address size opcode prefix as needed.
|
|
if (Desc->TSFlags & X86II::AdSize) MCE.emitByte(0x67);
|
|
|
|
bool Need0FPrefix = false;
|
|
switch (Desc->TSFlags & X86II::Op0Mask) {
|
|
case X86II::TB:
|
|
Need0FPrefix = true; // Two-byte opcode prefix
|
|
break;
|
|
case X86II::T8:
|
|
MCE.emitByte(0x0F);
|
|
MCE.emitByte(0x38);
|
|
break;
|
|
case X86II::TA:
|
|
MCE.emitByte(0x0F);
|
|
MCE.emitByte(0x3A);
|
|
break;
|
|
case X86II::REP: break; // already handled.
|
|
case X86II::XS: // F3 0F
|
|
MCE.emitByte(0xF3);
|
|
Need0FPrefix = true;
|
|
break;
|
|
case X86II::XD: // F2 0F
|
|
MCE.emitByte(0xF2);
|
|
Need0FPrefix = true;
|
|
break;
|
|
case X86II::D8: case X86II::D9: case X86II::DA: case X86II::DB:
|
|
case X86II::DC: case X86II::DD: case X86II::DE: case X86II::DF:
|
|
MCE.emitByte(0xD8+
|
|
(((Desc->TSFlags & X86II::Op0Mask)-X86II::D8)
|
|
>> X86II::Op0Shift));
|
|
break; // Two-byte opcode prefix
|
|
default: assert(0 && "Invalid prefix!");
|
|
case 0: break; // No prefix!
|
|
}
|
|
|
|
if (Is64BitMode) {
|
|
// REX prefix
|
|
unsigned REX = determineREX(MI);
|
|
if (REX)
|
|
MCE.emitByte(0x40 | REX);
|
|
}
|
|
|
|
// 0x0F escape code must be emitted just before the opcode.
|
|
if (Need0FPrefix)
|
|
MCE.emitByte(0x0F);
|
|
|
|
// If this is a two-address instruction, skip one of the register operands.
|
|
unsigned NumOps = Desc->numOperands;
|
|
unsigned CurOp = 0;
|
|
if (NumOps > 1 && Desc->getOperandConstraint(1, TOI::TIED_TO) != -1)
|
|
CurOp++;
|
|
|
|
unsigned char BaseOpcode = II->getBaseOpcodeFor(Desc);
|
|
switch (Desc->TSFlags & X86II::FormMask) {
|
|
default: assert(0 && "Unknown FormMask value in X86 MachineCodeEmitter!");
|
|
case X86II::Pseudo:
|
|
#ifndef NDEBUG
|
|
switch (Opcode) {
|
|
default:
|
|
assert(0 && "psuedo instructions should be removed before code emission");
|
|
case TargetInstrInfo::INLINEASM:
|
|
assert(0 && "JIT does not support inline asm!\n");
|
|
case TargetInstrInfo::LABEL:
|
|
assert(0 && "JIT does not support meta labels!\n");
|
|
case X86::IMPLICIT_USE:
|
|
case X86::IMPLICIT_DEF:
|
|
case X86::IMPLICIT_DEF_GR8:
|
|
case X86::IMPLICIT_DEF_GR16:
|
|
case X86::IMPLICIT_DEF_GR32:
|
|
case X86::IMPLICIT_DEF_GR64:
|
|
case X86::IMPLICIT_DEF_FR32:
|
|
case X86::IMPLICIT_DEF_FR64:
|
|
case X86::IMPLICIT_DEF_VR64:
|
|
case X86::IMPLICIT_DEF_VR128:
|
|
case X86::FP_REG_KILL:
|
|
break;
|
|
}
|
|
#endif
|
|
CurOp = NumOps;
|
|
break;
|
|
|
|
case X86II::RawFrm:
|
|
MCE.emitByte(BaseOpcode);
|
|
if (CurOp != NumOps) {
|
|
const MachineOperand &MO = MI.getOperand(CurOp++);
|
|
if (MO.isMachineBasicBlock()) {
|
|
emitPCRelativeBlockAddress(MO.getMachineBasicBlock());
|
|
} else if (MO.isGlobalAddress()) {
|
|
bool NeedStub = Is64BitMode ||
|
|
Opcode == X86::TAILJMPd ||
|
|
Opcode == X86::TAILJMPr || Opcode == X86::TAILJMPm;
|
|
emitGlobalAddressForCall(MO.getGlobal(), !NeedStub);
|
|
} else if (MO.isExternalSymbol()) {
|
|
emitExternalSymbolAddress(MO.getSymbolName(), X86::reloc_pcrel_word);
|
|
} else if (MO.isImmediate()) {
|
|
emitConstant(MO.getImm(), sizeOfImm(Desc));
|
|
} else {
|
|
assert(0 && "Unknown RawFrm operand!");
|
|
}
|
|
}
|
|
break;
|
|
|
|
case X86II::AddRegFrm:
|
|
MCE.emitByte(BaseOpcode + getX86RegNum(MI.getOperand(CurOp++).getReg()));
|
|
|
|
if (CurOp != NumOps) {
|
|
const MachineOperand &MO1 = MI.getOperand(CurOp++);
|
|
unsigned Size = sizeOfImm(Desc);
|
|
if (MO1.isImmediate())
|
|
emitConstant(MO1.getImm(), Size);
|
|
else {
|
|
unsigned rt = Is64BitMode ? X86::reloc_pcrel_word : X86::reloc_absolute_word;
|
|
if (Opcode == X86::MOV64ri)
|
|
rt = X86::reloc_absolute_dword; // FIXME: add X86II flag?
|
|
if (MO1.isGlobalAddress())
|
|
emitGlobalAddressForPtr(MO1.getGlobal(), rt, MO1.getOffset());
|
|
else if (MO1.isExternalSymbol())
|
|
emitExternalSymbolAddress(MO1.getSymbolName(), rt);
|
|
else if (MO1.isConstantPoolIndex())
|
|
emitConstPoolAddress(MO1.getConstantPoolIndex(), rt);
|
|
else if (MO1.isJumpTableIndex())
|
|
emitJumpTableAddress(MO1.getJumpTableIndex(), rt);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case X86II::MRMDestReg: {
|
|
MCE.emitByte(BaseOpcode);
|
|
emitRegModRMByte(MI.getOperand(CurOp).getReg(),
|
|
getX86RegNum(MI.getOperand(CurOp+1).getReg()));
|
|
CurOp += 2;
|
|
if (CurOp != NumOps)
|
|
emitConstant(MI.getOperand(CurOp++).getImm(), sizeOfImm(Desc));
|
|
break;
|
|
}
|
|
case X86II::MRMDestMem: {
|
|
MCE.emitByte(BaseOpcode);
|
|
emitMemModRMByte(MI, CurOp, getX86RegNum(MI.getOperand(CurOp+4).getReg()));
|
|
CurOp += 5;
|
|
if (CurOp != NumOps)
|
|
emitConstant(MI.getOperand(CurOp++).getImm(), sizeOfImm(Desc));
|
|
break;
|
|
}
|
|
|
|
case X86II::MRMSrcReg:
|
|
MCE.emitByte(BaseOpcode);
|
|
emitRegModRMByte(MI.getOperand(CurOp+1).getReg(),
|
|
getX86RegNum(MI.getOperand(CurOp).getReg()));
|
|
CurOp += 2;
|
|
if (CurOp != NumOps)
|
|
emitConstant(MI.getOperand(CurOp++).getImm(), sizeOfImm(Desc));
|
|
break;
|
|
|
|
case X86II::MRMSrcMem: {
|
|
unsigned PCAdj = (CurOp+5 != NumOps) ? sizeOfImm(Desc) : 0;
|
|
|
|
MCE.emitByte(BaseOpcode);
|
|
emitMemModRMByte(MI, CurOp+1, getX86RegNum(MI.getOperand(CurOp).getReg()),
|
|
PCAdj);
|
|
CurOp += 5;
|
|
if (CurOp != NumOps)
|
|
emitConstant(MI.getOperand(CurOp++).getImm(), sizeOfImm(Desc));
|
|
break;
|
|
}
|
|
|
|
case X86II::MRM0r: case X86II::MRM1r:
|
|
case X86II::MRM2r: case X86II::MRM3r:
|
|
case X86II::MRM4r: case X86II::MRM5r:
|
|
case X86II::MRM6r: case X86II::MRM7r:
|
|
MCE.emitByte(BaseOpcode);
|
|
emitRegModRMByte(MI.getOperand(CurOp++).getReg(),
|
|
(Desc->TSFlags & X86II::FormMask)-X86II::MRM0r);
|
|
|
|
if (CurOp != NumOps) {
|
|
const MachineOperand &MO1 = MI.getOperand(CurOp++);
|
|
unsigned Size = sizeOfImm(Desc);
|
|
if (MO1.isImmediate())
|
|
emitConstant(MO1.getImm(), Size);
|
|
else {
|
|
unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
|
|
: X86::reloc_absolute_word;
|
|
if (Opcode == X86::MOV64ri32)
|
|
rt = X86::reloc_absolute_word; // FIXME: add X86II flag?
|
|
if (MO1.isGlobalAddress())
|
|
emitGlobalAddressForPtr(MO1.getGlobal(), rt, MO1.getOffset());
|
|
else if (MO1.isExternalSymbol())
|
|
emitExternalSymbolAddress(MO1.getSymbolName(), rt);
|
|
else if (MO1.isConstantPoolIndex())
|
|
emitConstPoolAddress(MO1.getConstantPoolIndex(), rt);
|
|
else if (MO1.isJumpTableIndex())
|
|
emitJumpTableAddress(MO1.getJumpTableIndex(), rt);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case X86II::MRM0m: case X86II::MRM1m:
|
|
case X86II::MRM2m: case X86II::MRM3m:
|
|
case X86II::MRM4m: case X86II::MRM5m:
|
|
case X86II::MRM6m: case X86II::MRM7m: {
|
|
unsigned PCAdj = (CurOp+4 != NumOps) ?
|
|
(MI.getOperand(CurOp+4).isImmediate() ? sizeOfImm(Desc) : 4) : 0;
|
|
|
|
MCE.emitByte(BaseOpcode);
|
|
emitMemModRMByte(MI, CurOp, (Desc->TSFlags & X86II::FormMask)-X86II::MRM0m,
|
|
PCAdj);
|
|
CurOp += 4;
|
|
|
|
if (CurOp != NumOps) {
|
|
const MachineOperand &MO = MI.getOperand(CurOp++);
|
|
unsigned Size = sizeOfImm(Desc);
|
|
if (MO.isImmediate())
|
|
emitConstant(MO.getImm(), Size);
|
|
else {
|
|
unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
|
|
: X86::reloc_absolute_word;
|
|
if (Opcode == X86::MOV64mi32)
|
|
rt = X86::reloc_absolute_word; // FIXME: add X86II flag?
|
|
if (MO.isGlobalAddress())
|
|
emitGlobalAddressForPtr(MO.getGlobal(), rt, MO.getOffset());
|
|
else if (MO.isExternalSymbol())
|
|
emitExternalSymbolAddress(MO.getSymbolName(), rt);
|
|
else if (MO.isConstantPoolIndex())
|
|
emitConstPoolAddress(MO.getConstantPoolIndex(), rt);
|
|
else if (MO.isJumpTableIndex())
|
|
emitJumpTableAddress(MO.getJumpTableIndex(), rt);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
case X86II::MRMInitReg:
|
|
MCE.emitByte(BaseOpcode);
|
|
// Duplicate register, used by things like MOV8r0 (aka xor reg,reg).
|
|
emitRegModRMByte(MI.getOperand(CurOp).getReg(),
|
|
getX86RegNum(MI.getOperand(CurOp).getReg()));
|
|
++CurOp;
|
|
break;
|
|
}
|
|
|
|
assert((Desc->Flags & M_VARIABLE_OPS) != 0 ||
|
|
CurOp == NumOps && "Unknown encoding!");
|
|
}
|