mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-05 12:31:33 +00:00
b9ed9af341
The summary is that it moves the mangling earlier and replaces a few calls to .addExternalSymbol with addSym. I originally wanted to replace all the uses of addExternalSymbol with addSym, but noticed it was a lot of work and doesn't need to be done all at once. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@240395 91177308-0d34-0410-b5e6-96231b3b80d8
584 lines
23 KiB
C++
584 lines
23 KiB
C++
//===-- FastISel.h - Definition of the FastISel class ---*- C++ -*---------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
///
|
|
/// \file
|
|
/// This file defines the FastISel class.
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_CODEGEN_FASTISEL_H
|
|
#define LLVM_CODEGEN_FASTISEL_H
|
|
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/CodeGen/CallingConvLower.h"
|
|
#include "llvm/CodeGen/MachineBasicBlock.h"
|
|
#include "llvm/IR/CallingConv.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/Target/TargetLowering.h"
|
|
|
|
namespace llvm {
|
|
|
|
/// \brief This is a fast-path instruction selection class that generates poor
|
|
/// code and doesn't support illegal types or non-trivial lowering, but runs
|
|
/// quickly.
|
|
class FastISel {
|
|
public:
|
|
struct ArgListEntry {
|
|
Value *Val;
|
|
Type *Ty;
|
|
bool IsSExt : 1;
|
|
bool IsZExt : 1;
|
|
bool IsInReg : 1;
|
|
bool IsSRet : 1;
|
|
bool IsNest : 1;
|
|
bool IsByVal : 1;
|
|
bool IsInAlloca : 1;
|
|
bool IsReturned : 1;
|
|
uint16_t Alignment;
|
|
|
|
ArgListEntry()
|
|
: Val(nullptr), Ty(nullptr), IsSExt(false), IsZExt(false),
|
|
IsInReg(false), IsSRet(false), IsNest(false), IsByVal(false),
|
|
IsInAlloca(false), IsReturned(false), Alignment(0) {}
|
|
|
|
/// \brief Set CallLoweringInfo attribute flags based on a call instruction
|
|
/// and called function attributes.
|
|
void setAttributes(ImmutableCallSite *CS, unsigned AttrIdx);
|
|
};
|
|
typedef std::vector<ArgListEntry> ArgListTy;
|
|
|
|
struct CallLoweringInfo {
|
|
Type *RetTy;
|
|
bool RetSExt : 1;
|
|
bool RetZExt : 1;
|
|
bool IsVarArg : 1;
|
|
bool IsInReg : 1;
|
|
bool DoesNotReturn : 1;
|
|
bool IsReturnValueUsed : 1;
|
|
|
|
// \brief IsTailCall Should be modified by implementations of FastLowerCall
|
|
// that perform tail call conversions.
|
|
bool IsTailCall;
|
|
|
|
unsigned NumFixedArgs;
|
|
CallingConv::ID CallConv;
|
|
const Value *Callee;
|
|
MCSymbol *Symbol;
|
|
ArgListTy Args;
|
|
ImmutableCallSite *CS;
|
|
MachineInstr *Call;
|
|
unsigned ResultReg;
|
|
unsigned NumResultRegs;
|
|
|
|
bool IsPatchPoint;
|
|
|
|
SmallVector<Value *, 16> OutVals;
|
|
SmallVector<ISD::ArgFlagsTy, 16> OutFlags;
|
|
SmallVector<unsigned, 16> OutRegs;
|
|
SmallVector<ISD::InputArg, 4> Ins;
|
|
SmallVector<unsigned, 4> InRegs;
|
|
|
|
CallLoweringInfo()
|
|
: RetTy(nullptr), RetSExt(false), RetZExt(false), IsVarArg(false),
|
|
IsInReg(false), DoesNotReturn(false), IsReturnValueUsed(true),
|
|
IsTailCall(false), NumFixedArgs(-1), CallConv(CallingConv::C),
|
|
Callee(nullptr), Symbol(nullptr), CS(nullptr), Call(nullptr),
|
|
ResultReg(0), NumResultRegs(0), IsPatchPoint(false) {}
|
|
|
|
CallLoweringInfo &setCallee(Type *ResultTy, FunctionType *FuncTy,
|
|
const Value *Target, ArgListTy &&ArgsList,
|
|
ImmutableCallSite &Call) {
|
|
RetTy = ResultTy;
|
|
Callee = Target;
|
|
|
|
IsInReg = Call.paramHasAttr(0, Attribute::InReg);
|
|
DoesNotReturn = Call.doesNotReturn();
|
|
IsVarArg = FuncTy->isVarArg();
|
|
IsReturnValueUsed = !Call.getInstruction()->use_empty();
|
|
RetSExt = Call.paramHasAttr(0, Attribute::SExt);
|
|
RetZExt = Call.paramHasAttr(0, Attribute::ZExt);
|
|
|
|
CallConv = Call.getCallingConv();
|
|
Args = std::move(ArgsList);
|
|
NumFixedArgs = FuncTy->getNumParams();
|
|
|
|
CS = &Call;
|
|
|
|
return *this;
|
|
}
|
|
|
|
CallLoweringInfo &setCallee(Type *ResultTy, FunctionType *FuncTy,
|
|
MCSymbol *Target, ArgListTy &&ArgsList,
|
|
ImmutableCallSite &Call,
|
|
unsigned FixedArgs = ~0U) {
|
|
RetTy = ResultTy;
|
|
Callee = Call.getCalledValue();
|
|
Symbol = Target;
|
|
|
|
IsInReg = Call.paramHasAttr(0, Attribute::InReg);
|
|
DoesNotReturn = Call.doesNotReturn();
|
|
IsVarArg = FuncTy->isVarArg();
|
|
IsReturnValueUsed = !Call.getInstruction()->use_empty();
|
|
RetSExt = Call.paramHasAttr(0, Attribute::SExt);
|
|
RetZExt = Call.paramHasAttr(0, Attribute::ZExt);
|
|
|
|
CallConv = Call.getCallingConv();
|
|
Args = std::move(ArgsList);
|
|
NumFixedArgs = (FixedArgs == ~0U) ? FuncTy->getNumParams() : FixedArgs;
|
|
|
|
CS = &Call;
|
|
|
|
return *this;
|
|
}
|
|
|
|
CallLoweringInfo &setCallee(CallingConv::ID CC, Type *ResultTy,
|
|
const Value *Target, ArgListTy &&ArgsList,
|
|
unsigned FixedArgs = ~0U) {
|
|
RetTy = ResultTy;
|
|
Callee = Target;
|
|
CallConv = CC;
|
|
Args = std::move(ArgsList);
|
|
NumFixedArgs = (FixedArgs == ~0U) ? Args.size() : FixedArgs;
|
|
return *this;
|
|
}
|
|
|
|
CallLoweringInfo &setCallee(const DataLayout &DL, MCContext &Ctx,
|
|
CallingConv::ID CC, Type *ResultTy,
|
|
const char *Target, ArgListTy &&ArgsList,
|
|
unsigned FixedArgs = ~0U);
|
|
|
|
CallLoweringInfo &setCallee(CallingConv::ID CC, Type *ResultTy,
|
|
MCSymbol *Target, ArgListTy &&ArgsList,
|
|
unsigned FixedArgs = ~0U) {
|
|
RetTy = ResultTy;
|
|
Symbol = Target;
|
|
CallConv = CC;
|
|
Args = std::move(ArgsList);
|
|
NumFixedArgs = (FixedArgs == ~0U) ? Args.size() : FixedArgs;
|
|
return *this;
|
|
}
|
|
|
|
CallLoweringInfo &setTailCall(bool Value = true) {
|
|
IsTailCall = Value;
|
|
return *this;
|
|
}
|
|
|
|
CallLoweringInfo &setIsPatchPoint(bool Value = true) {
|
|
IsPatchPoint = Value;
|
|
return *this;
|
|
}
|
|
|
|
ArgListTy &getArgs() { return Args; }
|
|
|
|
void clearOuts() {
|
|
OutVals.clear();
|
|
OutFlags.clear();
|
|
OutRegs.clear();
|
|
}
|
|
|
|
void clearIns() {
|
|
Ins.clear();
|
|
InRegs.clear();
|
|
}
|
|
};
|
|
|
|
protected:
|
|
DenseMap<const Value *, unsigned> LocalValueMap;
|
|
FunctionLoweringInfo &FuncInfo;
|
|
MachineFunction *MF;
|
|
MachineRegisterInfo &MRI;
|
|
MachineFrameInfo &MFI;
|
|
MachineConstantPool &MCP;
|
|
DebugLoc DbgLoc;
|
|
const TargetMachine &TM;
|
|
const DataLayout &DL;
|
|
const TargetInstrInfo &TII;
|
|
const TargetLowering &TLI;
|
|
const TargetRegisterInfo &TRI;
|
|
const TargetLibraryInfo *LibInfo;
|
|
bool SkipTargetIndependentISel;
|
|
|
|
/// \brief The position of the last instruction for materializing constants
|
|
/// for use in the current block. It resets to EmitStartPt when it makes sense
|
|
/// (for example, it's usually profitable to avoid function calls between the
|
|
/// definition and the use)
|
|
MachineInstr *LastLocalValue;
|
|
|
|
/// \brief The top most instruction in the current block that is allowed for
|
|
/// emitting local variables. LastLocalValue resets to EmitStartPt when it
|
|
/// makes sense (for example, on function calls)
|
|
MachineInstr *EmitStartPt;
|
|
|
|
public:
|
|
/// \brief Return the position of the last instruction emitted for
|
|
/// materializing constants for use in the current block.
|
|
MachineInstr *getLastLocalValue() { return LastLocalValue; }
|
|
|
|
/// \brief Update the position of the last instruction emitted for
|
|
/// materializing constants for use in the current block.
|
|
void setLastLocalValue(MachineInstr *I) {
|
|
EmitStartPt = I;
|
|
LastLocalValue = I;
|
|
}
|
|
|
|
/// \brief Set the current block to which generated machine instructions will
|
|
/// be appended, and clear the local CSE map.
|
|
void startNewBlock();
|
|
|
|
/// \brief Return current debug location information.
|
|
DebugLoc getCurDebugLoc() const { return DbgLoc; }
|
|
|
|
/// \brief Do "fast" instruction selection for function arguments and append
|
|
/// the machine instructions to the current block. Returns true when
|
|
/// successful.
|
|
bool lowerArguments();
|
|
|
|
/// \brief Do "fast" instruction selection for the given LLVM IR instruction
|
|
/// and append the generated machine instructions to the current block.
|
|
/// Returns true if selection was successful.
|
|
bool selectInstruction(const Instruction *I);
|
|
|
|
/// \brief Do "fast" instruction selection for the given LLVM IR operator
|
|
/// (Instruction or ConstantExpr), and append generated machine instructions
|
|
/// to the current block. Return true if selection was successful.
|
|
bool selectOperator(const User *I, unsigned Opcode);
|
|
|
|
/// \brief Create a virtual register and arrange for it to be assigned the
|
|
/// value for the given LLVM value.
|
|
unsigned getRegForValue(const Value *V);
|
|
|
|
/// \brief Look up the value to see if its value is already cached in a
|
|
/// register. It may be defined by instructions across blocks or defined
|
|
/// locally.
|
|
unsigned lookUpRegForValue(const Value *V);
|
|
|
|
/// \brief This is a wrapper around getRegForValue that also takes care of
|
|
/// truncating or sign-extending the given getelementptr index value.
|
|
std::pair<unsigned, bool> getRegForGEPIndex(const Value *V);
|
|
|
|
/// \brief We're checking to see if we can fold \p LI into \p FoldInst. Note
|
|
/// that we could have a sequence where multiple LLVM IR instructions are
|
|
/// folded into the same machineinstr. For example we could have:
|
|
///
|
|
/// A: x = load i32 *P
|
|
/// B: y = icmp A, 42
|
|
/// C: br y, ...
|
|
///
|
|
/// In this scenario, \p LI is "A", and \p FoldInst is "C". We know about "B"
|
|
/// (and any other folded instructions) because it is between A and C.
|
|
///
|
|
/// If we succeed folding, return true.
|
|
bool tryToFoldLoad(const LoadInst *LI, const Instruction *FoldInst);
|
|
|
|
/// \brief The specified machine instr operand is a vreg, and that vreg is
|
|
/// being provided by the specified load instruction. If possible, try to
|
|
/// fold the load as an operand to the instruction, returning true if
|
|
/// possible.
|
|
///
|
|
/// This method should be implemented by targets.
|
|
virtual bool tryToFoldLoadIntoMI(MachineInstr * /*MI*/, unsigned /*OpNo*/,
|
|
const LoadInst * /*LI*/) {
|
|
return false;
|
|
}
|
|
|
|
/// \brief Reset InsertPt to prepare for inserting instructions into the
|
|
/// current block.
|
|
void recomputeInsertPt();
|
|
|
|
/// \brief Remove all dead instructions between the I and E.
|
|
void removeDeadCode(MachineBasicBlock::iterator I,
|
|
MachineBasicBlock::iterator E);
|
|
|
|
struct SavePoint {
|
|
MachineBasicBlock::iterator InsertPt;
|
|
DebugLoc DL;
|
|
};
|
|
|
|
/// \brief Prepare InsertPt to begin inserting instructions into the local
|
|
/// value area and return the old insert position.
|
|
SavePoint enterLocalValueArea();
|
|
|
|
/// \brief Reset InsertPt to the given old insert position.
|
|
void leaveLocalValueArea(SavePoint Old);
|
|
|
|
virtual ~FastISel();
|
|
|
|
protected:
|
|
explicit FastISel(FunctionLoweringInfo &FuncInfo,
|
|
const TargetLibraryInfo *LibInfo,
|
|
bool SkipTargetIndependentISel = false);
|
|
|
|
/// \brief This method is called by target-independent code when the normal
|
|
/// FastISel process fails to select an instruction. This gives targets a
|
|
/// chance to emit code for anything that doesn't fit into FastISel's
|
|
/// framework. It returns true if it was successful.
|
|
virtual bool fastSelectInstruction(const Instruction *I) = 0;
|
|
|
|
/// \brief This method is called by target-independent code to do target-
|
|
/// specific argument lowering. It returns true if it was successful.
|
|
virtual bool fastLowerArguments();
|
|
|
|
/// \brief This method is called by target-independent code to do target-
|
|
/// specific call lowering. It returns true if it was successful.
|
|
virtual bool fastLowerCall(CallLoweringInfo &CLI);
|
|
|
|
/// \brief This method is called by target-independent code to do target-
|
|
/// specific intrinsic lowering. It returns true if it was successful.
|
|
virtual bool fastLowerIntrinsicCall(const IntrinsicInst *II);
|
|
|
|
/// \brief This method is called by target-independent code to request that an
|
|
/// instruction with the given type and opcode be emitted.
|
|
virtual unsigned fastEmit_(MVT VT, MVT RetVT, unsigned Opcode);
|
|
|
|
/// \brief This method is called by target-independent code to request that an
|
|
/// instruction with the given type, opcode, and register operand be emitted.
|
|
virtual unsigned fastEmit_r(MVT VT, MVT RetVT, unsigned Opcode, unsigned Op0,
|
|
bool Op0IsKill);
|
|
|
|
/// \brief This method is called by target-independent code to request that an
|
|
/// instruction with the given type, opcode, and register operands be emitted.
|
|
virtual unsigned fastEmit_rr(MVT VT, MVT RetVT, unsigned Opcode, unsigned Op0,
|
|
bool Op0IsKill, unsigned Op1, bool Op1IsKill);
|
|
|
|
/// \brief This method is called by target-independent code to request that an
|
|
/// instruction with the given type, opcode, and register and immediate
|
|
// operands be emitted.
|
|
virtual unsigned fastEmit_ri(MVT VT, MVT RetVT, unsigned Opcode, unsigned Op0,
|
|
bool Op0IsKill, uint64_t Imm);
|
|
|
|
/// \brief This method is called by target-independent code to request that an
|
|
/// instruction with the given type, opcode, and register and floating-point
|
|
/// immediate operands be emitted.
|
|
virtual unsigned fastEmit_rf(MVT VT, MVT RetVT, unsigned Opcode, unsigned Op0,
|
|
bool Op0IsKill, const ConstantFP *FPImm);
|
|
|
|
/// \brief This method is called by target-independent code to request that an
|
|
/// instruction with the given type, opcode, and register and immediate
|
|
/// operands be emitted.
|
|
virtual unsigned fastEmit_rri(MVT VT, MVT RetVT, unsigned Opcode,
|
|
unsigned Op0, bool Op0IsKill, unsigned Op1,
|
|
bool Op1IsKill, uint64_t Imm);
|
|
|
|
/// \brief This method is a wrapper of fastEmit_ri.
|
|
///
|
|
/// It first tries to emit an instruction with an immediate operand using
|
|
/// fastEmit_ri. If that fails, it materializes the immediate into a register
|
|
/// and try fastEmit_rr instead.
|
|
unsigned fastEmit_ri_(MVT VT, unsigned Opcode, unsigned Op0, bool Op0IsKill,
|
|
uint64_t Imm, MVT ImmType);
|
|
|
|
/// \brief This method is called by target-independent code to request that an
|
|
/// instruction with the given type, opcode, and immediate operand be emitted.
|
|
virtual unsigned fastEmit_i(MVT VT, MVT RetVT, unsigned Opcode, uint64_t Imm);
|
|
|
|
/// \brief This method is called by target-independent code to request that an
|
|
/// instruction with the given type, opcode, and floating-point immediate
|
|
/// operand be emitted.
|
|
virtual unsigned fastEmit_f(MVT VT, MVT RetVT, unsigned Opcode,
|
|
const ConstantFP *FPImm);
|
|
|
|
/// \brief Emit a MachineInstr with no operands and a result register in the
|
|
/// given register class.
|
|
unsigned fastEmitInst_(unsigned MachineInstOpcode,
|
|
const TargetRegisterClass *RC);
|
|
|
|
/// \brief Emit a MachineInstr with one register operand and a result register
|
|
/// in the given register class.
|
|
unsigned fastEmitInst_r(unsigned MachineInstOpcode,
|
|
const TargetRegisterClass *RC, unsigned Op0,
|
|
bool Op0IsKill);
|
|
|
|
/// \brief Emit a MachineInstr with two register operands and a result
|
|
/// register in the given register class.
|
|
unsigned fastEmitInst_rr(unsigned MachineInstOpcode,
|
|
const TargetRegisterClass *RC, unsigned Op0,
|
|
bool Op0IsKill, unsigned Op1, bool Op1IsKill);
|
|
|
|
/// \brief Emit a MachineInstr with three register operands and a result
|
|
/// register in the given register class.
|
|
unsigned fastEmitInst_rrr(unsigned MachineInstOpcode,
|
|
const TargetRegisterClass *RC, unsigned Op0,
|
|
bool Op0IsKill, unsigned Op1, bool Op1IsKill,
|
|
unsigned Op2, bool Op2IsKill);
|
|
|
|
/// \brief Emit a MachineInstr with a register operand, an immediate, and a
|
|
/// result register in the given register class.
|
|
unsigned fastEmitInst_ri(unsigned MachineInstOpcode,
|
|
const TargetRegisterClass *RC, unsigned Op0,
|
|
bool Op0IsKill, uint64_t Imm);
|
|
|
|
/// \brief Emit a MachineInstr with one register operand and two immediate
|
|
/// operands.
|
|
unsigned fastEmitInst_rii(unsigned MachineInstOpcode,
|
|
const TargetRegisterClass *RC, unsigned Op0,
|
|
bool Op0IsKill, uint64_t Imm1, uint64_t Imm2);
|
|
|
|
/// \brief Emit a MachineInstr with two register operands and a result
|
|
/// register in the given register class.
|
|
unsigned fastEmitInst_rf(unsigned MachineInstOpcode,
|
|
const TargetRegisterClass *RC, unsigned Op0,
|
|
bool Op0IsKill, const ConstantFP *FPImm);
|
|
|
|
/// \brief Emit a MachineInstr with two register operands, an immediate, and a
|
|
/// result register in the given register class.
|
|
unsigned fastEmitInst_rri(unsigned MachineInstOpcode,
|
|
const TargetRegisterClass *RC, unsigned Op0,
|
|
bool Op0IsKill, unsigned Op1, bool Op1IsKill,
|
|
uint64_t Imm);
|
|
|
|
/// \brief Emit a MachineInstr with two register operands, two immediates
|
|
/// operands, and a result register in the given register class.
|
|
unsigned fastEmitInst_rrii(unsigned MachineInstOpcode,
|
|
const TargetRegisterClass *RC, unsigned Op0,
|
|
bool Op0IsKill, unsigned Op1, bool Op1IsKill,
|
|
uint64_t Imm1, uint64_t Imm2);
|
|
|
|
/// \brief Emit a MachineInstr with a single immediate operand, and a result
|
|
/// register in the given register class.
|
|
unsigned fastEmitInst_i(unsigned MachineInstrOpcode,
|
|
const TargetRegisterClass *RC, uint64_t Imm);
|
|
|
|
/// \brief Emit a MachineInstr with a two immediate operands.
|
|
unsigned fastEmitInst_ii(unsigned MachineInstrOpcode,
|
|
const TargetRegisterClass *RC, uint64_t Imm1,
|
|
uint64_t Imm2);
|
|
|
|
/// \brief Emit a MachineInstr for an extract_subreg from a specified index of
|
|
/// a superregister to a specified type.
|
|
unsigned fastEmitInst_extractsubreg(MVT RetVT, unsigned Op0, bool Op0IsKill,
|
|
uint32_t Idx);
|
|
|
|
/// \brief Emit MachineInstrs to compute the value of Op with all but the
|
|
/// least significant bit set to zero.
|
|
unsigned fastEmitZExtFromI1(MVT VT, unsigned Op0, bool Op0IsKill);
|
|
|
|
/// \brief Emit an unconditional branch to the given block, unless it is the
|
|
/// immediate (fall-through) successor, and update the CFG.
|
|
void fastEmitBranch(MachineBasicBlock *MBB, DebugLoc DL);
|
|
|
|
/// \brief Update the value map to include the new mapping for this
|
|
/// instruction, or insert an extra copy to get the result in a previous
|
|
/// determined register.
|
|
///
|
|
/// NOTE: This is only necessary because we might select a block that uses a
|
|
/// value before we select the block that defines the value. It might be
|
|
/// possible to fix this by selecting blocks in reverse postorder.
|
|
void updateValueMap(const Value *I, unsigned Reg, unsigned NumRegs = 1);
|
|
|
|
unsigned createResultReg(const TargetRegisterClass *RC);
|
|
|
|
/// \brief Try to constrain Op so that it is usable by argument OpNum of the
|
|
/// provided MCInstrDesc. If this fails, create a new virtual register in the
|
|
/// correct class and COPY the value there.
|
|
unsigned constrainOperandRegClass(const MCInstrDesc &II, unsigned Op,
|
|
unsigned OpNum);
|
|
|
|
/// \brief Emit a constant in a register using target-specific logic, such as
|
|
/// constant pool loads.
|
|
virtual unsigned fastMaterializeConstant(const Constant *C) { return 0; }
|
|
|
|
/// \brief Emit an alloca address in a register using target-specific logic.
|
|
virtual unsigned fastMaterializeAlloca(const AllocaInst *C) { return 0; }
|
|
|
|
/// \brief Emit the floating-point constant +0.0 in a register using target-
|
|
/// specific logic.
|
|
virtual unsigned fastMaterializeFloatZero(const ConstantFP *CF) {
|
|
return 0;
|
|
}
|
|
|
|
/// \brief Check if \c Add is an add that can be safely folded into \c GEP.
|
|
///
|
|
/// \c Add can be folded into \c GEP if:
|
|
/// - \c Add is an add,
|
|
/// - \c Add's size matches \c GEP's,
|
|
/// - \c Add is in the same basic block as \c GEP, and
|
|
/// - \c Add has a constant operand.
|
|
bool canFoldAddIntoGEP(const User *GEP, const Value *Add);
|
|
|
|
/// \brief Test whether the given value has exactly one use.
|
|
bool hasTrivialKill(const Value *V);
|
|
|
|
/// \brief Create a machine mem operand from the given instruction.
|
|
MachineMemOperand *createMachineMemOperandFor(const Instruction *I) const;
|
|
|
|
CmpInst::Predicate optimizeCmpPredicate(const CmpInst *CI) const;
|
|
|
|
bool lowerCallTo(const CallInst *CI, MCSymbol *Symbol, unsigned NumArgs);
|
|
bool lowerCallTo(const CallInst *CI, const char *SymbolName,
|
|
unsigned NumArgs);
|
|
bool lowerCallTo(CallLoweringInfo &CLI);
|
|
|
|
bool isCommutativeIntrinsic(IntrinsicInst const *II) {
|
|
switch (II->getIntrinsicID()) {
|
|
case Intrinsic::sadd_with_overflow:
|
|
case Intrinsic::uadd_with_overflow:
|
|
case Intrinsic::smul_with_overflow:
|
|
case Intrinsic::umul_with_overflow:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
|
|
bool lowerCall(const CallInst *I);
|
|
/// \brief Select and emit code for a binary operator instruction, which has
|
|
/// an opcode which directly corresponds to the given ISD opcode.
|
|
bool selectBinaryOp(const User *I, unsigned ISDOpcode);
|
|
bool selectFNeg(const User *I);
|
|
bool selectGetElementPtr(const User *I);
|
|
bool selectStackmap(const CallInst *I);
|
|
bool selectPatchpoint(const CallInst *I);
|
|
bool selectCall(const User *Call);
|
|
bool selectIntrinsicCall(const IntrinsicInst *II);
|
|
bool selectBitCast(const User *I);
|
|
bool selectCast(const User *I, unsigned Opcode);
|
|
bool selectExtractValue(const User *I);
|
|
bool selectInsertValue(const User *I);
|
|
|
|
private:
|
|
/// \brief Handle PHI nodes in successor blocks.
|
|
///
|
|
/// Emit code to ensure constants are copied into registers when needed.
|
|
/// Remember the virtual registers that need to be added to the Machine PHI
|
|
/// nodes as input. We cannot just directly add them, because expansion might
|
|
/// result in multiple MBB's for one BB. As such, the start of the BB might
|
|
/// correspond to a different MBB than the end.
|
|
bool handlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB);
|
|
|
|
/// \brief Helper for materializeRegForValue to materialize a constant in a
|
|
/// target-independent way.
|
|
unsigned materializeConstant(const Value *V, MVT VT);
|
|
|
|
/// \brief Helper for getRegForVale. This function is called when the value
|
|
/// isn't already available in a register and must be materialized with new
|
|
/// instructions.
|
|
unsigned materializeRegForValue(const Value *V, MVT VT);
|
|
|
|
/// \brief Clears LocalValueMap and moves the area for the new local variables
|
|
/// to the beginning of the block. It helps to avoid spilling cached variables
|
|
/// across heavy instructions like calls.
|
|
void flushLocalValueMap();
|
|
|
|
/// \brief Insertion point before trying to select the current instruction.
|
|
MachineBasicBlock::iterator SavedInsertPt;
|
|
|
|
/// \brief Add a stackmap or patchpoint intrinsic call's live variable
|
|
/// operands to a stackmap or patchpoint machine instruction.
|
|
bool addStackMapLiveVars(SmallVectorImpl<MachineOperand> &Ops,
|
|
const CallInst *CI, unsigned StartIdx);
|
|
bool lowerCallOperands(const CallInst *CI, unsigned ArgIdx, unsigned NumArgs,
|
|
const Value *Callee, bool ForceRetVoidTy,
|
|
CallLoweringInfo &CLI);
|
|
};
|
|
|
|
} // end namespace llvm
|
|
|
|
#endif
|