llvm-6502/lib/Target/ARM/ARMInstrInfo.td
Matthias Braun 9e4654db1a Fix __builtin_setjmp in combination with sjlj exception handling.
llvm.eh.sjlj.setjmp was used as part of the SjLj exception handling
style but is also used in clang to implement __builtin_setjmp.  The ARM
backend needs to output additional dispatch tables for the SjLj
exception handling style, these tables however can't be emitted if
llvm.eh.sjlj.setjmp is simply used for __builtin_setjmp and no actual
landing pad blocks exist.

To solve this issue a new llvm.eh.sjlj.setup_dispatch intrinsic is
introduced which is used instead of llvm.eh.sjlj.setjmp in the SjLj
exception handling lowering, so we can differentiate between the case
where we actually need to setup a dispatch table and the case where we
just need the __builtin_setjmp semantic.

Differential Revision: http://reviews.llvm.org/D9313

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242481 91177308-0d34-0410-b5e6-96231b3b80d8
2015-07-16 22:34:16 +00:00

5732 lines
216 KiB
TableGen

//===- ARMInstrInfo.td - Target Description for ARM Target -*- tablegen -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file describes the ARM instructions in TableGen format.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// ARM specific DAG Nodes.
//
// Type profiles.
def SDT_ARMCallSeqStart : SDCallSeqStart<[ SDTCisVT<0, i32> ]>;
def SDT_ARMCallSeqEnd : SDCallSeqEnd<[ SDTCisVT<0, i32>, SDTCisVT<1, i32> ]>;
def SDT_ARMStructByVal : SDTypeProfile<0, 4,
[SDTCisVT<0, i32>, SDTCisVT<1, i32>,
SDTCisVT<2, i32>, SDTCisVT<3, i32>]>;
def SDT_ARMSaveCallPC : SDTypeProfile<0, 1, []>;
def SDT_ARMcall : SDTypeProfile<0, -1, [SDTCisPtrTy<0>]>;
def SDT_ARMCMov : SDTypeProfile<1, 3,
[SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>,
SDTCisVT<3, i32>]>;
def SDT_ARMBrcond : SDTypeProfile<0, 2,
[SDTCisVT<0, OtherVT>, SDTCisVT<1, i32>]>;
def SDT_ARMBrJT : SDTypeProfile<0, 2,
[SDTCisPtrTy<0>, SDTCisVT<1, i32>]>;
def SDT_ARMBr2JT : SDTypeProfile<0, 3,
[SDTCisPtrTy<0>, SDTCisVT<1, i32>,
SDTCisVT<2, i32>]>;
def SDT_ARMBCC_i64 : SDTypeProfile<0, 6,
[SDTCisVT<0, i32>,
SDTCisVT<1, i32>, SDTCisVT<2, i32>,
SDTCisVT<3, i32>, SDTCisVT<4, i32>,
SDTCisVT<5, OtherVT>]>;
def SDT_ARMAnd : SDTypeProfile<1, 2,
[SDTCisVT<0, i32>, SDTCisVT<1, i32>,
SDTCisVT<2, i32>]>;
def SDT_ARMCmp : SDTypeProfile<0, 2, [SDTCisSameAs<0, 1>]>;
def SDT_ARMPICAdd : SDTypeProfile<1, 2, [SDTCisSameAs<0, 1>,
SDTCisPtrTy<1>, SDTCisVT<2, i32>]>;
def SDT_ARMThreadPointer : SDTypeProfile<1, 0, [SDTCisPtrTy<0>]>;
def SDT_ARMEH_SJLJ_Setjmp : SDTypeProfile<1, 2, [SDTCisInt<0>, SDTCisPtrTy<1>,
SDTCisInt<2>]>;
def SDT_ARMEH_SJLJ_Longjmp: SDTypeProfile<0, 2, [SDTCisPtrTy<0>, SDTCisInt<1>]>;
def SDT_ARMEH_SJLJ_SetupDispatch: SDTypeProfile<0, 0, []>;
def SDT_ARMMEMBARRIER : SDTypeProfile<0, 1, [SDTCisInt<0>]>;
def SDT_ARMPREFETCH : SDTypeProfile<0, 3, [SDTCisPtrTy<0>, SDTCisSameAs<1, 2>,
SDTCisInt<1>]>;
def SDT_ARMTCRET : SDTypeProfile<0, 1, [SDTCisPtrTy<0>]>;
def SDT_ARMBFI : SDTypeProfile<1, 3, [SDTCisVT<0, i32>, SDTCisVT<1, i32>,
SDTCisVT<2, i32>, SDTCisVT<3, i32>]>;
def SDT_ARMVMAXNM : SDTypeProfile<1, 2, [SDTCisFP<0>, SDTCisFP<1>, SDTCisFP<2>]>;
def SDT_ARMVMINNM : SDTypeProfile<1, 2, [SDTCisFP<0>, SDTCisFP<1>, SDTCisFP<2>]>;
def SDTBinaryArithWithFlags : SDTypeProfile<2, 2,
[SDTCisSameAs<0, 2>,
SDTCisSameAs<0, 3>,
SDTCisInt<0>, SDTCisVT<1, i32>]>;
// SDTBinaryArithWithFlagsInOut - RES1, CPSR = op LHS, RHS, CPSR
def SDTBinaryArithWithFlagsInOut : SDTypeProfile<2, 3,
[SDTCisSameAs<0, 2>,
SDTCisSameAs<0, 3>,
SDTCisInt<0>,
SDTCisVT<1, i32>,
SDTCisVT<4, i32>]>;
def SDT_ARM64bitmlal : SDTypeProfile<2,4, [ SDTCisVT<0, i32>, SDTCisVT<1, i32>,
SDTCisVT<2, i32>, SDTCisVT<3, i32>,
SDTCisVT<4, i32>, SDTCisVT<5, i32> ] >;
def ARMUmlal : SDNode<"ARMISD::UMLAL", SDT_ARM64bitmlal>;
def ARMSmlal : SDNode<"ARMISD::SMLAL", SDT_ARM64bitmlal>;
// Node definitions.
def ARMWrapper : SDNode<"ARMISD::Wrapper", SDTIntUnaryOp>;
def ARMWrapperPIC : SDNode<"ARMISD::WrapperPIC", SDTIntUnaryOp>;
def ARMWrapperJT : SDNode<"ARMISD::WrapperJT", SDTIntUnaryOp>;
def ARMcallseq_start : SDNode<"ISD::CALLSEQ_START", SDT_ARMCallSeqStart,
[SDNPHasChain, SDNPSideEffect, SDNPOutGlue]>;
def ARMcallseq_end : SDNode<"ISD::CALLSEQ_END", SDT_ARMCallSeqEnd,
[SDNPHasChain, SDNPSideEffect,
SDNPOptInGlue, SDNPOutGlue]>;
def ARMcopystructbyval : SDNode<"ARMISD::COPY_STRUCT_BYVAL" ,
SDT_ARMStructByVal,
[SDNPHasChain, SDNPInGlue, SDNPOutGlue,
SDNPMayStore, SDNPMayLoad]>;
def ARMcall : SDNode<"ARMISD::CALL", SDT_ARMcall,
[SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
SDNPVariadic]>;
def ARMcall_pred : SDNode<"ARMISD::CALL_PRED", SDT_ARMcall,
[SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
SDNPVariadic]>;
def ARMcall_nolink : SDNode<"ARMISD::CALL_NOLINK", SDT_ARMcall,
[SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
SDNPVariadic]>;
def ARMretflag : SDNode<"ARMISD::RET_FLAG", SDTNone,
[SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
def ARMintretflag : SDNode<"ARMISD::INTRET_FLAG", SDT_ARMcall,
[SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
def ARMcmov : SDNode<"ARMISD::CMOV", SDT_ARMCMov,
[SDNPInGlue]>;
def ARMbrcond : SDNode<"ARMISD::BRCOND", SDT_ARMBrcond,
[SDNPHasChain, SDNPInGlue, SDNPOutGlue]>;
def ARMbrjt : SDNode<"ARMISD::BR_JT", SDT_ARMBrJT,
[SDNPHasChain]>;
def ARMbr2jt : SDNode<"ARMISD::BR2_JT", SDT_ARMBr2JT,
[SDNPHasChain]>;
def ARMBcci64 : SDNode<"ARMISD::BCC_i64", SDT_ARMBCC_i64,
[SDNPHasChain]>;
def ARMcmp : SDNode<"ARMISD::CMP", SDT_ARMCmp,
[SDNPOutGlue]>;
def ARMcmn : SDNode<"ARMISD::CMN", SDT_ARMCmp,
[SDNPOutGlue]>;
def ARMcmpZ : SDNode<"ARMISD::CMPZ", SDT_ARMCmp,
[SDNPOutGlue, SDNPCommutative]>;
def ARMpic_add : SDNode<"ARMISD::PIC_ADD", SDT_ARMPICAdd>;
def ARMsrl_flag : SDNode<"ARMISD::SRL_FLAG", SDTIntUnaryOp, [SDNPOutGlue]>;
def ARMsra_flag : SDNode<"ARMISD::SRA_FLAG", SDTIntUnaryOp, [SDNPOutGlue]>;
def ARMrrx : SDNode<"ARMISD::RRX" , SDTIntUnaryOp, [SDNPInGlue ]>;
def ARMaddc : SDNode<"ARMISD::ADDC", SDTBinaryArithWithFlags,
[SDNPCommutative]>;
def ARMsubc : SDNode<"ARMISD::SUBC", SDTBinaryArithWithFlags>;
def ARMadde : SDNode<"ARMISD::ADDE", SDTBinaryArithWithFlagsInOut>;
def ARMsube : SDNode<"ARMISD::SUBE", SDTBinaryArithWithFlagsInOut>;
def ARMthread_pointer: SDNode<"ARMISD::THREAD_POINTER", SDT_ARMThreadPointer>;
def ARMeh_sjlj_setjmp: SDNode<"ARMISD::EH_SJLJ_SETJMP",
SDT_ARMEH_SJLJ_Setjmp,
[SDNPHasChain, SDNPSideEffect]>;
def ARMeh_sjlj_longjmp: SDNode<"ARMISD::EH_SJLJ_LONGJMP",
SDT_ARMEH_SJLJ_Longjmp,
[SDNPHasChain, SDNPSideEffect]>;
def ARMeh_sjlj_setup_dispatch: SDNode<"ARMISD::EH_SJLJ_SETUP_DISPATCH",
SDT_ARMEH_SJLJ_SetupDispatch,
[SDNPHasChain, SDNPSideEffect]>;
def ARMMemBarrierMCR : SDNode<"ARMISD::MEMBARRIER_MCR", SDT_ARMMEMBARRIER,
[SDNPHasChain, SDNPSideEffect]>;
def ARMPreload : SDNode<"ARMISD::PRELOAD", SDT_ARMPREFETCH,
[SDNPHasChain, SDNPMayLoad, SDNPMayStore]>;
def ARMrbit : SDNode<"ARMISD::RBIT", SDTIntUnaryOp>;
def ARMtcret : SDNode<"ARMISD::TC_RETURN", SDT_ARMTCRET,
[SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
def ARMbfi : SDNode<"ARMISD::BFI", SDT_ARMBFI>;
def ARMvmaxnm : SDNode<"ARMISD::VMAXNM", SDT_ARMVMAXNM, []>;
def ARMvminnm : SDNode<"ARMISD::VMINNM", SDT_ARMVMINNM, []>;
//===----------------------------------------------------------------------===//
// ARM Instruction Predicate Definitions.
//
def HasV4T : Predicate<"Subtarget->hasV4TOps()">,
AssemblerPredicate<"HasV4TOps", "armv4t">;
def NoV4T : Predicate<"!Subtarget->hasV4TOps()">;
def HasV5T : Predicate<"Subtarget->hasV5TOps()">,
AssemblerPredicate<"HasV5TOps", "armv5t">;
def HasV5TE : Predicate<"Subtarget->hasV5TEOps()">,
AssemblerPredicate<"HasV5TEOps", "armv5te">;
def HasV6 : Predicate<"Subtarget->hasV6Ops()">,
AssemblerPredicate<"HasV6Ops", "armv6">;
def NoV6 : Predicate<"!Subtarget->hasV6Ops()">;
def HasV6M : Predicate<"Subtarget->hasV6MOps()">,
AssemblerPredicate<"HasV6MOps",
"armv6m or armv6t2">;
def HasV6T2 : Predicate<"Subtarget->hasV6T2Ops()">,
AssemblerPredicate<"HasV6T2Ops", "armv6t2">;
def NoV6T2 : Predicate<"!Subtarget->hasV6T2Ops()">;
def HasV6K : Predicate<"Subtarget->hasV6KOps()">,
AssemblerPredicate<"HasV6KOps", "armv6k">;
def NoV6K : Predicate<"!Subtarget->hasV6KOps()">;
def HasV7 : Predicate<"Subtarget->hasV7Ops()">,
AssemblerPredicate<"HasV7Ops", "armv7">;
def HasV8 : Predicate<"Subtarget->hasV8Ops()">,
AssemblerPredicate<"HasV8Ops", "armv8">;
def PreV8 : Predicate<"!Subtarget->hasV8Ops()">,
AssemblerPredicate<"!HasV8Ops", "armv7 or earlier">;
def HasV8_1a : Predicate<"Subtarget->hasV8_1aOps()">,
AssemblerPredicate<"HasV8_1aOps", "armv8.1a">;
def NoVFP : Predicate<"!Subtarget->hasVFP2()">;
def HasVFP2 : Predicate<"Subtarget->hasVFP2()">,
AssemblerPredicate<"FeatureVFP2", "VFP2">;
def HasVFP3 : Predicate<"Subtarget->hasVFP3()">,
AssemblerPredicate<"FeatureVFP3", "VFP3">;
def HasVFP4 : Predicate<"Subtarget->hasVFP4()">,
AssemblerPredicate<"FeatureVFP4", "VFP4">;
def HasDPVFP : Predicate<"!Subtarget->isFPOnlySP()">,
AssemblerPredicate<"!FeatureVFPOnlySP",
"double precision VFP">;
def HasFPARMv8 : Predicate<"Subtarget->hasFPARMv8()">,
AssemblerPredicate<"FeatureFPARMv8", "FPARMv8">;
def HasNEON : Predicate<"Subtarget->hasNEON()">,
AssemblerPredicate<"FeatureNEON", "NEON">;
def HasCrypto : Predicate<"Subtarget->hasCrypto()">,
AssemblerPredicate<"FeatureCrypto", "crypto">;
def HasCRC : Predicate<"Subtarget->hasCRC()">,
AssemblerPredicate<"FeatureCRC", "crc">;
def HasFP16 : Predicate<"Subtarget->hasFP16()">,
AssemblerPredicate<"FeatureFP16","half-float">;
def HasDivide : Predicate<"Subtarget->hasDivide()">,
AssemblerPredicate<"FeatureHWDiv", "divide in THUMB">;
def HasDivideInARM : Predicate<"Subtarget->hasDivideInARMMode()">,
AssemblerPredicate<"FeatureHWDivARM", "divide in ARM">;
def HasT2ExtractPack : Predicate<"Subtarget->hasT2ExtractPack()">,
AssemblerPredicate<"FeatureT2XtPk",
"pack/extract">;
def HasThumb2DSP : Predicate<"Subtarget->hasThumb2DSP()">,
AssemblerPredicate<"FeatureDSPThumb2",
"thumb2-dsp">;
def HasDB : Predicate<"Subtarget->hasDataBarrier()">,
AssemblerPredicate<"FeatureDB",
"data-barriers">;
def HasMP : Predicate<"Subtarget->hasMPExtension()">,
AssemblerPredicate<"FeatureMP",
"mp-extensions">;
def HasVirtualization: Predicate<"false">,
AssemblerPredicate<"FeatureVirtualization",
"virtualization-extensions">;
def HasTrustZone : Predicate<"Subtarget->hasTrustZone()">,
AssemblerPredicate<"FeatureTrustZone",
"TrustZone">;
def HasZCZ : Predicate<"Subtarget->hasZeroCycleZeroing()">;
def UseNEONForFP : Predicate<"Subtarget->useNEONForSinglePrecisionFP()">;
def DontUseNEONForFP : Predicate<"!Subtarget->useNEONForSinglePrecisionFP()">;
def IsThumb : Predicate<"Subtarget->isThumb()">,
AssemblerPredicate<"ModeThumb", "thumb">;
def IsThumb1Only : Predicate<"Subtarget->isThumb1Only()">;
def IsThumb2 : Predicate<"Subtarget->isThumb2()">,
AssemblerPredicate<"ModeThumb,FeatureThumb2",
"thumb2">;
def IsMClass : Predicate<"Subtarget->isMClass()">,
AssemblerPredicate<"FeatureMClass", "armv*m">;
def IsNotMClass : Predicate<"!Subtarget->isMClass()">,
AssemblerPredicate<"!FeatureMClass",
"!armv*m">;
def IsARM : Predicate<"!Subtarget->isThumb()">,
AssemblerPredicate<"!ModeThumb", "arm-mode">;
def IsMachO : Predicate<"Subtarget->isTargetMachO()">;
def IsNotMachO : Predicate<"!Subtarget->isTargetMachO()">;
def IsNaCl : Predicate<"Subtarget->isTargetNaCl()">;
def UseNaClTrap : Predicate<"Subtarget->useNaClTrap()">,
AssemblerPredicate<"FeatureNaClTrap", "NaCl">;
def DontUseNaClTrap : Predicate<"!Subtarget->useNaClTrap()">;
// FIXME: Eventually this will be just "hasV6T2Ops".
def UseMovt : Predicate<"Subtarget->useMovt(*MF)">;
def DontUseMovt : Predicate<"!Subtarget->useMovt(*MF)">;
def UseFPVMLx : Predicate<"Subtarget->useFPVMLx()">;
def UseMulOps : Predicate<"Subtarget->useMulOps()">;
// Prefer fused MAC for fp mul + add over fp VMLA / VMLS if they are available.
// But only select them if more precision in FP computation is allowed.
// Do not use them for Darwin platforms.
def UseFusedMAC : Predicate<"(TM.Options.AllowFPOpFusion =="
" FPOpFusion::Fast && "
" Subtarget->hasVFP4()) && "
"!Subtarget->isTargetDarwin()">;
def DontUseFusedMAC : Predicate<"!(TM.Options.AllowFPOpFusion =="
" FPOpFusion::Fast &&"
" Subtarget->hasVFP4()) || "
"Subtarget->isTargetDarwin()">;
// VGETLNi32 is microcoded on Swift - prefer VMOV.
def HasFastVGETLNi32 : Predicate<"!Subtarget->isSwift()">;
def HasSlowVGETLNi32 : Predicate<"Subtarget->isSwift()">;
// VDUP.32 is microcoded on Swift - prefer VMOV.
def HasFastVDUP32 : Predicate<"!Subtarget->isSwift()">;
def HasSlowVDUP32 : Predicate<"Subtarget->isSwift()">;
// Cortex-A9 prefers VMOVSR to VMOVDRR even when using NEON for scalar FP, as
// this allows more effective execution domain optimization. See
// setExecutionDomain().
def UseVMOVSR : Predicate<"Subtarget->isCortexA9() || !Subtarget->useNEONForSinglePrecisionFP()">;
def DontUseVMOVSR : Predicate<"!Subtarget->isCortexA9() && Subtarget->useNEONForSinglePrecisionFP()">;
def IsLE : Predicate<"MF->getDataLayout().isLittleEndian()">;
def IsBE : Predicate<"MF->getDataLayout().isBigEndian()">;
//===----------------------------------------------------------------------===//
// ARM Flag Definitions.
class RegConstraint<string C> {
string Constraints = C;
}
//===----------------------------------------------------------------------===//
// ARM specific transformation functions and pattern fragments.
//
// imm_neg_XFORM - Return the negation of an i32 immediate value.
def imm_neg_XFORM : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(-(int)N->getZExtValue(), SDLoc(N), MVT::i32);
}]>;
// imm_not_XFORM - Return the complement of a i32 immediate value.
def imm_not_XFORM : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(~(int)N->getZExtValue(), SDLoc(N), MVT::i32);
}]>;
/// imm16_31 predicate - True if the 32-bit immediate is in the range [16,31].
def imm16_31 : ImmLeaf<i32, [{
return (int32_t)Imm >= 16 && (int32_t)Imm < 32;
}]>;
// sext_16_node predicate - True if the SDNode is sign-extended 16 or more bits.
def sext_16_node : PatLeaf<(i32 GPR:$a), [{
return CurDAG->ComputeNumSignBits(SDValue(N,0)) >= 17;
}]>;
/// Split a 32-bit immediate into two 16 bit parts.
def hi16 : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant((uint32_t)N->getZExtValue() >> 16, SDLoc(N),
MVT::i32);
}]>;
def lo16AllZero : PatLeaf<(i32 imm), [{
// Returns true if all low 16-bits are 0.
return (((uint32_t)N->getZExtValue()) & 0xFFFFUL) == 0;
}], hi16>;
class BinOpWithFlagFrag<dag res> :
PatFrag<(ops node:$LHS, node:$RHS, node:$FLAG), res>;
class BinOpFrag<dag res> : PatFrag<(ops node:$LHS, node:$RHS), res>;
class UnOpFrag <dag res> : PatFrag<(ops node:$Src), res>;
// An 'and' node with a single use.
def and_su : PatFrag<(ops node:$lhs, node:$rhs), (and node:$lhs, node:$rhs), [{
return N->hasOneUse();
}]>;
// An 'xor' node with a single use.
def xor_su : PatFrag<(ops node:$lhs, node:$rhs), (xor node:$lhs, node:$rhs), [{
return N->hasOneUse();
}]>;
// An 'fmul' node with a single use.
def fmul_su : PatFrag<(ops node:$lhs, node:$rhs), (fmul node:$lhs, node:$rhs),[{
return N->hasOneUse();
}]>;
// An 'fadd' node which checks for single non-hazardous use.
def fadd_mlx : PatFrag<(ops node:$lhs, node:$rhs),(fadd node:$lhs, node:$rhs),[{
return hasNoVMLxHazardUse(N);
}]>;
// An 'fsub' node which checks for single non-hazardous use.
def fsub_mlx : PatFrag<(ops node:$lhs, node:$rhs),(fsub node:$lhs, node:$rhs),[{
return hasNoVMLxHazardUse(N);
}]>;
//===----------------------------------------------------------------------===//
// Operand Definitions.
//
// Immediate operands with a shared generic asm render method.
class ImmAsmOperand : AsmOperandClass { let RenderMethod = "addImmOperands"; }
// Operands that are part of a memory addressing mode.
class MemOperand : Operand<i32> { let OperandType = "OPERAND_MEMORY"; }
// Branch target.
// FIXME: rename brtarget to t2_brtarget
def brtarget : Operand<OtherVT> {
let EncoderMethod = "getBranchTargetOpValue";
let OperandType = "OPERAND_PCREL";
let DecoderMethod = "DecodeT2BROperand";
}
// FIXME: get rid of this one?
def uncondbrtarget : Operand<OtherVT> {
let EncoderMethod = "getUnconditionalBranchTargetOpValue";
let OperandType = "OPERAND_PCREL";
}
// Branch target for ARM. Handles conditional/unconditional
def br_target : Operand<OtherVT> {
let EncoderMethod = "getARMBranchTargetOpValue";
let OperandType = "OPERAND_PCREL";
}
// Call target.
// FIXME: rename bltarget to t2_bl_target?
def bltarget : Operand<i32> {
// Encoded the same as branch targets.
let EncoderMethod = "getBranchTargetOpValue";
let OperandType = "OPERAND_PCREL";
}
// Call target for ARM. Handles conditional/unconditional
// FIXME: rename bl_target to t2_bltarget?
def bl_target : Operand<i32> {
let EncoderMethod = "getARMBLTargetOpValue";
let OperandType = "OPERAND_PCREL";
}
def blx_target : Operand<i32> {
let EncoderMethod = "getARMBLXTargetOpValue";
let OperandType = "OPERAND_PCREL";
}
// A list of registers separated by comma. Used by load/store multiple.
def RegListAsmOperand : AsmOperandClass { let Name = "RegList"; }
def reglist : Operand<i32> {
let EncoderMethod = "getRegisterListOpValue";
let ParserMatchClass = RegListAsmOperand;
let PrintMethod = "printRegisterList";
let DecoderMethod = "DecodeRegListOperand";
}
def GPRPairOp : RegisterOperand<GPRPair, "printGPRPairOperand">;
def DPRRegListAsmOperand : AsmOperandClass { let Name = "DPRRegList"; }
def dpr_reglist : Operand<i32> {
let EncoderMethod = "getRegisterListOpValue";
let ParserMatchClass = DPRRegListAsmOperand;
let PrintMethod = "printRegisterList";
let DecoderMethod = "DecodeDPRRegListOperand";
}
def SPRRegListAsmOperand : AsmOperandClass { let Name = "SPRRegList"; }
def spr_reglist : Operand<i32> {
let EncoderMethod = "getRegisterListOpValue";
let ParserMatchClass = SPRRegListAsmOperand;
let PrintMethod = "printRegisterList";
let DecoderMethod = "DecodeSPRRegListOperand";
}
// An operand for the CONSTPOOL_ENTRY pseudo-instruction.
def cpinst_operand : Operand<i32> {
let PrintMethod = "printCPInstOperand";
}
// Local PC labels.
def pclabel : Operand<i32> {
let PrintMethod = "printPCLabel";
}
// ADR instruction labels.
def AdrLabelAsmOperand : AsmOperandClass { let Name = "AdrLabel"; }
def adrlabel : Operand<i32> {
let EncoderMethod = "getAdrLabelOpValue";
let ParserMatchClass = AdrLabelAsmOperand;
let PrintMethod = "printAdrLabelOperand<0>";
}
def neon_vcvt_imm32 : Operand<i32> {
let EncoderMethod = "getNEONVcvtImm32OpValue";
let DecoderMethod = "DecodeVCVTImmOperand";
}
// rot_imm: An integer that encodes a rotate amount. Must be 8, 16, or 24.
def rot_imm_XFORM: SDNodeXForm<imm, [{
switch (N->getZExtValue()){
default: llvm_unreachable(nullptr);
case 0: return CurDAG->getTargetConstant(0, SDLoc(N), MVT::i32);
case 8: return CurDAG->getTargetConstant(1, SDLoc(N), MVT::i32);
case 16: return CurDAG->getTargetConstant(2, SDLoc(N), MVT::i32);
case 24: return CurDAG->getTargetConstant(3, SDLoc(N), MVT::i32);
}
}]>;
def RotImmAsmOperand : AsmOperandClass {
let Name = "RotImm";
let ParserMethod = "parseRotImm";
}
def rot_imm : Operand<i32>, PatLeaf<(i32 imm), [{
int32_t v = N->getZExtValue();
return v == 8 || v == 16 || v == 24; }],
rot_imm_XFORM> {
let PrintMethod = "printRotImmOperand";
let ParserMatchClass = RotImmAsmOperand;
}
// shift_imm: An integer that encodes a shift amount and the type of shift
// (asr or lsl). The 6-bit immediate encodes as:
// {5} 0 ==> lsl
// 1 asr
// {4-0} imm5 shift amount.
// asr #32 encoded as imm5 == 0.
def ShifterImmAsmOperand : AsmOperandClass {
let Name = "ShifterImm";
let ParserMethod = "parseShifterImm";
}
def shift_imm : Operand<i32> {
let PrintMethod = "printShiftImmOperand";
let ParserMatchClass = ShifterImmAsmOperand;
}
// shifter_operand operands: so_reg_reg, so_reg_imm, and mod_imm.
def ShiftedRegAsmOperand : AsmOperandClass { let Name = "RegShiftedReg"; }
def so_reg_reg : Operand<i32>, // reg reg imm
ComplexPattern<i32, 3, "SelectRegShifterOperand",
[shl, srl, sra, rotr]> {
let EncoderMethod = "getSORegRegOpValue";
let PrintMethod = "printSORegRegOperand";
let DecoderMethod = "DecodeSORegRegOperand";
let ParserMatchClass = ShiftedRegAsmOperand;
let MIOperandInfo = (ops GPRnopc, GPRnopc, i32imm);
}
def ShiftedImmAsmOperand : AsmOperandClass { let Name = "RegShiftedImm"; }
def so_reg_imm : Operand<i32>, // reg imm
ComplexPattern<i32, 2, "SelectImmShifterOperand",
[shl, srl, sra, rotr]> {
let EncoderMethod = "getSORegImmOpValue";
let PrintMethod = "printSORegImmOperand";
let DecoderMethod = "DecodeSORegImmOperand";
let ParserMatchClass = ShiftedImmAsmOperand;
let MIOperandInfo = (ops GPR, i32imm);
}
// FIXME: Does this need to be distinct from so_reg?
def shift_so_reg_reg : Operand<i32>, // reg reg imm
ComplexPattern<i32, 3, "SelectShiftRegShifterOperand",
[shl,srl,sra,rotr]> {
let EncoderMethod = "getSORegRegOpValue";
let PrintMethod = "printSORegRegOperand";
let DecoderMethod = "DecodeSORegRegOperand";
let ParserMatchClass = ShiftedRegAsmOperand;
let MIOperandInfo = (ops GPR, GPR, i32imm);
}
// FIXME: Does this need to be distinct from so_reg?
def shift_so_reg_imm : Operand<i32>, // reg reg imm
ComplexPattern<i32, 2, "SelectShiftImmShifterOperand",
[shl,srl,sra,rotr]> {
let EncoderMethod = "getSORegImmOpValue";
let PrintMethod = "printSORegImmOperand";
let DecoderMethod = "DecodeSORegImmOperand";
let ParserMatchClass = ShiftedImmAsmOperand;
let MIOperandInfo = (ops GPR, i32imm);
}
// mod_imm: match a 32-bit immediate operand, which can be encoded into
// a 12-bit immediate; an 8-bit integer and a 4-bit rotator (See ARMARM
// - "Modified Immediate Constants"). Within the MC layer we keep this
// immediate in its encoded form.
def ModImmAsmOperand: AsmOperandClass {
let Name = "ModImm";
let ParserMethod = "parseModImm";
}
def mod_imm : Operand<i32>, ImmLeaf<i32, [{
return ARM_AM::getSOImmVal(Imm) != -1;
}]> {
let EncoderMethod = "getModImmOpValue";
let PrintMethod = "printModImmOperand";
let ParserMatchClass = ModImmAsmOperand;
}
// Note: the patterns mod_imm_not and mod_imm_neg do not require an encoder
// method and such, as they are only used on aliases (Pat<> and InstAlias<>).
// The actual parsing, encoding, decoding are handled by the destination
// instructions, which use mod_imm.
def ModImmNotAsmOperand : AsmOperandClass { let Name = "ModImmNot"; }
def mod_imm_not : Operand<i32>, PatLeaf<(imm), [{
return ARM_AM::getSOImmVal(~(uint32_t)N->getZExtValue()) != -1;
}], imm_not_XFORM> {
let ParserMatchClass = ModImmNotAsmOperand;
}
def ModImmNegAsmOperand : AsmOperandClass { let Name = "ModImmNeg"; }
def mod_imm_neg : Operand<i32>, PatLeaf<(imm), [{
unsigned Value = -(unsigned)N->getZExtValue();
return Value && ARM_AM::getSOImmVal(Value) != -1;
}], imm_neg_XFORM> {
let ParserMatchClass = ModImmNegAsmOperand;
}
/// arm_i32imm - True for +V6T2, or when isSOImmTwoParVal()
def arm_i32imm : PatLeaf<(imm), [{
if (Subtarget->useMovt(*MF))
return true;
return ARM_AM::isSOImmTwoPartVal((unsigned)N->getZExtValue());
}]>;
/// imm0_1 predicate - Immediate in the range [0,1].
def Imm0_1AsmOperand: ImmAsmOperand { let Name = "Imm0_1"; }
def imm0_1 : Operand<i32> { let ParserMatchClass = Imm0_1AsmOperand; }
/// imm0_3 predicate - Immediate in the range [0,3].
def Imm0_3AsmOperand: ImmAsmOperand { let Name = "Imm0_3"; }
def imm0_3 : Operand<i32> { let ParserMatchClass = Imm0_3AsmOperand; }
/// imm0_7 predicate - Immediate in the range [0,7].
def Imm0_7AsmOperand: ImmAsmOperand { let Name = "Imm0_7"; }
def imm0_7 : Operand<i32>, ImmLeaf<i32, [{
return Imm >= 0 && Imm < 8;
}]> {
let ParserMatchClass = Imm0_7AsmOperand;
}
/// imm8 predicate - Immediate is exactly 8.
def Imm8AsmOperand: ImmAsmOperand { let Name = "Imm8"; }
def imm8 : Operand<i32>, ImmLeaf<i32, [{ return Imm == 8; }]> {
let ParserMatchClass = Imm8AsmOperand;
}
/// imm16 predicate - Immediate is exactly 16.
def Imm16AsmOperand: ImmAsmOperand { let Name = "Imm16"; }
def imm16 : Operand<i32>, ImmLeaf<i32, [{ return Imm == 16; }]> {
let ParserMatchClass = Imm16AsmOperand;
}
/// imm32 predicate - Immediate is exactly 32.
def Imm32AsmOperand: ImmAsmOperand { let Name = "Imm32"; }
def imm32 : Operand<i32>, ImmLeaf<i32, [{ return Imm == 32; }]> {
let ParserMatchClass = Imm32AsmOperand;
}
def imm8_or_16 : ImmLeaf<i32, [{ return Imm == 8 || Imm == 16;}]>;
/// imm1_7 predicate - Immediate in the range [1,7].
def Imm1_7AsmOperand: ImmAsmOperand { let Name = "Imm1_7"; }
def imm1_7 : Operand<i32>, ImmLeaf<i32, [{ return Imm > 0 && Imm < 8; }]> {
let ParserMatchClass = Imm1_7AsmOperand;
}
/// imm1_15 predicate - Immediate in the range [1,15].
def Imm1_15AsmOperand: ImmAsmOperand { let Name = "Imm1_15"; }
def imm1_15 : Operand<i32>, ImmLeaf<i32, [{ return Imm > 0 && Imm < 16; }]> {
let ParserMatchClass = Imm1_15AsmOperand;
}
/// imm1_31 predicate - Immediate in the range [1,31].
def Imm1_31AsmOperand: ImmAsmOperand { let Name = "Imm1_31"; }
def imm1_31 : Operand<i32>, ImmLeaf<i32, [{ return Imm > 0 && Imm < 32; }]> {
let ParserMatchClass = Imm1_31AsmOperand;
}
/// imm0_15 predicate - Immediate in the range [0,15].
def Imm0_15AsmOperand: ImmAsmOperand {
let Name = "Imm0_15";
let DiagnosticType = "ImmRange0_15";
}
def imm0_15 : Operand<i32>, ImmLeaf<i32, [{
return Imm >= 0 && Imm < 16;
}]> {
let ParserMatchClass = Imm0_15AsmOperand;
}
/// imm0_31 predicate - True if the 32-bit immediate is in the range [0,31].
def Imm0_31AsmOperand: ImmAsmOperand { let Name = "Imm0_31"; }
def imm0_31 : Operand<i32>, ImmLeaf<i32, [{
return Imm >= 0 && Imm < 32;
}]> {
let ParserMatchClass = Imm0_31AsmOperand;
}
/// imm0_32 predicate - True if the 32-bit immediate is in the range [0,32].
def Imm0_32AsmOperand: ImmAsmOperand { let Name = "Imm0_32"; }
def imm0_32 : Operand<i32>, ImmLeaf<i32, [{
return Imm >= 0 && Imm < 32;
}]> {
let ParserMatchClass = Imm0_32AsmOperand;
}
/// imm0_63 predicate - True if the 32-bit immediate is in the range [0,63].
def Imm0_63AsmOperand: ImmAsmOperand { let Name = "Imm0_63"; }
def imm0_63 : Operand<i32>, ImmLeaf<i32, [{
return Imm >= 0 && Imm < 64;
}]> {
let ParserMatchClass = Imm0_63AsmOperand;
}
/// imm0_239 predicate - Immediate in the range [0,239].
def Imm0_239AsmOperand : ImmAsmOperand {
let Name = "Imm0_239";
let DiagnosticType = "ImmRange0_239";
}
def imm0_239 : Operand<i32>, ImmLeaf<i32, [{ return Imm >= 0 && Imm < 240; }]> {
let ParserMatchClass = Imm0_239AsmOperand;
}
/// imm0_255 predicate - Immediate in the range [0,255].
def Imm0_255AsmOperand : ImmAsmOperand { let Name = "Imm0_255"; }
def imm0_255 : Operand<i32>, ImmLeaf<i32, [{ return Imm >= 0 && Imm < 256; }]> {
let ParserMatchClass = Imm0_255AsmOperand;
}
/// imm0_65535 - An immediate is in the range [0.65535].
def Imm0_65535AsmOperand: ImmAsmOperand { let Name = "Imm0_65535"; }
def imm0_65535 : Operand<i32>, ImmLeaf<i32, [{
return Imm >= 0 && Imm < 65536;
}]> {
let ParserMatchClass = Imm0_65535AsmOperand;
}
// imm0_65535_neg - An immediate whose negative value is in the range [0.65535].
def imm0_65535_neg : Operand<i32>, ImmLeaf<i32, [{
return -Imm >= 0 && -Imm < 65536;
}]>;
// imm0_65535_expr - For movt/movw - 16-bit immediate that can also reference
// a relocatable expression.
//
// FIXME: This really needs a Thumb version separate from the ARM version.
// While the range is the same, and can thus use the same match class,
// the encoding is different so it should have a different encoder method.
def Imm0_65535ExprAsmOperand: ImmAsmOperand { let Name = "Imm0_65535Expr"; }
def imm0_65535_expr : Operand<i32> {
let EncoderMethod = "getHiLo16ImmOpValue";
let ParserMatchClass = Imm0_65535ExprAsmOperand;
}
def Imm256_65535ExprAsmOperand: ImmAsmOperand { let Name = "Imm256_65535Expr"; }
def imm256_65535_expr : Operand<i32> {
let ParserMatchClass = Imm256_65535ExprAsmOperand;
}
/// imm24b - True if the 32-bit immediate is encodable in 24 bits.
def Imm24bitAsmOperand: ImmAsmOperand { let Name = "Imm24bit"; }
def imm24b : Operand<i32>, ImmLeaf<i32, [{
return Imm >= 0 && Imm <= 0xffffff;
}]> {
let ParserMatchClass = Imm24bitAsmOperand;
}
/// bf_inv_mask_imm predicate - An AND mask to clear an arbitrary width bitfield
/// e.g., 0xf000ffff
def BitfieldAsmOperand : AsmOperandClass {
let Name = "Bitfield";
let ParserMethod = "parseBitfield";
}
def bf_inv_mask_imm : Operand<i32>,
PatLeaf<(imm), [{
return ARM::isBitFieldInvertedMask(N->getZExtValue());
}] > {
let EncoderMethod = "getBitfieldInvertedMaskOpValue";
let PrintMethod = "printBitfieldInvMaskImmOperand";
let DecoderMethod = "DecodeBitfieldMaskOperand";
let ParserMatchClass = BitfieldAsmOperand;
}
def imm1_32_XFORM: SDNodeXForm<imm, [{
return CurDAG->getTargetConstant((int)N->getZExtValue() - 1, SDLoc(N),
MVT::i32);
}]>;
def Imm1_32AsmOperand: AsmOperandClass { let Name = "Imm1_32"; }
def imm1_32 : Operand<i32>, PatLeaf<(imm), [{
uint64_t Imm = N->getZExtValue();
return Imm > 0 && Imm <= 32;
}],
imm1_32_XFORM> {
let PrintMethod = "printImmPlusOneOperand";
let ParserMatchClass = Imm1_32AsmOperand;
}
def imm1_16_XFORM: SDNodeXForm<imm, [{
return CurDAG->getTargetConstant((int)N->getZExtValue() - 1, SDLoc(N),
MVT::i32);
}]>;
def Imm1_16AsmOperand: AsmOperandClass { let Name = "Imm1_16"; }
def imm1_16 : Operand<i32>, PatLeaf<(imm), [{ return Imm > 0 && Imm <= 16; }],
imm1_16_XFORM> {
let PrintMethod = "printImmPlusOneOperand";
let ParserMatchClass = Imm1_16AsmOperand;
}
// Define ARM specific addressing modes.
// addrmode_imm12 := reg +/- imm12
//
def MemImm12OffsetAsmOperand : AsmOperandClass { let Name = "MemImm12Offset"; }
class AddrMode_Imm12 : MemOperand,
ComplexPattern<i32, 2, "SelectAddrModeImm12", []> {
// 12-bit immediate operand. Note that instructions using this encode
// #0 and #-0 differently. We flag #-0 as the magic value INT32_MIN. All other
// immediate values are as normal.
let EncoderMethod = "getAddrModeImm12OpValue";
let DecoderMethod = "DecodeAddrModeImm12Operand";
let ParserMatchClass = MemImm12OffsetAsmOperand;
let MIOperandInfo = (ops GPR:$base, i32imm:$offsimm);
}
def addrmode_imm12 : AddrMode_Imm12 {
let PrintMethod = "printAddrModeImm12Operand<false>";
}
def addrmode_imm12_pre : AddrMode_Imm12 {
let PrintMethod = "printAddrModeImm12Operand<true>";
}
// ldst_so_reg := reg +/- reg shop imm
//
def MemRegOffsetAsmOperand : AsmOperandClass { let Name = "MemRegOffset"; }
def ldst_so_reg : MemOperand,
ComplexPattern<i32, 3, "SelectLdStSOReg", []> {
let EncoderMethod = "getLdStSORegOpValue";
// FIXME: Simplify the printer
let PrintMethod = "printAddrMode2Operand";
let DecoderMethod = "DecodeSORegMemOperand";
let ParserMatchClass = MemRegOffsetAsmOperand;
let MIOperandInfo = (ops GPR:$base, GPRnopc:$offsreg, i32imm:$shift);
}
// postidx_imm8 := +/- [0,255]
//
// 9 bit value:
// {8} 1 is imm8 is non-negative. 0 otherwise.
// {7-0} [0,255] imm8 value.
def PostIdxImm8AsmOperand : AsmOperandClass { let Name = "PostIdxImm8"; }
def postidx_imm8 : MemOperand {
let PrintMethod = "printPostIdxImm8Operand";
let ParserMatchClass = PostIdxImm8AsmOperand;
let MIOperandInfo = (ops i32imm);
}
// postidx_imm8s4 := +/- [0,1020]
//
// 9 bit value:
// {8} 1 is imm8 is non-negative. 0 otherwise.
// {7-0} [0,255] imm8 value, scaled by 4.
def PostIdxImm8s4AsmOperand : AsmOperandClass { let Name = "PostIdxImm8s4"; }
def postidx_imm8s4 : MemOperand {
let PrintMethod = "printPostIdxImm8s4Operand";
let ParserMatchClass = PostIdxImm8s4AsmOperand;
let MIOperandInfo = (ops i32imm);
}
// postidx_reg := +/- reg
//
def PostIdxRegAsmOperand : AsmOperandClass {
let Name = "PostIdxReg";
let ParserMethod = "parsePostIdxReg";
}
def postidx_reg : MemOperand {
let EncoderMethod = "getPostIdxRegOpValue";
let DecoderMethod = "DecodePostIdxReg";
let PrintMethod = "printPostIdxRegOperand";
let ParserMatchClass = PostIdxRegAsmOperand;
let MIOperandInfo = (ops GPRnopc, i32imm);
}
// addrmode2 := reg +/- imm12
// := reg +/- reg shop imm
//
// FIXME: addrmode2 should be refactored the rest of the way to always
// use explicit imm vs. reg versions above (addrmode_imm12 and ldst_so_reg).
def AddrMode2AsmOperand : AsmOperandClass { let Name = "AddrMode2"; }
def addrmode2 : MemOperand,
ComplexPattern<i32, 3, "SelectAddrMode2", []> {
let EncoderMethod = "getAddrMode2OpValue";
let PrintMethod = "printAddrMode2Operand";
let ParserMatchClass = AddrMode2AsmOperand;
let MIOperandInfo = (ops GPR:$base, GPR:$offsreg, i32imm:$offsimm);
}
def PostIdxRegShiftedAsmOperand : AsmOperandClass {
let Name = "PostIdxRegShifted";
let ParserMethod = "parsePostIdxReg";
}
def am2offset_reg : MemOperand,
ComplexPattern<i32, 2, "SelectAddrMode2OffsetReg",
[], [SDNPWantRoot]> {
let EncoderMethod = "getAddrMode2OffsetOpValue";
let PrintMethod = "printAddrMode2OffsetOperand";
// When using this for assembly, it's always as a post-index offset.
let ParserMatchClass = PostIdxRegShiftedAsmOperand;
let MIOperandInfo = (ops GPRnopc, i32imm);
}
// FIXME: am2offset_imm should only need the immediate, not the GPR. Having
// the GPR is purely vestigal at this point.
def AM2OffsetImmAsmOperand : AsmOperandClass { let Name = "AM2OffsetImm"; }
def am2offset_imm : MemOperand,
ComplexPattern<i32, 2, "SelectAddrMode2OffsetImm",
[], [SDNPWantRoot]> {
let EncoderMethod = "getAddrMode2OffsetOpValue";
let PrintMethod = "printAddrMode2OffsetOperand";
let ParserMatchClass = AM2OffsetImmAsmOperand;
let MIOperandInfo = (ops GPRnopc, i32imm);
}
// addrmode3 := reg +/- reg
// addrmode3 := reg +/- imm8
//
// FIXME: split into imm vs. reg versions.
def AddrMode3AsmOperand : AsmOperandClass { let Name = "AddrMode3"; }
class AddrMode3 : MemOperand,
ComplexPattern<i32, 3, "SelectAddrMode3", []> {
let EncoderMethod = "getAddrMode3OpValue";
let ParserMatchClass = AddrMode3AsmOperand;
let MIOperandInfo = (ops GPR:$base, GPR:$offsreg, i32imm:$offsimm);
}
def addrmode3 : AddrMode3
{
let PrintMethod = "printAddrMode3Operand<false>";
}
def addrmode3_pre : AddrMode3
{
let PrintMethod = "printAddrMode3Operand<true>";
}
// FIXME: split into imm vs. reg versions.
// FIXME: parser method to handle +/- register.
def AM3OffsetAsmOperand : AsmOperandClass {
let Name = "AM3Offset";
let ParserMethod = "parseAM3Offset";
}
def am3offset : MemOperand,
ComplexPattern<i32, 2, "SelectAddrMode3Offset",
[], [SDNPWantRoot]> {
let EncoderMethod = "getAddrMode3OffsetOpValue";
let PrintMethod = "printAddrMode3OffsetOperand";
let ParserMatchClass = AM3OffsetAsmOperand;
let MIOperandInfo = (ops GPR, i32imm);
}
// ldstm_mode := {ia, ib, da, db}
//
def ldstm_mode : OptionalDefOperand<OtherVT, (ops i32), (ops (i32 1))> {
let EncoderMethod = "getLdStmModeOpValue";
let PrintMethod = "printLdStmModeOperand";
}
// addrmode5 := reg +/- imm8*4
//
def AddrMode5AsmOperand : AsmOperandClass { let Name = "AddrMode5"; }
class AddrMode5 : MemOperand,
ComplexPattern<i32, 2, "SelectAddrMode5", []> {
let EncoderMethod = "getAddrMode5OpValue";
let DecoderMethod = "DecodeAddrMode5Operand";
let ParserMatchClass = AddrMode5AsmOperand;
let MIOperandInfo = (ops GPR:$base, i32imm);
}
def addrmode5 : AddrMode5 {
let PrintMethod = "printAddrMode5Operand<false>";
}
def addrmode5_pre : AddrMode5 {
let PrintMethod = "printAddrMode5Operand<true>";
}
// addrmode6 := reg with optional alignment
//
def AddrMode6AsmOperand : AsmOperandClass { let Name = "AlignedMemory"; }
def addrmode6 : MemOperand,
ComplexPattern<i32, 2, "SelectAddrMode6", [], [SDNPWantParent]>{
let PrintMethod = "printAddrMode6Operand";
let MIOperandInfo = (ops GPR:$addr, i32imm:$align);
let EncoderMethod = "getAddrMode6AddressOpValue";
let DecoderMethod = "DecodeAddrMode6Operand";
let ParserMatchClass = AddrMode6AsmOperand;
}
def am6offset : MemOperand,
ComplexPattern<i32, 1, "SelectAddrMode6Offset",
[], [SDNPWantRoot]> {
let PrintMethod = "printAddrMode6OffsetOperand";
let MIOperandInfo = (ops GPR);
let EncoderMethod = "getAddrMode6OffsetOpValue";
let DecoderMethod = "DecodeGPRRegisterClass";
}
// Special version of addrmode6 to handle alignment encoding for VST1/VLD1
// (single element from one lane) for size 32.
def addrmode6oneL32 : MemOperand,
ComplexPattern<i32, 2, "SelectAddrMode6", [], [SDNPWantParent]>{
let PrintMethod = "printAddrMode6Operand";
let MIOperandInfo = (ops GPR:$addr, i32imm);
let EncoderMethod = "getAddrMode6OneLane32AddressOpValue";
}
// Base class for addrmode6 with specific alignment restrictions.
class AddrMode6Align : MemOperand,
ComplexPattern<i32, 2, "SelectAddrMode6", [], [SDNPWantParent]>{
let PrintMethod = "printAddrMode6Operand";
let MIOperandInfo = (ops GPR:$addr, i32imm:$align);
let EncoderMethod = "getAddrMode6AddressOpValue";
let DecoderMethod = "DecodeAddrMode6Operand";
}
// Special version of addrmode6 to handle no allowed alignment encoding for
// VLD/VST instructions and checking the alignment is not specified.
def AddrMode6AlignNoneAsmOperand : AsmOperandClass {
let Name = "AlignedMemoryNone";
let DiagnosticType = "AlignedMemoryRequiresNone";
}
def addrmode6alignNone : AddrMode6Align {
// The alignment specifier can only be omitted.
let ParserMatchClass = AddrMode6AlignNoneAsmOperand;
}
// Special version of addrmode6 to handle 16-bit alignment encoding for
// VLD/VST instructions and checking the alignment value.
def AddrMode6Align16AsmOperand : AsmOperandClass {
let Name = "AlignedMemory16";
let DiagnosticType = "AlignedMemoryRequires16";
}
def addrmode6align16 : AddrMode6Align {
// The alignment specifier can only be 16 or omitted.
let ParserMatchClass = AddrMode6Align16AsmOperand;
}
// Special version of addrmode6 to handle 32-bit alignment encoding for
// VLD/VST instructions and checking the alignment value.
def AddrMode6Align32AsmOperand : AsmOperandClass {
let Name = "AlignedMemory32";
let DiagnosticType = "AlignedMemoryRequires32";
}
def addrmode6align32 : AddrMode6Align {
// The alignment specifier can only be 32 or omitted.
let ParserMatchClass = AddrMode6Align32AsmOperand;
}
// Special version of addrmode6 to handle 64-bit alignment encoding for
// VLD/VST instructions and checking the alignment value.
def AddrMode6Align64AsmOperand : AsmOperandClass {
let Name = "AlignedMemory64";
let DiagnosticType = "AlignedMemoryRequires64";
}
def addrmode6align64 : AddrMode6Align {
// The alignment specifier can only be 64 or omitted.
let ParserMatchClass = AddrMode6Align64AsmOperand;
}
// Special version of addrmode6 to handle 64-bit or 128-bit alignment encoding
// for VLD/VST instructions and checking the alignment value.
def AddrMode6Align64or128AsmOperand : AsmOperandClass {
let Name = "AlignedMemory64or128";
let DiagnosticType = "AlignedMemoryRequires64or128";
}
def addrmode6align64or128 : AddrMode6Align {
// The alignment specifier can only be 64, 128 or omitted.
let ParserMatchClass = AddrMode6Align64or128AsmOperand;
}
// Special version of addrmode6 to handle 64-bit, 128-bit or 256-bit alignment
// encoding for VLD/VST instructions and checking the alignment value.
def AddrMode6Align64or128or256AsmOperand : AsmOperandClass {
let Name = "AlignedMemory64or128or256";
let DiagnosticType = "AlignedMemoryRequires64or128or256";
}
def addrmode6align64or128or256 : AddrMode6Align {
// The alignment specifier can only be 64, 128, 256 or omitted.
let ParserMatchClass = AddrMode6Align64or128or256AsmOperand;
}
// Special version of addrmode6 to handle alignment encoding for VLD-dup
// instructions, specifically VLD4-dup.
def addrmode6dup : MemOperand,
ComplexPattern<i32, 2, "SelectAddrMode6", [], [SDNPWantParent]>{
let PrintMethod = "printAddrMode6Operand";
let MIOperandInfo = (ops GPR:$addr, i32imm);
let EncoderMethod = "getAddrMode6DupAddressOpValue";
// FIXME: This is close, but not quite right. The alignment specifier is
// different.
let ParserMatchClass = AddrMode6AsmOperand;
}
// Base class for addrmode6dup with specific alignment restrictions.
class AddrMode6DupAlign : MemOperand,
ComplexPattern<i32, 2, "SelectAddrMode6", [], [SDNPWantParent]>{
let PrintMethod = "printAddrMode6Operand";
let MIOperandInfo = (ops GPR:$addr, i32imm);
let EncoderMethod = "getAddrMode6DupAddressOpValue";
}
// Special version of addrmode6 to handle no allowed alignment encoding for
// VLD-dup instruction and checking the alignment is not specified.
def AddrMode6dupAlignNoneAsmOperand : AsmOperandClass {
let Name = "DupAlignedMemoryNone";
let DiagnosticType = "DupAlignedMemoryRequiresNone";
}
def addrmode6dupalignNone : AddrMode6DupAlign {
// The alignment specifier can only be omitted.
let ParserMatchClass = AddrMode6dupAlignNoneAsmOperand;
}
// Special version of addrmode6 to handle 16-bit alignment encoding for VLD-dup
// instruction and checking the alignment value.
def AddrMode6dupAlign16AsmOperand : AsmOperandClass {
let Name = "DupAlignedMemory16";
let DiagnosticType = "DupAlignedMemoryRequires16";
}
def addrmode6dupalign16 : AddrMode6DupAlign {
// The alignment specifier can only be 16 or omitted.
let ParserMatchClass = AddrMode6dupAlign16AsmOperand;
}
// Special version of addrmode6 to handle 32-bit alignment encoding for VLD-dup
// instruction and checking the alignment value.
def AddrMode6dupAlign32AsmOperand : AsmOperandClass {
let Name = "DupAlignedMemory32";
let DiagnosticType = "DupAlignedMemoryRequires32";
}
def addrmode6dupalign32 : AddrMode6DupAlign {
// The alignment specifier can only be 32 or omitted.
let ParserMatchClass = AddrMode6dupAlign32AsmOperand;
}
// Special version of addrmode6 to handle 64-bit alignment encoding for VLD
// instructions and checking the alignment value.
def AddrMode6dupAlign64AsmOperand : AsmOperandClass {
let Name = "DupAlignedMemory64";
let DiagnosticType = "DupAlignedMemoryRequires64";
}
def addrmode6dupalign64 : AddrMode6DupAlign {
// The alignment specifier can only be 64 or omitted.
let ParserMatchClass = AddrMode6dupAlign64AsmOperand;
}
// Special version of addrmode6 to handle 64-bit or 128-bit alignment encoding
// for VLD instructions and checking the alignment value.
def AddrMode6dupAlign64or128AsmOperand : AsmOperandClass {
let Name = "DupAlignedMemory64or128";
let DiagnosticType = "DupAlignedMemoryRequires64or128";
}
def addrmode6dupalign64or128 : AddrMode6DupAlign {
// The alignment specifier can only be 64, 128 or omitted.
let ParserMatchClass = AddrMode6dupAlign64or128AsmOperand;
}
// addrmodepc := pc + reg
//
def addrmodepc : MemOperand,
ComplexPattern<i32, 2, "SelectAddrModePC", []> {
let PrintMethod = "printAddrModePCOperand";
let MIOperandInfo = (ops GPR, i32imm);
}
// addr_offset_none := reg
//
def MemNoOffsetAsmOperand : AsmOperandClass { let Name = "MemNoOffset"; }
def addr_offset_none : MemOperand,
ComplexPattern<i32, 1, "SelectAddrOffsetNone", []> {
let PrintMethod = "printAddrMode7Operand";
let DecoderMethod = "DecodeAddrMode7Operand";
let ParserMatchClass = MemNoOffsetAsmOperand;
let MIOperandInfo = (ops GPR:$base);
}
def nohash_imm : Operand<i32> {
let PrintMethod = "printNoHashImmediate";
}
def CoprocNumAsmOperand : AsmOperandClass {
let Name = "CoprocNum";
let ParserMethod = "parseCoprocNumOperand";
}
def p_imm : Operand<i32> {
let PrintMethod = "printPImmediate";
let ParserMatchClass = CoprocNumAsmOperand;
let DecoderMethod = "DecodeCoprocessor";
}
def CoprocRegAsmOperand : AsmOperandClass {
let Name = "CoprocReg";
let ParserMethod = "parseCoprocRegOperand";
}
def c_imm : Operand<i32> {
let PrintMethod = "printCImmediate";
let ParserMatchClass = CoprocRegAsmOperand;
}
def CoprocOptionAsmOperand : AsmOperandClass {
let Name = "CoprocOption";
let ParserMethod = "parseCoprocOptionOperand";
}
def coproc_option_imm : Operand<i32> {
let PrintMethod = "printCoprocOptionImm";
let ParserMatchClass = CoprocOptionAsmOperand;
}
//===----------------------------------------------------------------------===//
include "ARMInstrFormats.td"
//===----------------------------------------------------------------------===//
// Multiclass helpers...
//
/// AsI1_bin_irs - Defines a set of (op r, {mod_imm|r|so_reg}) patterns for a
/// binop that produces a value.
let TwoOperandAliasConstraint = "$Rn = $Rd" in
multiclass AsI1_bin_irs<bits<4> opcod, string opc,
InstrItinClass iii, InstrItinClass iir, InstrItinClass iis,
PatFrag opnode, bit Commutable = 0> {
// The register-immediate version is re-materializable. This is useful
// in particular for taking the address of a local.
let isReMaterializable = 1 in {
def ri : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, mod_imm:$imm), DPFrm,
iii, opc, "\t$Rd, $Rn, $imm",
[(set GPR:$Rd, (opnode GPR:$Rn, mod_imm:$imm))]>,
Sched<[WriteALU, ReadALU]> {
bits<4> Rd;
bits<4> Rn;
bits<12> imm;
let Inst{25} = 1;
let Inst{19-16} = Rn;
let Inst{15-12} = Rd;
let Inst{11-0} = imm;
}
}
def rr : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), DPFrm,
iir, opc, "\t$Rd, $Rn, $Rm",
[(set GPR:$Rd, (opnode GPR:$Rn, GPR:$Rm))]>,
Sched<[WriteALU, ReadALU, ReadALU]> {
bits<4> Rd;
bits<4> Rn;
bits<4> Rm;
let Inst{25} = 0;
let isCommutable = Commutable;
let Inst{19-16} = Rn;
let Inst{15-12} = Rd;
let Inst{11-4} = 0b00000000;
let Inst{3-0} = Rm;
}
def rsi : AsI1<opcod, (outs GPR:$Rd),
(ins GPR:$Rn, so_reg_imm:$shift), DPSoRegImmFrm,
iis, opc, "\t$Rd, $Rn, $shift",
[(set GPR:$Rd, (opnode GPR:$Rn, so_reg_imm:$shift))]>,
Sched<[WriteALUsi, ReadALU]> {
bits<4> Rd;
bits<4> Rn;
bits<12> shift;
let Inst{25} = 0;
let Inst{19-16} = Rn;
let Inst{15-12} = Rd;
let Inst{11-5} = shift{11-5};
let Inst{4} = 0;
let Inst{3-0} = shift{3-0};
}
def rsr : AsI1<opcod, (outs GPR:$Rd),
(ins GPR:$Rn, so_reg_reg:$shift), DPSoRegRegFrm,
iis, opc, "\t$Rd, $Rn, $shift",
[(set GPR:$Rd, (opnode GPR:$Rn, so_reg_reg:$shift))]>,
Sched<[WriteALUsr, ReadALUsr]> {
bits<4> Rd;
bits<4> Rn;
bits<12> shift;
let Inst{25} = 0;
let Inst{19-16} = Rn;
let Inst{15-12} = Rd;
let Inst{11-8} = shift{11-8};
let Inst{7} = 0;
let Inst{6-5} = shift{6-5};
let Inst{4} = 1;
let Inst{3-0} = shift{3-0};
}
}
/// AsI1_rbin_irs - Same as AsI1_bin_irs except the order of operands are
/// reversed. The 'rr' form is only defined for the disassembler; for codegen
/// it is equivalent to the AsI1_bin_irs counterpart.
let TwoOperandAliasConstraint = "$Rn = $Rd" in
multiclass AsI1_rbin_irs<bits<4> opcod, string opc,
InstrItinClass iii, InstrItinClass iir, InstrItinClass iis,
PatFrag opnode, bit Commutable = 0> {
// The register-immediate version is re-materializable. This is useful
// in particular for taking the address of a local.
let isReMaterializable = 1 in {
def ri : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, mod_imm:$imm), DPFrm,
iii, opc, "\t$Rd, $Rn, $imm",
[(set GPR:$Rd, (opnode mod_imm:$imm, GPR:$Rn))]>,
Sched<[WriteALU, ReadALU]> {
bits<4> Rd;
bits<4> Rn;
bits<12> imm;
let Inst{25} = 1;
let Inst{19-16} = Rn;
let Inst{15-12} = Rd;
let Inst{11-0} = imm;
}
}
def rr : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), DPFrm,
iir, opc, "\t$Rd, $Rn, $Rm",
[/* pattern left blank */]>,
Sched<[WriteALU, ReadALU, ReadALU]> {
bits<4> Rd;
bits<4> Rn;
bits<4> Rm;
let Inst{11-4} = 0b00000000;
let Inst{25} = 0;
let Inst{3-0} = Rm;
let Inst{15-12} = Rd;
let Inst{19-16} = Rn;
}
def rsi : AsI1<opcod, (outs GPR:$Rd),
(ins GPR:$Rn, so_reg_imm:$shift), DPSoRegImmFrm,
iis, opc, "\t$Rd, $Rn, $shift",
[(set GPR:$Rd, (opnode so_reg_imm:$shift, GPR:$Rn))]>,
Sched<[WriteALUsi, ReadALU]> {
bits<4> Rd;
bits<4> Rn;
bits<12> shift;
let Inst{25} = 0;
let Inst{19-16} = Rn;
let Inst{15-12} = Rd;
let Inst{11-5} = shift{11-5};
let Inst{4} = 0;
let Inst{3-0} = shift{3-0};
}
def rsr : AsI1<opcod, (outs GPR:$Rd),
(ins GPR:$Rn, so_reg_reg:$shift), DPSoRegRegFrm,
iis, opc, "\t$Rd, $Rn, $shift",
[(set GPR:$Rd, (opnode so_reg_reg:$shift, GPR:$Rn))]>,
Sched<[WriteALUsr, ReadALUsr]> {
bits<4> Rd;
bits<4> Rn;
bits<12> shift;
let Inst{25} = 0;
let Inst{19-16} = Rn;
let Inst{15-12} = Rd;
let Inst{11-8} = shift{11-8};
let Inst{7} = 0;
let Inst{6-5} = shift{6-5};
let Inst{4} = 1;
let Inst{3-0} = shift{3-0};
}
}
/// AsI1_bin_s_irs - Same as AsI1_bin_irs except it sets the 's' bit by default.
///
/// These opcodes will be converted to the real non-S opcodes by
/// AdjustInstrPostInstrSelection after giving them an optional CPSR operand.
let hasPostISelHook = 1, Defs = [CPSR] in {
multiclass AsI1_bin_s_irs<InstrItinClass iii, InstrItinClass iir,
InstrItinClass iis, PatFrag opnode,
bit Commutable = 0> {
def ri : ARMPseudoInst<(outs GPR:$Rd), (ins GPR:$Rn, mod_imm:$imm, pred:$p),
4, iii,
[(set GPR:$Rd, CPSR, (opnode GPR:$Rn, mod_imm:$imm))]>,
Sched<[WriteALU, ReadALU]>;
def rr : ARMPseudoInst<(outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm, pred:$p),
4, iir,
[(set GPR:$Rd, CPSR, (opnode GPR:$Rn, GPR:$Rm))]>,
Sched<[WriteALU, ReadALU, ReadALU]> {
let isCommutable = Commutable;
}
def rsi : ARMPseudoInst<(outs GPR:$Rd),
(ins GPR:$Rn, so_reg_imm:$shift, pred:$p),
4, iis,
[(set GPR:$Rd, CPSR, (opnode GPR:$Rn,
so_reg_imm:$shift))]>,
Sched<[WriteALUsi, ReadALU]>;
def rsr : ARMPseudoInst<(outs GPR:$Rd),
(ins GPR:$Rn, so_reg_reg:$shift, pred:$p),
4, iis,
[(set GPR:$Rd, CPSR, (opnode GPR:$Rn,
so_reg_reg:$shift))]>,
Sched<[WriteALUSsr, ReadALUsr]>;
}
}
/// AsI1_rbin_s_is - Same as AsI1_bin_s_irs, except selection DAG
/// operands are reversed.
let hasPostISelHook = 1, Defs = [CPSR] in {
multiclass AsI1_rbin_s_is<InstrItinClass iii, InstrItinClass iir,
InstrItinClass iis, PatFrag opnode,
bit Commutable = 0> {
def ri : ARMPseudoInst<(outs GPR:$Rd), (ins GPR:$Rn, mod_imm:$imm, pred:$p),
4, iii,
[(set GPR:$Rd, CPSR, (opnode mod_imm:$imm, GPR:$Rn))]>,
Sched<[WriteALU, ReadALU]>;
def rsi : ARMPseudoInst<(outs GPR:$Rd),
(ins GPR:$Rn, so_reg_imm:$shift, pred:$p),
4, iis,
[(set GPR:$Rd, CPSR, (opnode so_reg_imm:$shift,
GPR:$Rn))]>,
Sched<[WriteALUsi, ReadALU]>;
def rsr : ARMPseudoInst<(outs GPR:$Rd),
(ins GPR:$Rn, so_reg_reg:$shift, pred:$p),
4, iis,
[(set GPR:$Rd, CPSR, (opnode so_reg_reg:$shift,
GPR:$Rn))]>,
Sched<[WriteALUSsr, ReadALUsr]>;
}
}
/// AI1_cmp_irs - Defines a set of (op r, {mod_imm|r|so_reg}) cmp / test
/// patterns. Similar to AsI1_bin_irs except the instruction does not produce
/// a explicit result, only implicitly set CPSR.
let isCompare = 1, Defs = [CPSR] in {
multiclass AI1_cmp_irs<bits<4> opcod, string opc,
InstrItinClass iii, InstrItinClass iir, InstrItinClass iis,
PatFrag opnode, bit Commutable = 0,
string rrDecoderMethod = ""> {
def ri : AI1<opcod, (outs), (ins GPR:$Rn, mod_imm:$imm), DPFrm, iii,
opc, "\t$Rn, $imm",
[(opnode GPR:$Rn, mod_imm:$imm)]>,
Sched<[WriteCMP, ReadALU]> {
bits<4> Rn;
bits<12> imm;
let Inst{25} = 1;
let Inst{20} = 1;
let Inst{19-16} = Rn;
let Inst{15-12} = 0b0000;
let Inst{11-0} = imm;
let Unpredictable{15-12} = 0b1111;
}
def rr : AI1<opcod, (outs), (ins GPR:$Rn, GPR:$Rm), DPFrm, iir,
opc, "\t$Rn, $Rm",
[(opnode GPR:$Rn, GPR:$Rm)]>,
Sched<[WriteCMP, ReadALU, ReadALU]> {
bits<4> Rn;
bits<4> Rm;
let isCommutable = Commutable;
let Inst{25} = 0;
let Inst{20} = 1;
let Inst{19-16} = Rn;
let Inst{15-12} = 0b0000;
let Inst{11-4} = 0b00000000;
let Inst{3-0} = Rm;
let DecoderMethod = rrDecoderMethod;
let Unpredictable{15-12} = 0b1111;
}
def rsi : AI1<opcod, (outs),
(ins GPR:$Rn, so_reg_imm:$shift), DPSoRegImmFrm, iis,
opc, "\t$Rn, $shift",
[(opnode GPR:$Rn, so_reg_imm:$shift)]>,
Sched<[WriteCMPsi, ReadALU]> {
bits<4> Rn;
bits<12> shift;
let Inst{25} = 0;
let Inst{20} = 1;
let Inst{19-16} = Rn;
let Inst{15-12} = 0b0000;
let Inst{11-5} = shift{11-5};
let Inst{4} = 0;
let Inst{3-0} = shift{3-0};
let Unpredictable{15-12} = 0b1111;
}
def rsr : AI1<opcod, (outs),
(ins GPRnopc:$Rn, so_reg_reg:$shift), DPSoRegRegFrm, iis,
opc, "\t$Rn, $shift",
[(opnode GPRnopc:$Rn, so_reg_reg:$shift)]>,
Sched<[WriteCMPsr, ReadALU]> {
bits<4> Rn;
bits<12> shift;
let Inst{25} = 0;
let Inst{20} = 1;
let Inst{19-16} = Rn;
let Inst{15-12} = 0b0000;
let Inst{11-8} = shift{11-8};
let Inst{7} = 0;
let Inst{6-5} = shift{6-5};
let Inst{4} = 1;
let Inst{3-0} = shift{3-0};
let Unpredictable{15-12} = 0b1111;
}
}
}
/// AI_ext_rrot - A unary operation with two forms: one whose operand is a
/// register and one whose operand is a register rotated by 8/16/24.
/// FIXME: Remove the 'r' variant. Its rot_imm is zero.
class AI_ext_rrot<bits<8> opcod, string opc, PatFrag opnode>
: AExtI<opcod, (outs GPRnopc:$Rd), (ins GPRnopc:$Rm, rot_imm:$rot),
IIC_iEXTr, opc, "\t$Rd, $Rm$rot",
[(set GPRnopc:$Rd, (opnode (rotr GPRnopc:$Rm, rot_imm:$rot)))]>,
Requires<[IsARM, HasV6]>, Sched<[WriteALUsi]> {
bits<4> Rd;
bits<4> Rm;
bits<2> rot;
let Inst{19-16} = 0b1111;
let Inst{15-12} = Rd;
let Inst{11-10} = rot;
let Inst{3-0} = Rm;
}
class AI_ext_rrot_np<bits<8> opcod, string opc>
: AExtI<opcod, (outs GPRnopc:$Rd), (ins GPRnopc:$Rm, rot_imm:$rot),
IIC_iEXTr, opc, "\t$Rd, $Rm$rot", []>,
Requires<[IsARM, HasV6]>, Sched<[WriteALUsi]> {
bits<2> rot;
let Inst{19-16} = 0b1111;
let Inst{11-10} = rot;
}
/// AI_exta_rrot - A binary operation with two forms: one whose operand is a
/// register and one whose operand is a register rotated by 8/16/24.
class AI_exta_rrot<bits<8> opcod, string opc, PatFrag opnode>
: AExtI<opcod, (outs GPRnopc:$Rd), (ins GPR:$Rn, GPRnopc:$Rm, rot_imm:$rot),
IIC_iEXTAr, opc, "\t$Rd, $Rn, $Rm$rot",
[(set GPRnopc:$Rd, (opnode GPR:$Rn,
(rotr GPRnopc:$Rm, rot_imm:$rot)))]>,
Requires<[IsARM, HasV6]>, Sched<[WriteALUsr]> {
bits<4> Rd;
bits<4> Rm;
bits<4> Rn;
bits<2> rot;
let Inst{19-16} = Rn;
let Inst{15-12} = Rd;
let Inst{11-10} = rot;
let Inst{9-4} = 0b000111;
let Inst{3-0} = Rm;
}
class AI_exta_rrot_np<bits<8> opcod, string opc>
: AExtI<opcod, (outs GPRnopc:$Rd), (ins GPR:$Rn, GPRnopc:$Rm, rot_imm:$rot),
IIC_iEXTAr, opc, "\t$Rd, $Rn, $Rm$rot", []>,
Requires<[IsARM, HasV6]>, Sched<[WriteALUsr]> {
bits<4> Rn;
bits<2> rot;
let Inst{19-16} = Rn;
let Inst{11-10} = rot;
}
/// AI1_adde_sube_irs - Define instructions and patterns for adde and sube.
let TwoOperandAliasConstraint = "$Rn = $Rd" in
multiclass AI1_adde_sube_irs<bits<4> opcod, string opc, PatFrag opnode,
bit Commutable = 0> {
let hasPostISelHook = 1, Defs = [CPSR], Uses = [CPSR] in {
def ri : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, mod_imm:$imm),
DPFrm, IIC_iALUi, opc, "\t$Rd, $Rn, $imm",
[(set GPR:$Rd, CPSR, (opnode GPR:$Rn, mod_imm:$imm, CPSR))]>,
Requires<[IsARM]>,
Sched<[WriteALU, ReadALU]> {
bits<4> Rd;
bits<4> Rn;
bits<12> imm;
let Inst{25} = 1;
let Inst{15-12} = Rd;
let Inst{19-16} = Rn;
let Inst{11-0} = imm;
}
def rr : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
DPFrm, IIC_iALUr, opc, "\t$Rd, $Rn, $Rm",
[(set GPR:$Rd, CPSR, (opnode GPR:$Rn, GPR:$Rm, CPSR))]>,
Requires<[IsARM]>,
Sched<[WriteALU, ReadALU, ReadALU]> {
bits<4> Rd;
bits<4> Rn;
bits<4> Rm;
let Inst{11-4} = 0b00000000;
let Inst{25} = 0;
let isCommutable = Commutable;
let Inst{3-0} = Rm;
let Inst{15-12} = Rd;
let Inst{19-16} = Rn;
}
def rsi : AsI1<opcod, (outs GPR:$Rd),
(ins GPR:$Rn, so_reg_imm:$shift),
DPSoRegImmFrm, IIC_iALUsr, opc, "\t$Rd, $Rn, $shift",
[(set GPR:$Rd, CPSR, (opnode GPR:$Rn, so_reg_imm:$shift, CPSR))]>,
Requires<[IsARM]>,
Sched<[WriteALUsi, ReadALU]> {
bits<4> Rd;
bits<4> Rn;
bits<12> shift;
let Inst{25} = 0;
let Inst{19-16} = Rn;
let Inst{15-12} = Rd;
let Inst{11-5} = shift{11-5};
let Inst{4} = 0;
let Inst{3-0} = shift{3-0};
}
def rsr : AsI1<opcod, (outs GPRnopc:$Rd),
(ins GPRnopc:$Rn, so_reg_reg:$shift),
DPSoRegRegFrm, IIC_iALUsr, opc, "\t$Rd, $Rn, $shift",
[(set GPRnopc:$Rd, CPSR,
(opnode GPRnopc:$Rn, so_reg_reg:$shift, CPSR))]>,
Requires<[IsARM]>,
Sched<[WriteALUsr, ReadALUsr]> {
bits<4> Rd;
bits<4> Rn;
bits<12> shift;
let Inst{25} = 0;
let Inst{19-16} = Rn;
let Inst{15-12} = Rd;
let Inst{11-8} = shift{11-8};
let Inst{7} = 0;
let Inst{6-5} = shift{6-5};
let Inst{4} = 1;
let Inst{3-0} = shift{3-0};
}
}
}
/// AI1_rsc_irs - Define instructions and patterns for rsc
let TwoOperandAliasConstraint = "$Rn = $Rd" in
multiclass AI1_rsc_irs<bits<4> opcod, string opc, PatFrag opnode> {
let hasPostISelHook = 1, Defs = [CPSR], Uses = [CPSR] in {
def ri : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, mod_imm:$imm),
DPFrm, IIC_iALUi, opc, "\t$Rd, $Rn, $imm",
[(set GPR:$Rd, CPSR, (opnode mod_imm:$imm, GPR:$Rn, CPSR))]>,
Requires<[IsARM]>,
Sched<[WriteALU, ReadALU]> {
bits<4> Rd;
bits<4> Rn;
bits<12> imm;
let Inst{25} = 1;
let Inst{15-12} = Rd;
let Inst{19-16} = Rn;
let Inst{11-0} = imm;
}
def rr : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
DPFrm, IIC_iALUr, opc, "\t$Rd, $Rn, $Rm",
[/* pattern left blank */]>,
Sched<[WriteALU, ReadALU, ReadALU]> {
bits<4> Rd;
bits<4> Rn;
bits<4> Rm;
let Inst{11-4} = 0b00000000;
let Inst{25} = 0;
let Inst{3-0} = Rm;
let Inst{15-12} = Rd;
let Inst{19-16} = Rn;
}
def rsi : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, so_reg_imm:$shift),
DPSoRegImmFrm, IIC_iALUsr, opc, "\t$Rd, $Rn, $shift",
[(set GPR:$Rd, CPSR, (opnode so_reg_imm:$shift, GPR:$Rn, CPSR))]>,
Requires<[IsARM]>,
Sched<[WriteALUsi, ReadALU]> {
bits<4> Rd;
bits<4> Rn;
bits<12> shift;
let Inst{25} = 0;
let Inst{19-16} = Rn;
let Inst{15-12} = Rd;
let Inst{11-5} = shift{11-5};
let Inst{4} = 0;
let Inst{3-0} = shift{3-0};
}
def rsr : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, so_reg_reg:$shift),
DPSoRegRegFrm, IIC_iALUsr, opc, "\t$Rd, $Rn, $shift",
[(set GPR:$Rd, CPSR, (opnode so_reg_reg:$shift, GPR:$Rn, CPSR))]>,
Requires<[IsARM]>,
Sched<[WriteALUsr, ReadALUsr]> {
bits<4> Rd;
bits<4> Rn;
bits<12> shift;
let Inst{25} = 0;
let Inst{19-16} = Rn;
let Inst{15-12} = Rd;
let Inst{11-8} = shift{11-8};
let Inst{7} = 0;
let Inst{6-5} = shift{6-5};
let Inst{4} = 1;
let Inst{3-0} = shift{3-0};
}
}
}
let canFoldAsLoad = 1, isReMaterializable = 1 in {
multiclass AI_ldr1<bit isByte, string opc, InstrItinClass iii,
InstrItinClass iir, PatFrag opnode> {
// Note: We use the complex addrmode_imm12 rather than just an input
// GPR and a constrained immediate so that we can use this to match
// frame index references and avoid matching constant pool references.
def i12: AI2ldst<0b010, 1, isByte, (outs GPR:$Rt), (ins addrmode_imm12:$addr),
AddrMode_i12, LdFrm, iii, opc, "\t$Rt, $addr",
[(set GPR:$Rt, (opnode addrmode_imm12:$addr))]> {
bits<4> Rt;
bits<17> addr;
let Inst{23} = addr{12}; // U (add = ('U' == 1))
let Inst{19-16} = addr{16-13}; // Rn
let Inst{15-12} = Rt;
let Inst{11-0} = addr{11-0}; // imm12
}
def rs : AI2ldst<0b011, 1, isByte, (outs GPR:$Rt), (ins ldst_so_reg:$shift),
AddrModeNone, LdFrm, iir, opc, "\t$Rt, $shift",
[(set GPR:$Rt, (opnode ldst_so_reg:$shift))]> {
bits<4> Rt;
bits<17> shift;
let shift{4} = 0; // Inst{4} = 0
let Inst{23} = shift{12}; // U (add = ('U' == 1))
let Inst{19-16} = shift{16-13}; // Rn
let Inst{15-12} = Rt;
let Inst{11-0} = shift{11-0};
}
}
}
let canFoldAsLoad = 1, isReMaterializable = 1 in {
multiclass AI_ldr1nopc<bit isByte, string opc, InstrItinClass iii,
InstrItinClass iir, PatFrag opnode> {
// Note: We use the complex addrmode_imm12 rather than just an input
// GPR and a constrained immediate so that we can use this to match
// frame index references and avoid matching constant pool references.
def i12: AI2ldst<0b010, 1, isByte, (outs GPRnopc:$Rt),
(ins addrmode_imm12:$addr),
AddrMode_i12, LdFrm, iii, opc, "\t$Rt, $addr",
[(set GPRnopc:$Rt, (opnode addrmode_imm12:$addr))]> {
bits<4> Rt;
bits<17> addr;
let Inst{23} = addr{12}; // U (add = ('U' == 1))
let Inst{19-16} = addr{16-13}; // Rn
let Inst{15-12} = Rt;
let Inst{11-0} = addr{11-0}; // imm12
}
def rs : AI2ldst<0b011, 1, isByte, (outs GPRnopc:$Rt),
(ins ldst_so_reg:$shift),
AddrModeNone, LdFrm, iir, opc, "\t$Rt, $shift",
[(set GPRnopc:$Rt, (opnode ldst_so_reg:$shift))]> {
bits<4> Rt;
bits<17> shift;
let shift{4} = 0; // Inst{4} = 0
let Inst{23} = shift{12}; // U (add = ('U' == 1))
let Inst{19-16} = shift{16-13}; // Rn
let Inst{15-12} = Rt;
let Inst{11-0} = shift{11-0};
}
}
}
multiclass AI_str1<bit isByte, string opc, InstrItinClass iii,
InstrItinClass iir, PatFrag opnode> {
// Note: We use the complex addrmode_imm12 rather than just an input
// GPR and a constrained immediate so that we can use this to match
// frame index references and avoid matching constant pool references.
def i12 : AI2ldst<0b010, 0, isByte, (outs),
(ins GPR:$Rt, addrmode_imm12:$addr),
AddrMode_i12, StFrm, iii, opc, "\t$Rt, $addr",
[(opnode GPR:$Rt, addrmode_imm12:$addr)]> {
bits<4> Rt;
bits<17> addr;
let Inst{23} = addr{12}; // U (add = ('U' == 1))
let Inst{19-16} = addr{16-13}; // Rn
let Inst{15-12} = Rt;
let Inst{11-0} = addr{11-0}; // imm12
}
def rs : AI2ldst<0b011, 0, isByte, (outs), (ins GPR:$Rt, ldst_so_reg:$shift),
AddrModeNone, StFrm, iir, opc, "\t$Rt, $shift",
[(opnode GPR:$Rt, ldst_so_reg:$shift)]> {
bits<4> Rt;
bits<17> shift;
let shift{4} = 0; // Inst{4} = 0
let Inst{23} = shift{12}; // U (add = ('U' == 1))
let Inst{19-16} = shift{16-13}; // Rn
let Inst{15-12} = Rt;
let Inst{11-0} = shift{11-0};
}
}
multiclass AI_str1nopc<bit isByte, string opc, InstrItinClass iii,
InstrItinClass iir, PatFrag opnode> {
// Note: We use the complex addrmode_imm12 rather than just an input
// GPR and a constrained immediate so that we can use this to match
// frame index references and avoid matching constant pool references.
def i12 : AI2ldst<0b010, 0, isByte, (outs),
(ins GPRnopc:$Rt, addrmode_imm12:$addr),
AddrMode_i12, StFrm, iii, opc, "\t$Rt, $addr",
[(opnode GPRnopc:$Rt, addrmode_imm12:$addr)]> {
bits<4> Rt;
bits<17> addr;
let Inst{23} = addr{12}; // U (add = ('U' == 1))
let Inst{19-16} = addr{16-13}; // Rn
let Inst{15-12} = Rt;
let Inst{11-0} = addr{11-0}; // imm12
}
def rs : AI2ldst<0b011, 0, isByte, (outs),
(ins GPRnopc:$Rt, ldst_so_reg:$shift),
AddrModeNone, StFrm, iir, opc, "\t$Rt, $shift",
[(opnode GPRnopc:$Rt, ldst_so_reg:$shift)]> {
bits<4> Rt;
bits<17> shift;
let shift{4} = 0; // Inst{4} = 0
let Inst{23} = shift{12}; // U (add = ('U' == 1))
let Inst{19-16} = shift{16-13}; // Rn
let Inst{15-12} = Rt;
let Inst{11-0} = shift{11-0};
}
}
//===----------------------------------------------------------------------===//
// Instructions
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Miscellaneous Instructions.
//
/// CONSTPOOL_ENTRY - This instruction represents a floating constant pool in
/// the function. The first operand is the ID# for this instruction, the second
/// is the index into the MachineConstantPool that this is, the third is the
/// size in bytes of this constant pool entry.
let hasSideEffects = 0, isNotDuplicable = 1 in
def CONSTPOOL_ENTRY :
PseudoInst<(outs), (ins cpinst_operand:$instid, cpinst_operand:$cpidx,
i32imm:$size), NoItinerary, []>;
/// A jumptable consisting of direct 32-bit addresses of the destination basic
/// blocks (either absolute, or relative to the start of the jump-table in PIC
/// mode). Used mostly in ARM and Thumb-1 modes.
def JUMPTABLE_ADDRS :
PseudoInst<(outs), (ins cpinst_operand:$instid, cpinst_operand:$cpidx,
i32imm:$size), NoItinerary, []>;
/// A jumptable consisting of 32-bit jump instructions. Used for Thumb-2 tables
/// that cannot be optimised to use TBB or TBH.
def JUMPTABLE_INSTS :
PseudoInst<(outs), (ins cpinst_operand:$instid, cpinst_operand:$cpidx,
i32imm:$size), NoItinerary, []>;
/// A jumptable consisting of 8-bit unsigned integers representing offsets from
/// a TBB instruction.
def JUMPTABLE_TBB :
PseudoInst<(outs), (ins cpinst_operand:$instid, cpinst_operand:$cpidx,
i32imm:$size), NoItinerary, []>;
/// A jumptable consisting of 16-bit unsigned integers representing offsets from
/// a TBH instruction.
def JUMPTABLE_TBH :
PseudoInst<(outs), (ins cpinst_operand:$instid, cpinst_operand:$cpidx,
i32imm:$size), NoItinerary, []>;
// FIXME: Marking these as hasSideEffects is necessary to prevent machine DCE
// from removing one half of the matched pairs. That breaks PEI, which assumes
// these will always be in pairs, and asserts if it finds otherwise. Better way?
let Defs = [SP], Uses = [SP], hasSideEffects = 1 in {
def ADJCALLSTACKUP :
PseudoInst<(outs), (ins i32imm:$amt1, i32imm:$amt2, pred:$p), NoItinerary,
[(ARMcallseq_end timm:$amt1, timm:$amt2)]>;
def ADJCALLSTACKDOWN :
PseudoInst<(outs), (ins i32imm:$amt, pred:$p), NoItinerary,
[(ARMcallseq_start timm:$amt)]>;
}
def HINT : AI<(outs), (ins imm0_239:$imm), MiscFrm, NoItinerary,
"hint", "\t$imm", [(int_arm_hint imm0_239:$imm)]>,
Requires<[IsARM, HasV6]> {
bits<8> imm;
let Inst{27-8} = 0b00110010000011110000;
let Inst{7-0} = imm;
}
def : InstAlias<"nop$p", (HINT 0, pred:$p)>, Requires<[IsARM, HasV6K]>;
def : InstAlias<"yield$p", (HINT 1, pred:$p)>, Requires<[IsARM, HasV6K]>;
def : InstAlias<"wfe$p", (HINT 2, pred:$p)>, Requires<[IsARM, HasV6K]>;
def : InstAlias<"wfi$p", (HINT 3, pred:$p)>, Requires<[IsARM, HasV6K]>;
def : InstAlias<"sev$p", (HINT 4, pred:$p)>, Requires<[IsARM, HasV6K]>;
def : InstAlias<"sevl$p", (HINT 5, pred:$p)>, Requires<[IsARM, HasV8]>;
def SEL : AI<(outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), DPFrm, NoItinerary, "sel",
"\t$Rd, $Rn, $Rm", []>, Requires<[IsARM, HasV6]> {
bits<4> Rd;
bits<4> Rn;
bits<4> Rm;
let Inst{3-0} = Rm;
let Inst{15-12} = Rd;
let Inst{19-16} = Rn;
let Inst{27-20} = 0b01101000;
let Inst{7-4} = 0b1011;
let Inst{11-8} = 0b1111;
let Unpredictable{11-8} = 0b1111;
}
// The 16-bit operand $val can be used by a debugger to store more information
// about the breakpoint.
def BKPT : AInoP<(outs), (ins imm0_65535:$val), MiscFrm, NoItinerary,
"bkpt", "\t$val", []>, Requires<[IsARM]> {
bits<16> val;
let Inst{3-0} = val{3-0};
let Inst{19-8} = val{15-4};
let Inst{27-20} = 0b00010010;
let Inst{31-28} = 0xe; // AL
let Inst{7-4} = 0b0111;
}
// default immediate for breakpoint mnemonic
def : InstAlias<"bkpt", (BKPT 0)>, Requires<[IsARM]>;
def HLT : AInoP<(outs), (ins imm0_65535:$val), MiscFrm, NoItinerary,
"hlt", "\t$val", []>, Requires<[IsARM, HasV8]> {
bits<16> val;
let Inst{3-0} = val{3-0};
let Inst{19-8} = val{15-4};
let Inst{27-20} = 0b00010000;
let Inst{31-28} = 0xe; // AL
let Inst{7-4} = 0b0111;
}
// Change Processor State
// FIXME: We should use InstAlias to handle the optional operands.
class CPS<dag iops, string asm_ops>
: AXI<(outs), iops, MiscFrm, NoItinerary, !strconcat("cps", asm_ops),
[]>, Requires<[IsARM]> {
bits<2> imod;
bits<3> iflags;
bits<5> mode;
bit M;
let Inst{31-28} = 0b1111;
let Inst{27-20} = 0b00010000;
let Inst{19-18} = imod;
let Inst{17} = M; // Enabled if mode is set;
let Inst{16-9} = 0b00000000;
let Inst{8-6} = iflags;
let Inst{5} = 0;
let Inst{4-0} = mode;
}
let DecoderMethod = "DecodeCPSInstruction" in {
let M = 1 in
def CPS3p : CPS<(ins imod_op:$imod, iflags_op:$iflags, imm0_31:$mode),
"$imod\t$iflags, $mode">;
let mode = 0, M = 0 in
def CPS2p : CPS<(ins imod_op:$imod, iflags_op:$iflags), "$imod\t$iflags">;
let imod = 0, iflags = 0, M = 1 in
def CPS1p : CPS<(ins imm0_31:$mode), "\t$mode">;
}
// Preload signals the memory system of possible future data/instruction access.
multiclass APreLoad<bits<1> read, bits<1> data, string opc> {
def i12 : AXIM<(outs), (ins addrmode_imm12:$addr), AddrMode_i12, MiscFrm,
IIC_Preload, !strconcat(opc, "\t$addr"),
[(ARMPreload addrmode_imm12:$addr, (i32 read), (i32 data))]>,
Sched<[WritePreLd]> {
bits<4> Rt;
bits<17> addr;
let Inst{31-26} = 0b111101;
let Inst{25} = 0; // 0 for immediate form
let Inst{24} = data;
let Inst{23} = addr{12}; // U (add = ('U' == 1))
let Inst{22} = read;
let Inst{21-20} = 0b01;
let Inst{19-16} = addr{16-13}; // Rn
let Inst{15-12} = 0b1111;
let Inst{11-0} = addr{11-0}; // imm12
}
def rs : AXI<(outs), (ins ldst_so_reg:$shift), MiscFrm, IIC_Preload,
!strconcat(opc, "\t$shift"),
[(ARMPreload ldst_so_reg:$shift, (i32 read), (i32 data))]>,
Sched<[WritePreLd]> {
bits<17> shift;
let Inst{31-26} = 0b111101;
let Inst{25} = 1; // 1 for register form
let Inst{24} = data;
let Inst{23} = shift{12}; // U (add = ('U' == 1))
let Inst{22} = read;
let Inst{21-20} = 0b01;
let Inst{19-16} = shift{16-13}; // Rn
let Inst{15-12} = 0b1111;
let Inst{11-0} = shift{11-0};
let Inst{4} = 0;
}
}
defm PLD : APreLoad<1, 1, "pld">, Requires<[IsARM]>;
defm PLDW : APreLoad<0, 1, "pldw">, Requires<[IsARM,HasV7,HasMP]>;
defm PLI : APreLoad<1, 0, "pli">, Requires<[IsARM,HasV7]>;
def SETEND : AXI<(outs), (ins setend_op:$end), MiscFrm, NoItinerary,
"setend\t$end", []>, Requires<[IsARM]>, Deprecated<HasV8Ops> {
bits<1> end;
let Inst{31-10} = 0b1111000100000001000000;
let Inst{9} = end;
let Inst{8-0} = 0;
}
def DBG : AI<(outs), (ins imm0_15:$opt), MiscFrm, NoItinerary, "dbg", "\t$opt",
[(int_arm_dbg imm0_15:$opt)]>, Requires<[IsARM, HasV7]> {
bits<4> opt;
let Inst{27-4} = 0b001100100000111100001111;
let Inst{3-0} = opt;
}
// A8.8.247 UDF - Undefined (Encoding A1)
def UDF : AInoP<(outs), (ins imm0_65535:$imm16), MiscFrm, NoItinerary,
"udf", "\t$imm16", [(int_arm_undefined imm0_65535:$imm16)]> {
bits<16> imm16;
let Inst{31-28} = 0b1110; // AL
let Inst{27-25} = 0b011;
let Inst{24-20} = 0b11111;
let Inst{19-8} = imm16{15-4};
let Inst{7-4} = 0b1111;
let Inst{3-0} = imm16{3-0};
}
/*
* A5.4 Permanently UNDEFINED instructions.
*
* For most targets use UDF #65006, for which the OS will generate SIGTRAP.
* Other UDF encodings generate SIGILL.
*
* NaCl's OS instead chooses an ARM UDF encoding that's also a UDF in Thumb.
* Encoding A1:
* 1110 0111 1111 iiii iiii iiii 1111 iiii
* Encoding T1:
* 1101 1110 iiii iiii
* It uses the following encoding:
* 1110 0111 1111 1110 1101 1110 1111 0000
* - In ARM: UDF #60896;
* - In Thumb: UDF #254 followed by a branch-to-self.
*/
let isBarrier = 1, isTerminator = 1 in
def TRAPNaCl : AXI<(outs), (ins), MiscFrm, NoItinerary,
"trap", [(trap)]>,
Requires<[IsARM,UseNaClTrap]> {
let Inst = 0xe7fedef0;
}
let isBarrier = 1, isTerminator = 1 in
def TRAP : AXI<(outs), (ins), MiscFrm, NoItinerary,
"trap", [(trap)]>,
Requires<[IsARM,DontUseNaClTrap]> {
let Inst = 0xe7ffdefe;
}
// Address computation and loads and stores in PIC mode.
let isNotDuplicable = 1 in {
def PICADD : ARMPseudoInst<(outs GPR:$dst), (ins GPR:$a, pclabel:$cp, pred:$p),
4, IIC_iALUr,
[(set GPR:$dst, (ARMpic_add GPR:$a, imm:$cp))]>,
Sched<[WriteALU, ReadALU]>;
let AddedComplexity = 10 in {
def PICLDR : ARMPseudoInst<(outs GPR:$dst), (ins addrmodepc:$addr, pred:$p),
4, IIC_iLoad_r,
[(set GPR:$dst, (load addrmodepc:$addr))]>;
def PICLDRH : ARMPseudoInst<(outs GPR:$Rt), (ins addrmodepc:$addr, pred:$p),
4, IIC_iLoad_bh_r,
[(set GPR:$Rt, (zextloadi16 addrmodepc:$addr))]>;
def PICLDRB : ARMPseudoInst<(outs GPR:$Rt), (ins addrmodepc:$addr, pred:$p),
4, IIC_iLoad_bh_r,
[(set GPR:$Rt, (zextloadi8 addrmodepc:$addr))]>;
def PICLDRSH : ARMPseudoInst<(outs GPR:$Rt), (ins addrmodepc:$addr, pred:$p),
4, IIC_iLoad_bh_r,
[(set GPR:$Rt, (sextloadi16 addrmodepc:$addr))]>;
def PICLDRSB : ARMPseudoInst<(outs GPR:$Rt), (ins addrmodepc:$addr, pred:$p),
4, IIC_iLoad_bh_r,
[(set GPR:$Rt, (sextloadi8 addrmodepc:$addr))]>;
}
let AddedComplexity = 10 in {
def PICSTR : ARMPseudoInst<(outs), (ins GPR:$src, addrmodepc:$addr, pred:$p),
4, IIC_iStore_r, [(store GPR:$src, addrmodepc:$addr)]>;
def PICSTRH : ARMPseudoInst<(outs), (ins GPR:$src, addrmodepc:$addr, pred:$p),
4, IIC_iStore_bh_r, [(truncstorei16 GPR:$src,
addrmodepc:$addr)]>;
def PICSTRB : ARMPseudoInst<(outs), (ins GPR:$src, addrmodepc:$addr, pred:$p),
4, IIC_iStore_bh_r, [(truncstorei8 GPR:$src, addrmodepc:$addr)]>;
}
} // isNotDuplicable = 1
// LEApcrel - Load a pc-relative address into a register without offending the
// assembler.
let hasSideEffects = 0, isReMaterializable = 1 in
// The 'adr' mnemonic encodes differently if the label is before or after
// the instruction. The {24-21} opcode bits are set by the fixup, as we don't
// know until then which form of the instruction will be used.
def ADR : AI1<{0,?,?,0}, (outs GPR:$Rd), (ins adrlabel:$label),
MiscFrm, IIC_iALUi, "adr", "\t$Rd, $label", []>,
Sched<[WriteALU, ReadALU]> {
bits<4> Rd;
bits<14> label;
let Inst{27-25} = 0b001;
let Inst{24} = 0;
let Inst{23-22} = label{13-12};
let Inst{21} = 0;
let Inst{20} = 0;
let Inst{19-16} = 0b1111;
let Inst{15-12} = Rd;
let Inst{11-0} = label{11-0};
}
let hasSideEffects = 1 in {
def LEApcrel : ARMPseudoInst<(outs GPR:$Rd), (ins i32imm:$label, pred:$p),
4, IIC_iALUi, []>, Sched<[WriteALU, ReadALU]>;
def LEApcrelJT : ARMPseudoInst<(outs GPR:$Rd),
(ins i32imm:$label, pred:$p),
4, IIC_iALUi, []>, Sched<[WriteALU, ReadALU]>;
}
//===----------------------------------------------------------------------===//
// Control Flow Instructions.
//
let isReturn = 1, isTerminator = 1, isBarrier = 1 in {
// ARMV4T and above
def BX_RET : AI<(outs), (ins), BrMiscFrm, IIC_Br,
"bx", "\tlr", [(ARMretflag)]>,
Requires<[IsARM, HasV4T]>, Sched<[WriteBr]> {
let Inst{27-0} = 0b0001001011111111111100011110;
}
// ARMV4 only
def MOVPCLR : AI<(outs), (ins), BrMiscFrm, IIC_Br,
"mov", "\tpc, lr", [(ARMretflag)]>,
Requires<[IsARM, NoV4T]>, Sched<[WriteBr]> {
let Inst{27-0} = 0b0001101000001111000000001110;
}
// Exception return: N.b. doesn't set CPSR as far as we're concerned (it sets
// the user-space one).
def SUBS_PC_LR : ARMPseudoInst<(outs), (ins i32imm:$offset, pred:$p),
4, IIC_Br,
[(ARMintretflag imm:$offset)]>;
}
// Indirect branches
let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in {
// ARMV4T and above
def BX : AXI<(outs), (ins GPR:$dst), BrMiscFrm, IIC_Br, "bx\t$dst",
[(brind GPR:$dst)]>,
Requires<[IsARM, HasV4T]>, Sched<[WriteBr]> {
bits<4> dst;
let Inst{31-4} = 0b1110000100101111111111110001;
let Inst{3-0} = dst;
}
def BX_pred : AI<(outs), (ins GPR:$dst), BrMiscFrm, IIC_Br,
"bx", "\t$dst", [/* pattern left blank */]>,
Requires<[IsARM, HasV4T]>, Sched<[WriteBr]> {
bits<4> dst;
let Inst{27-4} = 0b000100101111111111110001;
let Inst{3-0} = dst;
}
}
// SP is marked as a use to prevent stack-pointer assignments that appear
// immediately before calls from potentially appearing dead.
let isCall = 1,
// FIXME: Do we really need a non-predicated version? If so, it should
// at least be a pseudo instruction expanding to the predicated version
// at MC lowering time.
Defs = [LR], Uses = [SP] in {
def BL : ABXI<0b1011, (outs), (ins bl_target:$func),
IIC_Br, "bl\t$func",
[(ARMcall tglobaladdr:$func)]>,
Requires<[IsARM]>, Sched<[WriteBrL]> {
let Inst{31-28} = 0b1110;
bits<24> func;
let Inst{23-0} = func;
let DecoderMethod = "DecodeBranchImmInstruction";
}
def BL_pred : ABI<0b1011, (outs), (ins bl_target:$func),
IIC_Br, "bl", "\t$func",
[(ARMcall_pred tglobaladdr:$func)]>,
Requires<[IsARM]>, Sched<[WriteBrL]> {
bits<24> func;
let Inst{23-0} = func;
let DecoderMethod = "DecodeBranchImmInstruction";
}
// ARMv5T and above
def BLX : AXI<(outs), (ins GPR:$func), BrMiscFrm,
IIC_Br, "blx\t$func",
[(ARMcall GPR:$func)]>,
Requires<[IsARM, HasV5T]>, Sched<[WriteBrL]> {
bits<4> func;
let Inst{31-4} = 0b1110000100101111111111110011;
let Inst{3-0} = func;
}
def BLX_pred : AI<(outs), (ins GPR:$func), BrMiscFrm,
IIC_Br, "blx", "\t$func",
[(ARMcall_pred GPR:$func)]>,
Requires<[IsARM, HasV5T]>, Sched<[WriteBrL]> {
bits<4> func;
let Inst{27-4} = 0b000100101111111111110011;
let Inst{3-0} = func;
}
// ARMv4T
// Note: Restrict $func to the tGPR regclass to prevent it being in LR.
def BX_CALL : ARMPseudoInst<(outs), (ins tGPR:$func),
8, IIC_Br, [(ARMcall_nolink tGPR:$func)]>,
Requires<[IsARM, HasV4T]>, Sched<[WriteBr]>;
// ARMv4
def BMOVPCRX_CALL : ARMPseudoInst<(outs), (ins tGPR:$func),
8, IIC_Br, [(ARMcall_nolink tGPR:$func)]>,
Requires<[IsARM, NoV4T]>, Sched<[WriteBr]>;
// mov lr, pc; b if callee is marked noreturn to avoid confusing the
// return stack predictor.
def BMOVPCB_CALL : ARMPseudoInst<(outs), (ins bl_target:$func),
8, IIC_Br, [(ARMcall_nolink tglobaladdr:$func)]>,
Requires<[IsARM]>, Sched<[WriteBr]>;
}
let isBranch = 1, isTerminator = 1 in {
// FIXME: should be able to write a pattern for ARMBrcond, but can't use
// a two-value operand where a dag node expects two operands. :(
def Bcc : ABI<0b1010, (outs), (ins br_target:$target),
IIC_Br, "b", "\t$target",
[/*(ARMbrcond bb:$target, imm:$cc, CCR:$ccr)*/]>,
Sched<[WriteBr]> {
bits<24> target;
let Inst{23-0} = target;
let DecoderMethod = "DecodeBranchImmInstruction";
}
let isBarrier = 1 in {
// B is "predicable" since it's just a Bcc with an 'always' condition.
let isPredicable = 1 in
// FIXME: We shouldn't need this pseudo at all. Just using Bcc directly
// should be sufficient.
// FIXME: Is B really a Barrier? That doesn't seem right.
def B : ARMPseudoExpand<(outs), (ins br_target:$target), 4, IIC_Br,
[(br bb:$target)], (Bcc br_target:$target, (ops 14, zero_reg))>,
Sched<[WriteBr]>;
let Size = 4, isNotDuplicable = 1, isIndirectBranch = 1 in {
def BR_JTr : ARMPseudoInst<(outs),
(ins GPR:$target, i32imm:$jt),
0, IIC_Br,
[(ARMbrjt GPR:$target, tjumptable:$jt)]>,
Sched<[WriteBr]>;
// FIXME: This shouldn't use the generic "addrmode2," but rather be split
// into i12 and rs suffixed versions.
def BR_JTm : ARMPseudoInst<(outs),
(ins addrmode2:$target, i32imm:$jt),
0, IIC_Br,
[(ARMbrjt (i32 (load addrmode2:$target)),
tjumptable:$jt)]>, Sched<[WriteBrTbl]>;
def BR_JTadd : ARMPseudoInst<(outs),
(ins GPR:$target, GPR:$idx, i32imm:$jt),
0, IIC_Br,
[(ARMbrjt (add GPR:$target, GPR:$idx), tjumptable:$jt)]>,
Sched<[WriteBrTbl]>;
} // isNotDuplicable = 1, isIndirectBranch = 1
} // isBarrier = 1
}
// BLX (immediate)
def BLXi : AXI<(outs), (ins blx_target:$target), BrMiscFrm, NoItinerary,
"blx\t$target", []>,
Requires<[IsARM, HasV5T]>, Sched<[WriteBrL]> {
let Inst{31-25} = 0b1111101;
bits<25> target;
let Inst{23-0} = target{24-1};
let Inst{24} = target{0};
let isCall = 1;
}
// Branch and Exchange Jazelle
def BXJ : ABI<0b0001, (outs), (ins GPR:$func), NoItinerary, "bxj", "\t$func",
[/* pattern left blank */]>, Sched<[WriteBr]> {
bits<4> func;
let Inst{23-20} = 0b0010;
let Inst{19-8} = 0xfff;
let Inst{7-4} = 0b0010;
let Inst{3-0} = func;
let isBranch = 1;
}
// Tail calls.
let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, Uses = [SP] in {
def TCRETURNdi : PseudoInst<(outs), (ins i32imm:$dst), IIC_Br, []>,
Sched<[WriteBr]>;
def TCRETURNri : PseudoInst<(outs), (ins tcGPR:$dst), IIC_Br, []>,
Sched<[WriteBr]>;
def TAILJMPd : ARMPseudoExpand<(outs), (ins br_target:$dst),
4, IIC_Br, [],
(Bcc br_target:$dst, (ops 14, zero_reg))>,
Requires<[IsARM]>, Sched<[WriteBr]>;
def TAILJMPr : ARMPseudoExpand<(outs), (ins tcGPR:$dst),
4, IIC_Br, [],
(BX GPR:$dst)>, Sched<[WriteBr]>,
Requires<[IsARM]>;
}
// Secure Monitor Call is a system instruction.
def SMC : ABI<0b0001, (outs), (ins imm0_15:$opt), NoItinerary, "smc", "\t$opt",
[]>, Requires<[IsARM, HasTrustZone]> {
bits<4> opt;
let Inst{23-4} = 0b01100000000000000111;
let Inst{3-0} = opt;
}
// Supervisor Call (Software Interrupt)
let isCall = 1, Uses = [SP] in {
def SVC : ABI<0b1111, (outs), (ins imm24b:$svc), IIC_Br, "svc", "\t$svc", []>,
Sched<[WriteBr]> {
bits<24> svc;
let Inst{23-0} = svc;
}
}
// Store Return State
class SRSI<bit wb, string asm>
: XI<(outs), (ins imm0_31:$mode), AddrModeNone, 4, IndexModeNone, BrFrm,
NoItinerary, asm, "", []> {
bits<5> mode;
let Inst{31-28} = 0b1111;
let Inst{27-25} = 0b100;
let Inst{22} = 1;
let Inst{21} = wb;
let Inst{20} = 0;
let Inst{19-16} = 0b1101; // SP
let Inst{15-5} = 0b00000101000;
let Inst{4-0} = mode;
}
def SRSDA : SRSI<0, "srsda\tsp, $mode"> {
let Inst{24-23} = 0;
}
def SRSDA_UPD : SRSI<1, "srsda\tsp!, $mode"> {
let Inst{24-23} = 0;
}
def SRSDB : SRSI<0, "srsdb\tsp, $mode"> {
let Inst{24-23} = 0b10;
}
def SRSDB_UPD : SRSI<1, "srsdb\tsp!, $mode"> {
let Inst{24-23} = 0b10;
}
def SRSIA : SRSI<0, "srsia\tsp, $mode"> {
let Inst{24-23} = 0b01;
}
def SRSIA_UPD : SRSI<1, "srsia\tsp!, $mode"> {
let Inst{24-23} = 0b01;
}
def SRSIB : SRSI<0, "srsib\tsp, $mode"> {
let Inst{24-23} = 0b11;
}
def SRSIB_UPD : SRSI<1, "srsib\tsp!, $mode"> {
let Inst{24-23} = 0b11;
}
def : ARMInstAlias<"srsda $mode", (SRSDA imm0_31:$mode)>;
def : ARMInstAlias<"srsda $mode!", (SRSDA_UPD imm0_31:$mode)>;
def : ARMInstAlias<"srsdb $mode", (SRSDB imm0_31:$mode)>;
def : ARMInstAlias<"srsdb $mode!", (SRSDB_UPD imm0_31:$mode)>;
def : ARMInstAlias<"srsia $mode", (SRSIA imm0_31:$mode)>;
def : ARMInstAlias<"srsia $mode!", (SRSIA_UPD imm0_31:$mode)>;
def : ARMInstAlias<"srsib $mode", (SRSIB imm0_31:$mode)>;
def : ARMInstAlias<"srsib $mode!", (SRSIB_UPD imm0_31:$mode)>;
// Return From Exception
class RFEI<bit wb, string asm>
: XI<(outs), (ins GPR:$Rn), AddrModeNone, 4, IndexModeNone, BrFrm,
NoItinerary, asm, "", []> {
bits<4> Rn;
let Inst{31-28} = 0b1111;
let Inst{27-25} = 0b100;
let Inst{22} = 0;
let Inst{21} = wb;
let Inst{20} = 1;
let Inst{19-16} = Rn;
let Inst{15-0} = 0xa00;
}
def RFEDA : RFEI<0, "rfeda\t$Rn"> {
let Inst{24-23} = 0;
}
def RFEDA_UPD : RFEI<1, "rfeda\t$Rn!"> {
let Inst{24-23} = 0;
}
def RFEDB : RFEI<0, "rfedb\t$Rn"> {
let Inst{24-23} = 0b10;
}
def RFEDB_UPD : RFEI<1, "rfedb\t$Rn!"> {
let Inst{24-23} = 0b10;
}
def RFEIA : RFEI<0, "rfeia\t$Rn"> {
let Inst{24-23} = 0b01;
}
def RFEIA_UPD : RFEI<1, "rfeia\t$Rn!"> {
let Inst{24-23} = 0b01;
}
def RFEIB : RFEI<0, "rfeib\t$Rn"> {
let Inst{24-23} = 0b11;
}
def RFEIB_UPD : RFEI<1, "rfeib\t$Rn!"> {
let Inst{24-23} = 0b11;
}
// Hypervisor Call is a system instruction
let isCall = 1 in {
def HVC : AInoP< (outs), (ins imm0_65535:$imm), BrFrm, NoItinerary,
"hvc", "\t$imm", []>,
Requires<[IsARM, HasVirtualization]> {
bits<16> imm;
// Even though HVC isn't predicable, it's encoding includes a condition field.
// The instruction is undefined if the condition field is 0xf otherwise it is
// unpredictable if it isn't condition AL (0xe).
let Inst{31-28} = 0b1110;
let Unpredictable{31-28} = 0b1111;
let Inst{27-24} = 0b0001;
let Inst{23-20} = 0b0100;
let Inst{19-8} = imm{15-4};
let Inst{7-4} = 0b0111;
let Inst{3-0} = imm{3-0};
}
}
// Return from exception in Hypervisor mode.
let isReturn = 1, isBarrier = 1, isTerminator = 1, Defs = [PC] in
def ERET : ABI<0b0001, (outs), (ins), NoItinerary, "eret", "", []>,
Requires<[IsARM, HasVirtualization]> {
let Inst{23-0} = 0b011000000000000001101110;
}
//===----------------------------------------------------------------------===//
// Load / Store Instructions.
//
// Load
defm LDR : AI_ldr1<0, "ldr", IIC_iLoad_r, IIC_iLoad_si,
UnOpFrag<(load node:$Src)>>;
defm LDRB : AI_ldr1nopc<1, "ldrb", IIC_iLoad_bh_r, IIC_iLoad_bh_si,
UnOpFrag<(zextloadi8 node:$Src)>>;
defm STR : AI_str1<0, "str", IIC_iStore_r, IIC_iStore_si,
BinOpFrag<(store node:$LHS, node:$RHS)>>;
defm STRB : AI_str1nopc<1, "strb", IIC_iStore_bh_r, IIC_iStore_bh_si,
BinOpFrag<(truncstorei8 node:$LHS, node:$RHS)>>;
// Special LDR for loads from non-pc-relative constpools.
let canFoldAsLoad = 1, mayLoad = 1, hasSideEffects = 0,
isReMaterializable = 1, isCodeGenOnly = 1 in
def LDRcp : AI2ldst<0b010, 1, 0, (outs GPR:$Rt), (ins addrmode_imm12:$addr),
AddrMode_i12, LdFrm, IIC_iLoad_r, "ldr", "\t$Rt, $addr",
[]> {
bits<4> Rt;
bits<17> addr;
let Inst{23} = addr{12}; // U (add = ('U' == 1))
let Inst{19-16} = 0b1111;
let Inst{15-12} = Rt;
let Inst{11-0} = addr{11-0}; // imm12
}
// Loads with zero extension
def LDRH : AI3ld<0b1011, 1, (outs GPR:$Rt), (ins addrmode3:$addr), LdMiscFrm,
IIC_iLoad_bh_r, "ldrh", "\t$Rt, $addr",
[(set GPR:$Rt, (zextloadi16 addrmode3:$addr))]>;
// Loads with sign extension
def LDRSH : AI3ld<0b1111, 1, (outs GPR:$Rt), (ins addrmode3:$addr), LdMiscFrm,
IIC_iLoad_bh_r, "ldrsh", "\t$Rt, $addr",
[(set GPR:$Rt, (sextloadi16 addrmode3:$addr))]>;
def LDRSB : AI3ld<0b1101, 1, (outs GPR:$Rt), (ins addrmode3:$addr), LdMiscFrm,
IIC_iLoad_bh_r, "ldrsb", "\t$Rt, $addr",
[(set GPR:$Rt, (sextloadi8 addrmode3:$addr))]>;
let mayLoad = 1, hasSideEffects = 0, hasExtraDefRegAllocReq = 1 in {
// Load doubleword
def LDRD : AI3ld<0b1101, 0, (outs GPR:$Rt, GPR:$Rt2), (ins addrmode3:$addr),
LdMiscFrm, IIC_iLoad_d_r, "ldrd", "\t$Rt, $Rt2, $addr", []>,
Requires<[IsARM, HasV5TE]>;
}
def LDA : AIldracq<0b00, (outs GPR:$Rt), (ins addr_offset_none:$addr),
NoItinerary, "lda", "\t$Rt, $addr", []>;
def LDAB : AIldracq<0b10, (outs GPR:$Rt), (ins addr_offset_none:$addr),
NoItinerary, "ldab", "\t$Rt, $addr", []>;
def LDAH : AIldracq<0b11, (outs GPR:$Rt), (ins addr_offset_none:$addr),
NoItinerary, "ldah", "\t$Rt, $addr", []>;
// Indexed loads
multiclass AI2_ldridx<bit isByte, string opc,
InstrItinClass iii, InstrItinClass iir> {
def _PRE_IMM : AI2ldstidx<1, isByte, 1, (outs GPR:$Rt, GPR:$Rn_wb),
(ins addrmode_imm12_pre:$addr), IndexModePre, LdFrm, iii,
opc, "\t$Rt, $addr!", "$addr.base = $Rn_wb", []> {
bits<17> addr;
let Inst{25} = 0;
let Inst{23} = addr{12};
let Inst{19-16} = addr{16-13};
let Inst{11-0} = addr{11-0};
let DecoderMethod = "DecodeLDRPreImm";
}
def _PRE_REG : AI2ldstidx<1, isByte, 1, (outs GPR:$Rt, GPR:$Rn_wb),
(ins ldst_so_reg:$addr), IndexModePre, LdFrm, iir,
opc, "\t$Rt, $addr!", "$addr.base = $Rn_wb", []> {
bits<17> addr;
let Inst{25} = 1;
let Inst{23} = addr{12};
let Inst{19-16} = addr{16-13};
let Inst{11-0} = addr{11-0};
let Inst{4} = 0;
let DecoderMethod = "DecodeLDRPreReg";
}
def _POST_REG : AI2ldstidx<1, isByte, 0, (outs GPR:$Rt, GPR:$Rn_wb),
(ins addr_offset_none:$addr, am2offset_reg:$offset),
IndexModePost, LdFrm, iir,
opc, "\t$Rt, $addr, $offset",
"$addr.base = $Rn_wb", []> {
// {12} isAdd
// {11-0} imm12/Rm
bits<14> offset;
bits<4> addr;
let Inst{25} = 1;
let Inst{23} = offset{12};
let Inst{19-16} = addr;
let Inst{11-0} = offset{11-0};
let Inst{4} = 0;
let DecoderMethod = "DecodeAddrMode2IdxInstruction";
}
def _POST_IMM : AI2ldstidx<1, isByte, 0, (outs GPR:$Rt, GPR:$Rn_wb),
(ins addr_offset_none:$addr, am2offset_imm:$offset),
IndexModePost, LdFrm, iii,
opc, "\t$Rt, $addr, $offset",
"$addr.base = $Rn_wb", []> {
// {12} isAdd
// {11-0} imm12/Rm
bits<14> offset;
bits<4> addr;
let Inst{25} = 0;
let Inst{23} = offset{12};
let Inst{19-16} = addr;
let Inst{11-0} = offset{11-0};
let DecoderMethod = "DecodeAddrMode2IdxInstruction";
}
}
let mayLoad = 1, hasSideEffects = 0 in {
// FIXME: for LDR_PRE_REG etc. the itineray should be either IIC_iLoad_ru or
// IIC_iLoad_siu depending on whether it the offset register is shifted.
defm LDR : AI2_ldridx<0, "ldr", IIC_iLoad_iu, IIC_iLoad_ru>;
defm LDRB : AI2_ldridx<1, "ldrb", IIC_iLoad_bh_iu, IIC_iLoad_bh_ru>;
}
multiclass AI3_ldridx<bits<4> op, string opc, InstrItinClass itin> {
def _PRE : AI3ldstidx<op, 1, 1, (outs GPR:$Rt, GPR:$Rn_wb),
(ins addrmode3_pre:$addr), IndexModePre,
LdMiscFrm, itin,
opc, "\t$Rt, $addr!", "$addr.base = $Rn_wb", []> {
bits<14> addr;
let Inst{23} = addr{8}; // U bit
let Inst{22} = addr{13}; // 1 == imm8, 0 == Rm
let Inst{19-16} = addr{12-9}; // Rn
let Inst{11-8} = addr{7-4}; // imm7_4/zero
let Inst{3-0} = addr{3-0}; // imm3_0/Rm
let DecoderMethod = "DecodeAddrMode3Instruction";
}
def _POST : AI3ldstidx<op, 1, 0, (outs GPR:$Rt, GPR:$Rn_wb),
(ins addr_offset_none:$addr, am3offset:$offset),
IndexModePost, LdMiscFrm, itin,
opc, "\t$Rt, $addr, $offset", "$addr.base = $Rn_wb",
[]> {
bits<10> offset;
bits<4> addr;
let Inst{23} = offset{8}; // U bit
let Inst{22} = offset{9}; // 1 == imm8, 0 == Rm
let Inst{19-16} = addr;
let Inst{11-8} = offset{7-4}; // imm7_4/zero
let Inst{3-0} = offset{3-0}; // imm3_0/Rm
let DecoderMethod = "DecodeAddrMode3Instruction";
}
}
let mayLoad = 1, hasSideEffects = 0 in {
defm LDRH : AI3_ldridx<0b1011, "ldrh", IIC_iLoad_bh_ru>;
defm LDRSH : AI3_ldridx<0b1111, "ldrsh", IIC_iLoad_bh_ru>;
defm LDRSB : AI3_ldridx<0b1101, "ldrsb", IIC_iLoad_bh_ru>;
let hasExtraDefRegAllocReq = 1 in {
def LDRD_PRE : AI3ldstidx<0b1101, 0, 1, (outs GPR:$Rt, GPR:$Rt2, GPR:$Rn_wb),
(ins addrmode3_pre:$addr), IndexModePre,
LdMiscFrm, IIC_iLoad_d_ru,
"ldrd", "\t$Rt, $Rt2, $addr!",
"$addr.base = $Rn_wb", []> {
bits<14> addr;
let Inst{23} = addr{8}; // U bit
let Inst{22} = addr{13}; // 1 == imm8, 0 == Rm
let Inst{19-16} = addr{12-9}; // Rn
let Inst{11-8} = addr{7-4}; // imm7_4/zero
let Inst{3-0} = addr{3-0}; // imm3_0/Rm
let DecoderMethod = "DecodeAddrMode3Instruction";
}
def LDRD_POST: AI3ldstidx<0b1101, 0, 0, (outs GPR:$Rt, GPR:$Rt2, GPR:$Rn_wb),
(ins addr_offset_none:$addr, am3offset:$offset),
IndexModePost, LdMiscFrm, IIC_iLoad_d_ru,
"ldrd", "\t$Rt, $Rt2, $addr, $offset",
"$addr.base = $Rn_wb", []> {
bits<10> offset;
bits<4> addr;
let Inst{23} = offset{8}; // U bit
let Inst{22} = offset{9}; // 1 == imm8, 0 == Rm
let Inst{19-16} = addr;
let Inst{11-8} = offset{7-4}; // imm7_4/zero
let Inst{3-0} = offset{3-0}; // imm3_0/Rm
let DecoderMethod = "DecodeAddrMode3Instruction";
}
} // hasExtraDefRegAllocReq = 1
} // mayLoad = 1, hasSideEffects = 0
// LDRT, LDRBT, LDRSBT, LDRHT, LDRSHT.
let mayLoad = 1, hasSideEffects = 0 in {
def LDRT_POST_REG : AI2ldstidx<1, 0, 0, (outs GPR:$Rt, GPR:$Rn_wb),
(ins addr_offset_none:$addr, am2offset_reg:$offset),
IndexModePost, LdFrm, IIC_iLoad_ru,
"ldrt", "\t$Rt, $addr, $offset",
"$addr.base = $Rn_wb", []> {
// {12} isAdd
// {11-0} imm12/Rm
bits<14> offset;
bits<4> addr;
let Inst{25} = 1;
let Inst{23} = offset{12};
let Inst{21} = 1; // overwrite
let Inst{19-16} = addr;
let Inst{11-5} = offset{11-5};
let Inst{4} = 0;
let Inst{3-0} = offset{3-0};
let DecoderMethod = "DecodeAddrMode2IdxInstruction";
}
def LDRT_POST_IMM
: AI2ldstidx<1, 0, 0, (outs GPR:$Rt, GPR:$Rn_wb),
(ins addr_offset_none:$addr, am2offset_imm:$offset),
IndexModePost, LdFrm, IIC_iLoad_ru,
"ldrt", "\t$Rt, $addr, $offset", "$addr.base = $Rn_wb", []> {
// {12} isAdd
// {11-0} imm12/Rm
bits<14> offset;
bits<4> addr;
let Inst{25} = 0;
let Inst{23} = offset{12};
let Inst{21} = 1; // overwrite
let Inst{19-16} = addr;
let Inst{11-0} = offset{11-0};
let DecoderMethod = "DecodeAddrMode2IdxInstruction";
}
def LDRBT_POST_REG : AI2ldstidx<1, 1, 0, (outs GPR:$Rt, GPR:$Rn_wb),
(ins addr_offset_none:$addr, am2offset_reg:$offset),
IndexModePost, LdFrm, IIC_iLoad_bh_ru,
"ldrbt", "\t$Rt, $addr, $offset",
"$addr.base = $Rn_wb", []> {
// {12} isAdd
// {11-0} imm12/Rm
bits<14> offset;
bits<4> addr;
let Inst{25} = 1;
let Inst{23} = offset{12};
let Inst{21} = 1; // overwrite
let Inst{19-16} = addr;
let Inst{11-5} = offset{11-5};
let Inst{4} = 0;
let Inst{3-0} = offset{3-0};
let DecoderMethod = "DecodeAddrMode2IdxInstruction";
}
def LDRBT_POST_IMM
: AI2ldstidx<1, 1, 0, (outs GPR:$Rt, GPR:$Rn_wb),
(ins addr_offset_none:$addr, am2offset_imm:$offset),
IndexModePost, LdFrm, IIC_iLoad_bh_ru,
"ldrbt", "\t$Rt, $addr, $offset", "$addr.base = $Rn_wb", []> {
// {12} isAdd
// {11-0} imm12/Rm
bits<14> offset;
bits<4> addr;
let Inst{25} = 0;
let Inst{23} = offset{12};
let Inst{21} = 1; // overwrite
let Inst{19-16} = addr;
let Inst{11-0} = offset{11-0};
let DecoderMethod = "DecodeAddrMode2IdxInstruction";
}
multiclass AI3ldrT<bits<4> op, string opc> {
def i : AI3ldstidxT<op, 1, (outs GPR:$Rt, GPR:$base_wb),
(ins addr_offset_none:$addr, postidx_imm8:$offset),
IndexModePost, LdMiscFrm, IIC_iLoad_bh_ru, opc,
"\t$Rt, $addr, $offset", "$addr.base = $base_wb", []> {
bits<9> offset;
let Inst{23} = offset{8};
let Inst{22} = 1;
let Inst{11-8} = offset{7-4};
let Inst{3-0} = offset{3-0};
}
def r : AI3ldstidxT<op, 1, (outs GPRnopc:$Rt, GPRnopc:$base_wb),
(ins addr_offset_none:$addr, postidx_reg:$Rm),
IndexModePost, LdMiscFrm, IIC_iLoad_bh_ru, opc,
"\t$Rt, $addr, $Rm", "$addr.base = $base_wb", []> {
bits<5> Rm;
let Inst{23} = Rm{4};
let Inst{22} = 0;
let Inst{11-8} = 0;
let Unpredictable{11-8} = 0b1111;
let Inst{3-0} = Rm{3-0};
let DecoderMethod = "DecodeLDR";
}
}
defm LDRSBT : AI3ldrT<0b1101, "ldrsbt">;
defm LDRHT : AI3ldrT<0b1011, "ldrht">;
defm LDRSHT : AI3ldrT<0b1111, "ldrsht">;
}
def LDRT_POST
: ARMAsmPseudo<"ldrt${q} $Rt, $addr", (ins addr_offset_none:$addr, pred:$q),
(outs GPR:$Rt)>;
def LDRBT_POST
: ARMAsmPseudo<"ldrbt${q} $Rt, $addr", (ins addr_offset_none:$addr, pred:$q),
(outs GPR:$Rt)>;
// Store
// Stores with truncate
def STRH : AI3str<0b1011, (outs), (ins GPR:$Rt, addrmode3:$addr), StMiscFrm,
IIC_iStore_bh_r, "strh", "\t$Rt, $addr",
[(truncstorei16 GPR:$Rt, addrmode3:$addr)]>;
// Store doubleword
let mayStore = 1, hasSideEffects = 0, hasExtraSrcRegAllocReq = 1 in {
def STRD : AI3str<0b1111, (outs), (ins GPR:$Rt, GPR:$Rt2, addrmode3:$addr),
StMiscFrm, IIC_iStore_d_r, "strd", "\t$Rt, $Rt2, $addr", []>,
Requires<[IsARM, HasV5TE]> {
let Inst{21} = 0;
}
}
// Indexed stores
multiclass AI2_stridx<bit isByte, string opc,
InstrItinClass iii, InstrItinClass iir> {
def _PRE_IMM : AI2ldstidx<0, isByte, 1, (outs GPR:$Rn_wb),
(ins GPR:$Rt, addrmode_imm12_pre:$addr), IndexModePre,
StFrm, iii,
opc, "\t$Rt, $addr!",
"$addr.base = $Rn_wb,@earlyclobber $Rn_wb", []> {
bits<17> addr;
let Inst{25} = 0;
let Inst{23} = addr{12}; // U (add = ('U' == 1))
let Inst{19-16} = addr{16-13}; // Rn
let Inst{11-0} = addr{11-0}; // imm12
let DecoderMethod = "DecodeSTRPreImm";
}
def _PRE_REG : AI2ldstidx<0, isByte, 1, (outs GPR:$Rn_wb),
(ins GPR:$Rt, ldst_so_reg:$addr),
IndexModePre, StFrm, iir,
opc, "\t$Rt, $addr!",
"$addr.base = $Rn_wb,@earlyclobber $Rn_wb", []> {
bits<17> addr;
let Inst{25} = 1;
let Inst{23} = addr{12}; // U (add = ('U' == 1))
let Inst{19-16} = addr{16-13}; // Rn
let Inst{11-0} = addr{11-0};
let Inst{4} = 0; // Inst{4} = 0
let DecoderMethod = "DecodeSTRPreReg";
}
def _POST_REG : AI2ldstidx<0, isByte, 0, (outs GPR:$Rn_wb),
(ins GPR:$Rt, addr_offset_none:$addr, am2offset_reg:$offset),
IndexModePost, StFrm, iir,
opc, "\t$Rt, $addr, $offset",
"$addr.base = $Rn_wb,@earlyclobber $Rn_wb", []> {
// {12} isAdd
// {11-0} imm12/Rm
bits<14> offset;
bits<4> addr;
let Inst{25} = 1;
let Inst{23} = offset{12};
let Inst{19-16} = addr;
let Inst{11-0} = offset{11-0};
let Inst{4} = 0;
let DecoderMethod = "DecodeAddrMode2IdxInstruction";
}
def _POST_IMM : AI2ldstidx<0, isByte, 0, (outs GPR:$Rn_wb),
(ins GPR:$Rt, addr_offset_none:$addr, am2offset_imm:$offset),
IndexModePost, StFrm, iii,
opc, "\t$Rt, $addr, $offset",
"$addr.base = $Rn_wb,@earlyclobber $Rn_wb", []> {
// {12} isAdd
// {11-0} imm12/Rm
bits<14> offset;
bits<4> addr;
let Inst{25} = 0;
let Inst{23} = offset{12};
let Inst{19-16} = addr;
let Inst{11-0} = offset{11-0};
let DecoderMethod = "DecodeAddrMode2IdxInstruction";
}
}
let mayStore = 1, hasSideEffects = 0 in {
// FIXME: for STR_PRE_REG etc. the itineray should be either IIC_iStore_ru or
// IIC_iStore_siu depending on whether it the offset register is shifted.
defm STR : AI2_stridx<0, "str", IIC_iStore_iu, IIC_iStore_ru>;
defm STRB : AI2_stridx<1, "strb", IIC_iStore_bh_iu, IIC_iStore_bh_ru>;
}
def : ARMPat<(post_store GPR:$Rt, addr_offset_none:$addr,
am2offset_reg:$offset),
(STR_POST_REG GPR:$Rt, addr_offset_none:$addr,
am2offset_reg:$offset)>;
def : ARMPat<(post_store GPR:$Rt, addr_offset_none:$addr,
am2offset_imm:$offset),
(STR_POST_IMM GPR:$Rt, addr_offset_none:$addr,
am2offset_imm:$offset)>;
def : ARMPat<(post_truncsti8 GPR:$Rt, addr_offset_none:$addr,
am2offset_reg:$offset),
(STRB_POST_REG GPR:$Rt, addr_offset_none:$addr,
am2offset_reg:$offset)>;
def : ARMPat<(post_truncsti8 GPR:$Rt, addr_offset_none:$addr,
am2offset_imm:$offset),
(STRB_POST_IMM GPR:$Rt, addr_offset_none:$addr,
am2offset_imm:$offset)>;
// Pseudo-instructions for pattern matching the pre-indexed stores. We can't
// put the patterns on the instruction definitions directly as ISel wants
// the address base and offset to be separate operands, not a single
// complex operand like we represent the instructions themselves. The
// pseudos map between the two.
let usesCustomInserter = 1,
Constraints = "$Rn = $Rn_wb,@earlyclobber $Rn_wb" in {
def STRi_preidx: ARMPseudoInst<(outs GPR:$Rn_wb),
(ins GPR:$Rt, GPR:$Rn, am2offset_imm:$offset, pred:$p),
4, IIC_iStore_ru,
[(set GPR:$Rn_wb,
(pre_store GPR:$Rt, GPR:$Rn, am2offset_imm:$offset))]>;
def STRr_preidx: ARMPseudoInst<(outs GPR:$Rn_wb),
(ins GPR:$Rt, GPR:$Rn, am2offset_reg:$offset, pred:$p),
4, IIC_iStore_ru,
[(set GPR:$Rn_wb,
(pre_store GPR:$Rt, GPR:$Rn, am2offset_reg:$offset))]>;
def STRBi_preidx: ARMPseudoInst<(outs GPR:$Rn_wb),
(ins GPR:$Rt, GPR:$Rn, am2offset_imm:$offset, pred:$p),
4, IIC_iStore_ru,
[(set GPR:$Rn_wb,
(pre_truncsti8 GPR:$Rt, GPR:$Rn, am2offset_imm:$offset))]>;
def STRBr_preidx: ARMPseudoInst<(outs GPR:$Rn_wb),
(ins GPR:$Rt, GPR:$Rn, am2offset_reg:$offset, pred:$p),
4, IIC_iStore_ru,
[(set GPR:$Rn_wb,
(pre_truncsti8 GPR:$Rt, GPR:$Rn, am2offset_reg:$offset))]>;
def STRH_preidx: ARMPseudoInst<(outs GPR:$Rn_wb),
(ins GPR:$Rt, GPR:$Rn, am3offset:$offset, pred:$p),
4, IIC_iStore_ru,
[(set GPR:$Rn_wb,
(pre_truncsti16 GPR:$Rt, GPR:$Rn, am3offset:$offset))]>;
}
def STRH_PRE : AI3ldstidx<0b1011, 0, 1, (outs GPR:$Rn_wb),
(ins GPR:$Rt, addrmode3_pre:$addr), IndexModePre,
StMiscFrm, IIC_iStore_bh_ru,
"strh", "\t$Rt, $addr!",
"$addr.base = $Rn_wb,@earlyclobber $Rn_wb", []> {
bits<14> addr;
let Inst{23} = addr{8}; // U bit
let Inst{22} = addr{13}; // 1 == imm8, 0 == Rm
let Inst{19-16} = addr{12-9}; // Rn
let Inst{11-8} = addr{7-4}; // imm7_4/zero
let Inst{3-0} = addr{3-0}; // imm3_0/Rm
let DecoderMethod = "DecodeAddrMode3Instruction";
}
def STRH_POST : AI3ldstidx<0b1011, 0, 0, (outs GPR:$Rn_wb),
(ins GPR:$Rt, addr_offset_none:$addr, am3offset:$offset),
IndexModePost, StMiscFrm, IIC_iStore_bh_ru,
"strh", "\t$Rt, $addr, $offset",
"$addr.base = $Rn_wb,@earlyclobber $Rn_wb",
[(set GPR:$Rn_wb, (post_truncsti16 GPR:$Rt,
addr_offset_none:$addr,
am3offset:$offset))]> {
bits<10> offset;
bits<4> addr;
let Inst{23} = offset{8}; // U bit
let Inst{22} = offset{9}; // 1 == imm8, 0 == Rm
let Inst{19-16} = addr;
let Inst{11-8} = offset{7-4}; // imm7_4/zero
let Inst{3-0} = offset{3-0}; // imm3_0/Rm
let DecoderMethod = "DecodeAddrMode3Instruction";
}
let mayStore = 1, hasSideEffects = 0, hasExtraSrcRegAllocReq = 1 in {
def STRD_PRE : AI3ldstidx<0b1111, 0, 1, (outs GPR:$Rn_wb),
(ins GPR:$Rt, GPR:$Rt2, addrmode3_pre:$addr),
IndexModePre, StMiscFrm, IIC_iStore_d_ru,
"strd", "\t$Rt, $Rt2, $addr!",
"$addr.base = $Rn_wb", []> {
bits<14> addr;
let Inst{23} = addr{8}; // U bit
let Inst{22} = addr{13}; // 1 == imm8, 0 == Rm
let Inst{19-16} = addr{12-9}; // Rn
let Inst{11-8} = addr{7-4}; // imm7_4/zero
let Inst{3-0} = addr{3-0}; // imm3_0/Rm
let DecoderMethod = "DecodeAddrMode3Instruction";
}
def STRD_POST: AI3ldstidx<0b1111, 0, 0, (outs GPR:$Rn_wb),
(ins GPR:$Rt, GPR:$Rt2, addr_offset_none:$addr,
am3offset:$offset),
IndexModePost, StMiscFrm, IIC_iStore_d_ru,
"strd", "\t$Rt, $Rt2, $addr, $offset",
"$addr.base = $Rn_wb", []> {
bits<10> offset;
bits<4> addr;
let Inst{23} = offset{8}; // U bit
let Inst{22} = offset{9}; // 1 == imm8, 0 == Rm
let Inst{19-16} = addr;
let Inst{11-8} = offset{7-4}; // imm7_4/zero
let Inst{3-0} = offset{3-0}; // imm3_0/Rm
let DecoderMethod = "DecodeAddrMode3Instruction";
}
} // mayStore = 1, hasSideEffects = 0, hasExtraSrcRegAllocReq = 1
// STRT, STRBT, and STRHT
def STRBT_POST_REG : AI2ldstidx<0, 1, 0, (outs GPR:$Rn_wb),
(ins GPR:$Rt, addr_offset_none:$addr, am2offset_reg:$offset),
IndexModePost, StFrm, IIC_iStore_bh_ru,
"strbt", "\t$Rt, $addr, $offset",
"$addr.base = $Rn_wb", []> {
// {12} isAdd
// {11-0} imm12/Rm
bits<14> offset;
bits<4> addr;
let Inst{25} = 1;
let Inst{23} = offset{12};
let Inst{21} = 1; // overwrite
let Inst{19-16} = addr;
let Inst{11-5} = offset{11-5};
let Inst{4} = 0;
let Inst{3-0} = offset{3-0};
let DecoderMethod = "DecodeAddrMode2IdxInstruction";
}
def STRBT_POST_IMM
: AI2ldstidx<0, 1, 0, (outs GPR:$Rn_wb),
(ins GPR:$Rt, addr_offset_none:$addr, am2offset_imm:$offset),
IndexModePost, StFrm, IIC_iStore_bh_ru,
"strbt", "\t$Rt, $addr, $offset", "$addr.base = $Rn_wb", []> {
// {12} isAdd
// {11-0} imm12/Rm
bits<14> offset;
bits<4> addr;
let Inst{25} = 0;
let Inst{23} = offset{12};
let Inst{21} = 1; // overwrite
let Inst{19-16} = addr;
let Inst{11-0} = offset{11-0};
let DecoderMethod = "DecodeAddrMode2IdxInstruction";
}
def STRBT_POST
: ARMAsmPseudo<"strbt${q} $Rt, $addr",
(ins GPR:$Rt, addr_offset_none:$addr, pred:$q)>;
let mayStore = 1, hasSideEffects = 0 in {
def STRT_POST_REG : AI2ldstidx<0, 0, 0, (outs GPR:$Rn_wb),
(ins GPR:$Rt, addr_offset_none:$addr, am2offset_reg:$offset),
IndexModePost, StFrm, IIC_iStore_ru,
"strt", "\t$Rt, $addr, $offset",
"$addr.base = $Rn_wb", []> {
// {12} isAdd
// {11-0} imm12/Rm
bits<14> offset;
bits<4> addr;
let Inst{25} = 1;
let Inst{23} = offset{12};
let Inst{21} = 1; // overwrite
let Inst{19-16} = addr;
let Inst{11-5} = offset{11-5};
let Inst{4} = 0;
let Inst{3-0} = offset{3-0};
let DecoderMethod = "DecodeAddrMode2IdxInstruction";
}
def STRT_POST_IMM
: AI2ldstidx<0, 0, 0, (outs GPR:$Rn_wb),
(ins GPR:$Rt, addr_offset_none:$addr, am2offset_imm:$offset),
IndexModePost, StFrm, IIC_iStore_ru,
"strt", "\t$Rt, $addr, $offset", "$addr.base = $Rn_wb", []> {
// {12} isAdd
// {11-0} imm12/Rm
bits<14> offset;
bits<4> addr;
let Inst{25} = 0;
let Inst{23} = offset{12};
let Inst{21} = 1; // overwrite
let Inst{19-16} = addr;
let Inst{11-0} = offset{11-0};
let DecoderMethod = "DecodeAddrMode2IdxInstruction";
}
}
def STRT_POST
: ARMAsmPseudo<"strt${q} $Rt, $addr",
(ins GPR:$Rt, addr_offset_none:$addr, pred:$q)>;
multiclass AI3strT<bits<4> op, string opc> {
def i : AI3ldstidxT<op, 0, (outs GPR:$base_wb),
(ins GPR:$Rt, addr_offset_none:$addr, postidx_imm8:$offset),
IndexModePost, StMiscFrm, IIC_iStore_bh_ru, opc,
"\t$Rt, $addr, $offset", "$addr.base = $base_wb", []> {
bits<9> offset;
let Inst{23} = offset{8};
let Inst{22} = 1;
let Inst{11-8} = offset{7-4};
let Inst{3-0} = offset{3-0};
}
def r : AI3ldstidxT<op, 0, (outs GPR:$base_wb),
(ins GPR:$Rt, addr_offset_none:$addr, postidx_reg:$Rm),
IndexModePost, StMiscFrm, IIC_iStore_bh_ru, opc,
"\t$Rt, $addr, $Rm", "$addr.base = $base_wb", []> {
bits<5> Rm;
let Inst{23} = Rm{4};
let Inst{22} = 0;
let Inst{11-8} = 0;
let Inst{3-0} = Rm{3-0};
}
}
defm STRHT : AI3strT<0b1011, "strht">;
def STL : AIstrrel<0b00, (outs), (ins GPR:$Rt, addr_offset_none:$addr),
NoItinerary, "stl", "\t$Rt, $addr", []>;
def STLB : AIstrrel<0b10, (outs), (ins GPR:$Rt, addr_offset_none:$addr),
NoItinerary, "stlb", "\t$Rt, $addr", []>;
def STLH : AIstrrel<0b11, (outs), (ins GPR:$Rt, addr_offset_none:$addr),
NoItinerary, "stlh", "\t$Rt, $addr", []>;
//===----------------------------------------------------------------------===//
// Load / store multiple Instructions.
//
multiclass arm_ldst_mult<string asm, string sfx, bit L_bit, bit P_bit, Format f,
InstrItinClass itin, InstrItinClass itin_upd> {
// IA is the default, so no need for an explicit suffix on the
// mnemonic here. Without it is the canonical spelling.
def IA :
AXI4<(outs), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops),
IndexModeNone, f, itin,
!strconcat(asm, "${p}\t$Rn, $regs", sfx), "", []> {
let Inst{24-23} = 0b01; // Increment After
let Inst{22} = P_bit;
let Inst{21} = 0; // No writeback
let Inst{20} = L_bit;
}
def IA_UPD :
AXI4<(outs GPR:$wb), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops),
IndexModeUpd, f, itin_upd,
!strconcat(asm, "${p}\t$Rn!, $regs", sfx), "$Rn = $wb", []> {
let Inst{24-23} = 0b01; // Increment After
let Inst{22} = P_bit;
let Inst{21} = 1; // Writeback
let Inst{20} = L_bit;
let DecoderMethod = "DecodeMemMultipleWritebackInstruction";
}
def DA :
AXI4<(outs), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops),
IndexModeNone, f, itin,
!strconcat(asm, "da${p}\t$Rn, $regs", sfx), "", []> {
let Inst{24-23} = 0b00; // Decrement After
let Inst{22} = P_bit;
let Inst{21} = 0; // No writeback
let Inst{20} = L_bit;
}
def DA_UPD :
AXI4<(outs GPR:$wb), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops),
IndexModeUpd, f, itin_upd,
!strconcat(asm, "da${p}\t$Rn!, $regs", sfx), "$Rn = $wb", []> {
let Inst{24-23} = 0b00; // Decrement After
let Inst{22} = P_bit;
let Inst{21} = 1; // Writeback
let Inst{20} = L_bit;
let DecoderMethod = "DecodeMemMultipleWritebackInstruction";
}
def DB :
AXI4<(outs), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops),
IndexModeNone, f, itin,
!strconcat(asm, "db${p}\t$Rn, $regs", sfx), "", []> {
let Inst{24-23} = 0b10; // Decrement Before
let Inst{22} = P_bit;
let Inst{21} = 0; // No writeback
let Inst{20} = L_bit;
}
def DB_UPD :
AXI4<(outs GPR:$wb), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops),
IndexModeUpd, f, itin_upd,
!strconcat(asm, "db${p}\t$Rn!, $regs", sfx), "$Rn = $wb", []> {
let Inst{24-23} = 0b10; // Decrement Before
let Inst{22} = P_bit;
let Inst{21} = 1; // Writeback
let Inst{20} = L_bit;
let DecoderMethod = "DecodeMemMultipleWritebackInstruction";
}
def IB :
AXI4<(outs), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops),
IndexModeNone, f, itin,
!strconcat(asm, "ib${p}\t$Rn, $regs", sfx), "", []> {
let Inst{24-23} = 0b11; // Increment Before
let Inst{22} = P_bit;
let Inst{21} = 0; // No writeback
let Inst{20} = L_bit;
}
def IB_UPD :
AXI4<(outs GPR:$wb), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops),
IndexModeUpd, f, itin_upd,
!strconcat(asm, "ib${p}\t$Rn!, $regs", sfx), "$Rn = $wb", []> {
let Inst{24-23} = 0b11; // Increment Before
let Inst{22} = P_bit;
let Inst{21} = 1; // Writeback
let Inst{20} = L_bit;
let DecoderMethod = "DecodeMemMultipleWritebackInstruction";
}
}
let hasSideEffects = 0 in {
let mayLoad = 1, hasExtraDefRegAllocReq = 1 in
defm LDM : arm_ldst_mult<"ldm", "", 1, 0, LdStMulFrm, IIC_iLoad_m,
IIC_iLoad_mu>, ComplexDeprecationPredicate<"ARMLoad">;
let mayStore = 1, hasExtraSrcRegAllocReq = 1 in
defm STM : arm_ldst_mult<"stm", "", 0, 0, LdStMulFrm, IIC_iStore_m,
IIC_iStore_mu>,
ComplexDeprecationPredicate<"ARMStore">;
} // hasSideEffects
// FIXME: remove when we have a way to marking a MI with these properties.
// FIXME: Should pc be an implicit operand like PICADD, etc?
let isReturn = 1, isTerminator = 1, isBarrier = 1, mayLoad = 1,
hasExtraDefRegAllocReq = 1, isCodeGenOnly = 1 in
def LDMIA_RET : ARMPseudoExpand<(outs GPR:$wb), (ins GPR:$Rn, pred:$p,
reglist:$regs, variable_ops),
4, IIC_iLoad_mBr, [],
(LDMIA_UPD GPR:$wb, GPR:$Rn, pred:$p, reglist:$regs)>,
RegConstraint<"$Rn = $wb">;
let mayLoad = 1, hasExtraDefRegAllocReq = 1 in
defm sysLDM : arm_ldst_mult<"ldm", " ^", 1, 1, LdStMulFrm, IIC_iLoad_m,
IIC_iLoad_mu>;
let mayStore = 1, hasExtraSrcRegAllocReq = 1 in
defm sysSTM : arm_ldst_mult<"stm", " ^", 0, 1, LdStMulFrm, IIC_iStore_m,
IIC_iStore_mu>;
//===----------------------------------------------------------------------===//
// Move Instructions.
//
let hasSideEffects = 0 in
def MOVr : AsI1<0b1101, (outs GPR:$Rd), (ins GPR:$Rm), DPFrm, IIC_iMOVr,
"mov", "\t$Rd, $Rm", []>, UnaryDP, Sched<[WriteALU]> {
bits<4> Rd;
bits<4> Rm;
let Inst{19-16} = 0b0000;
let Inst{11-4} = 0b00000000;
let Inst{25} = 0;
let Inst{3-0} = Rm;
let Inst{15-12} = Rd;
}
// A version for the smaller set of tail call registers.
let hasSideEffects = 0 in
def MOVr_TC : AsI1<0b1101, (outs tcGPR:$Rd), (ins tcGPR:$Rm), DPFrm,
IIC_iMOVr, "mov", "\t$Rd, $Rm", []>, UnaryDP, Sched<[WriteALU]> {
bits<4> Rd;
bits<4> Rm;
let Inst{11-4} = 0b00000000;
let Inst{25} = 0;
let Inst{3-0} = Rm;
let Inst{15-12} = Rd;
}
def MOVsr : AsI1<0b1101, (outs GPRnopc:$Rd), (ins shift_so_reg_reg:$src),
DPSoRegRegFrm, IIC_iMOVsr,
"mov", "\t$Rd, $src",
[(set GPRnopc:$Rd, shift_so_reg_reg:$src)]>, UnaryDP,
Sched<[WriteALU]> {
bits<4> Rd;
bits<12> src;
let Inst{15-12} = Rd;
let Inst{19-16} = 0b0000;
let Inst{11-8} = src{11-8};
let Inst{7} = 0;
let Inst{6-5} = src{6-5};
let Inst{4} = 1;
let Inst{3-0} = src{3-0};
let Inst{25} = 0;
}
def MOVsi : AsI1<0b1101, (outs GPR:$Rd), (ins shift_so_reg_imm:$src),
DPSoRegImmFrm, IIC_iMOVsr,
"mov", "\t$Rd, $src", [(set GPR:$Rd, shift_so_reg_imm:$src)]>,
UnaryDP, Sched<[WriteALU]> {
bits<4> Rd;
bits<12> src;
let Inst{15-12} = Rd;
let Inst{19-16} = 0b0000;
let Inst{11-5} = src{11-5};
let Inst{4} = 0;
let Inst{3-0} = src{3-0};
let Inst{25} = 0;
}
let isReMaterializable = 1, isAsCheapAsAMove = 1, isMoveImm = 1 in
def MOVi : AsI1<0b1101, (outs GPR:$Rd), (ins mod_imm:$imm), DPFrm, IIC_iMOVi,
"mov", "\t$Rd, $imm", [(set GPR:$Rd, mod_imm:$imm)]>, UnaryDP,
Sched<[WriteALU]> {
bits<4> Rd;
bits<12> imm;
let Inst{25} = 1;
let Inst{15-12} = Rd;
let Inst{19-16} = 0b0000;
let Inst{11-0} = imm;
}
let isReMaterializable = 1, isAsCheapAsAMove = 1, isMoveImm = 1 in
def MOVi16 : AI1<0b1000, (outs GPR:$Rd), (ins imm0_65535_expr:$imm),
DPFrm, IIC_iMOVi,
"movw", "\t$Rd, $imm",
[(set GPR:$Rd, imm0_65535:$imm)]>,
Requires<[IsARM, HasV6T2]>, UnaryDP, Sched<[WriteALU]> {
bits<4> Rd;
bits<16> imm;
let Inst{15-12} = Rd;
let Inst{11-0} = imm{11-0};
let Inst{19-16} = imm{15-12};
let Inst{20} = 0;
let Inst{25} = 1;
let DecoderMethod = "DecodeArmMOVTWInstruction";
}
def : InstAlias<"mov${p} $Rd, $imm",
(MOVi16 GPR:$Rd, imm0_65535_expr:$imm, pred:$p)>,
Requires<[IsARM]>;
def MOVi16_ga_pcrel : PseudoInst<(outs GPR:$Rd),
(ins i32imm:$addr, pclabel:$id), IIC_iMOVi, []>,
Sched<[WriteALU]>;
let Constraints = "$src = $Rd" in {
def MOVTi16 : AI1<0b1010, (outs GPRnopc:$Rd),
(ins GPR:$src, imm0_65535_expr:$imm),
DPFrm, IIC_iMOVi,
"movt", "\t$Rd, $imm",
[(set GPRnopc:$Rd,
(or (and GPR:$src, 0xffff),
lo16AllZero:$imm))]>, UnaryDP,
Requires<[IsARM, HasV6T2]>, Sched<[WriteALU]> {
bits<4> Rd;
bits<16> imm;
let Inst{15-12} = Rd;
let Inst{11-0} = imm{11-0};
let Inst{19-16} = imm{15-12};
let Inst{20} = 0;
let Inst{25} = 1;
let DecoderMethod = "DecodeArmMOVTWInstruction";
}
def MOVTi16_ga_pcrel : PseudoInst<(outs GPR:$Rd),
(ins GPR:$src, i32imm:$addr, pclabel:$id), IIC_iMOVi, []>,
Sched<[WriteALU]>;
} // Constraints
def : ARMPat<(or GPR:$src, 0xffff0000), (MOVTi16 GPR:$src, 0xffff)>,
Requires<[IsARM, HasV6T2]>;
let Uses = [CPSR] in
def RRX: PseudoInst<(outs GPR:$Rd), (ins GPR:$Rm), IIC_iMOVsi,
[(set GPR:$Rd, (ARMrrx GPR:$Rm))]>, UnaryDP,
Requires<[IsARM]>, Sched<[WriteALU]>;
// These aren't really mov instructions, but we have to define them this way
// due to flag operands.
let Defs = [CPSR] in {
def MOVsrl_flag : PseudoInst<(outs GPR:$dst), (ins GPR:$src), IIC_iMOVsi,
[(set GPR:$dst, (ARMsrl_flag GPR:$src))]>, UnaryDP,
Sched<[WriteALU]>, Requires<[IsARM]>;
def MOVsra_flag : PseudoInst<(outs GPR:$dst), (ins GPR:$src), IIC_iMOVsi,
[(set GPR:$dst, (ARMsra_flag GPR:$src))]>, UnaryDP,
Sched<[WriteALU]>, Requires<[IsARM]>;
}
//===----------------------------------------------------------------------===//
// Extend Instructions.
//
// Sign extenders
def SXTB : AI_ext_rrot<0b01101010,
"sxtb", UnOpFrag<(sext_inreg node:$Src, i8)>>;
def SXTH : AI_ext_rrot<0b01101011,
"sxth", UnOpFrag<(sext_inreg node:$Src, i16)>>;
def SXTAB : AI_exta_rrot<0b01101010,
"sxtab", BinOpFrag<(add node:$LHS, (sext_inreg node:$RHS, i8))>>;
def SXTAH : AI_exta_rrot<0b01101011,
"sxtah", BinOpFrag<(add node:$LHS, (sext_inreg node:$RHS,i16))>>;
def SXTB16 : AI_ext_rrot_np<0b01101000, "sxtb16">;
def SXTAB16 : AI_exta_rrot_np<0b01101000, "sxtab16">;
// Zero extenders
let AddedComplexity = 16 in {
def UXTB : AI_ext_rrot<0b01101110,
"uxtb" , UnOpFrag<(and node:$Src, 0x000000FF)>>;
def UXTH : AI_ext_rrot<0b01101111,
"uxth" , UnOpFrag<(and node:$Src, 0x0000FFFF)>>;
def UXTB16 : AI_ext_rrot<0b01101100,
"uxtb16", UnOpFrag<(and node:$Src, 0x00FF00FF)>>;
// FIXME: This pattern incorrectly assumes the shl operator is a rotate.
// The transformation should probably be done as a combiner action
// instead so we can include a check for masking back in the upper
// eight bits of the source into the lower eight bits of the result.
//def : ARMV6Pat<(and (shl GPR:$Src, (i32 8)), 0xFF00FF),
// (UXTB16r_rot GPR:$Src, 3)>;
def : ARMV6Pat<(and (srl GPR:$Src, (i32 8)), 0xFF00FF),
(UXTB16 GPR:$Src, 1)>;
def UXTAB : AI_exta_rrot<0b01101110, "uxtab",
BinOpFrag<(add node:$LHS, (and node:$RHS, 0x00FF))>>;
def UXTAH : AI_exta_rrot<0b01101111, "uxtah",
BinOpFrag<(add node:$LHS, (and node:$RHS, 0xFFFF))>>;
}
// This isn't safe in general, the add is two 16-bit units, not a 32-bit add.
def UXTAB16 : AI_exta_rrot_np<0b01101100, "uxtab16">;
def SBFX : I<(outs GPRnopc:$Rd),
(ins GPRnopc:$Rn, imm0_31:$lsb, imm1_32:$width),
AddrMode1, 4, IndexModeNone, DPFrm, IIC_iUNAsi,
"sbfx", "\t$Rd, $Rn, $lsb, $width", "", []>,
Requires<[IsARM, HasV6T2]> {
bits<4> Rd;
bits<4> Rn;
bits<5> lsb;
bits<5> width;
let Inst{27-21} = 0b0111101;
let Inst{6-4} = 0b101;
let Inst{20-16} = width;
let Inst{15-12} = Rd;
let Inst{11-7} = lsb;
let Inst{3-0} = Rn;
}
def UBFX : I<(outs GPRnopc:$Rd),
(ins GPRnopc:$Rn, imm0_31:$lsb, imm1_32:$width),
AddrMode1, 4, IndexModeNone, DPFrm, IIC_iUNAsi,
"ubfx", "\t$Rd, $Rn, $lsb, $width", "", []>,
Requires<[IsARM, HasV6T2]> {
bits<4> Rd;
bits<4> Rn;
bits<5> lsb;
bits<5> width;
let Inst{27-21} = 0b0111111;
let Inst{6-4} = 0b101;
let Inst{20-16} = width;
let Inst{15-12} = Rd;
let Inst{11-7} = lsb;
let Inst{3-0} = Rn;
}
//===----------------------------------------------------------------------===//
// Arithmetic Instructions.
//
defm ADD : AsI1_bin_irs<0b0100, "add",
IIC_iALUi, IIC_iALUr, IIC_iALUsr,
BinOpFrag<(add node:$LHS, node:$RHS)>, 1>;
defm SUB : AsI1_bin_irs<0b0010, "sub",
IIC_iALUi, IIC_iALUr, IIC_iALUsr,
BinOpFrag<(sub node:$LHS, node:$RHS)>>;
// ADD and SUB with 's' bit set.
//
// Currently, ADDS/SUBS are pseudo opcodes that exist only in the
// selection DAG. They are "lowered" to real ADD/SUB opcodes by
// AdjustInstrPostInstrSelection where we determine whether or not to
// set the "s" bit based on CPSR liveness.
//
// FIXME: Eliminate ADDS/SUBS pseudo opcodes after adding tablegen
// support for an optional CPSR definition that corresponds to the DAG
// node's second value. We can then eliminate the implicit def of CPSR.
defm ADDS : AsI1_bin_s_irs<IIC_iALUi, IIC_iALUr, IIC_iALUsr,
BinOpFrag<(ARMaddc node:$LHS, node:$RHS)>, 1>;
defm SUBS : AsI1_bin_s_irs<IIC_iALUi, IIC_iALUr, IIC_iALUsr,
BinOpFrag<(ARMsubc node:$LHS, node:$RHS)>>;
defm ADC : AI1_adde_sube_irs<0b0101, "adc",
BinOpWithFlagFrag<(ARMadde node:$LHS, node:$RHS, node:$FLAG)>, 1>;
defm SBC : AI1_adde_sube_irs<0b0110, "sbc",
BinOpWithFlagFrag<(ARMsube node:$LHS, node:$RHS, node:$FLAG)>>;
defm RSB : AsI1_rbin_irs<0b0011, "rsb",
IIC_iALUi, IIC_iALUr, IIC_iALUsr,
BinOpFrag<(sub node:$LHS, node:$RHS)>>;
// FIXME: Eliminate them if we can write def : Pat patterns which defines
// CPSR and the implicit def of CPSR is not needed.
defm RSBS : AsI1_rbin_s_is<IIC_iALUi, IIC_iALUr, IIC_iALUsr,
BinOpFrag<(ARMsubc node:$LHS, node:$RHS)>>;
defm RSC : AI1_rsc_irs<0b0111, "rsc",
BinOpWithFlagFrag<(ARMsube node:$LHS, node:$RHS, node:$FLAG)>>;
// (sub X, imm) gets canonicalized to (add X, -imm). Match this form.
// The assume-no-carry-in form uses the negation of the input since add/sub
// assume opposite meanings of the carry flag (i.e., carry == !borrow).
// See the definition of AddWithCarry() in the ARM ARM A2.2.1 for the gory
// details.
def : ARMPat<(add GPR:$src, mod_imm_neg:$imm),
(SUBri GPR:$src, mod_imm_neg:$imm)>;
def : ARMPat<(ARMaddc GPR:$src, mod_imm_neg:$imm),
(SUBSri GPR:$src, mod_imm_neg:$imm)>;
def : ARMPat<(add GPR:$src, imm0_65535_neg:$imm),
(SUBrr GPR:$src, (MOVi16 (imm_neg_XFORM imm:$imm)))>,
Requires<[IsARM, HasV6T2]>;
def : ARMPat<(ARMaddc GPR:$src, imm0_65535_neg:$imm),
(SUBSrr GPR:$src, (MOVi16 (imm_neg_XFORM imm:$imm)))>,
Requires<[IsARM, HasV6T2]>;
// The with-carry-in form matches bitwise not instead of the negation.
// Effectively, the inverse interpretation of the carry flag already accounts
// for part of the negation.
def : ARMPat<(ARMadde GPR:$src, mod_imm_not:$imm, CPSR),
(SBCri GPR:$src, mod_imm_not:$imm)>;
def : ARMPat<(ARMadde GPR:$src, imm0_65535_neg:$imm, CPSR),
(SBCrr GPR:$src, (MOVi16 (imm_not_XFORM imm:$imm)))>,
Requires<[IsARM, HasV6T2]>;
// Note: These are implemented in C++ code, because they have to generate
// ADD/SUBrs instructions, which use a complex pattern that a xform function
// cannot produce.
// (mul X, 2^n+1) -> (add (X << n), X)
// (mul X, 2^n-1) -> (rsb X, (X << n))
// ARM Arithmetic Instruction
// GPR:$dst = GPR:$a op GPR:$b
class AAI<bits<8> op27_20, bits<8> op11_4, string opc,
list<dag> pattern = [],
dag iops = (ins GPRnopc:$Rn, GPRnopc:$Rm),
string asm = "\t$Rd, $Rn, $Rm">
: AI<(outs GPRnopc:$Rd), iops, DPFrm, IIC_iALUr, opc, asm, pattern>,
Sched<[WriteALU, ReadALU, ReadALU]> {
bits<4> Rn;
bits<4> Rd;
bits<4> Rm;
let Inst{27-20} = op27_20;
let Inst{11-4} = op11_4;
let Inst{19-16} = Rn;
let Inst{15-12} = Rd;
let Inst{3-0} = Rm;
let Unpredictable{11-8} = 0b1111;
}
// Saturating add/subtract
let DecoderMethod = "DecodeQADDInstruction" in
def QADD : AAI<0b00010000, 0b00000101, "qadd",
[(set GPRnopc:$Rd, (int_arm_qadd GPRnopc:$Rm, GPRnopc:$Rn))],
(ins GPRnopc:$Rm, GPRnopc:$Rn), "\t$Rd, $Rm, $Rn">;
def QSUB : AAI<0b00010010, 0b00000101, "qsub",
[(set GPRnopc:$Rd, (int_arm_qsub GPRnopc:$Rm, GPRnopc:$Rn))],
(ins GPRnopc:$Rm, GPRnopc:$Rn), "\t$Rd, $Rm, $Rn">;
def QDADD : AAI<0b00010100, 0b00000101, "qdadd", [],
(ins GPRnopc:$Rm, GPRnopc:$Rn),
"\t$Rd, $Rm, $Rn">;
def QDSUB : AAI<0b00010110, 0b00000101, "qdsub", [],
(ins GPRnopc:$Rm, GPRnopc:$Rn),
"\t$Rd, $Rm, $Rn">;
def QADD16 : AAI<0b01100010, 0b11110001, "qadd16">;
def QADD8 : AAI<0b01100010, 0b11111001, "qadd8">;
def QASX : AAI<0b01100010, 0b11110011, "qasx">;
def QSAX : AAI<0b01100010, 0b11110101, "qsax">;
def QSUB16 : AAI<0b01100010, 0b11110111, "qsub16">;
def QSUB8 : AAI<0b01100010, 0b11111111, "qsub8">;
def UQADD16 : AAI<0b01100110, 0b11110001, "uqadd16">;
def UQADD8 : AAI<0b01100110, 0b11111001, "uqadd8">;
def UQASX : AAI<0b01100110, 0b11110011, "uqasx">;
def UQSAX : AAI<0b01100110, 0b11110101, "uqsax">;
def UQSUB16 : AAI<0b01100110, 0b11110111, "uqsub16">;
def UQSUB8 : AAI<0b01100110, 0b11111111, "uqsub8">;
// Signed/Unsigned add/subtract
def SASX : AAI<0b01100001, 0b11110011, "sasx">;
def SADD16 : AAI<0b01100001, 0b11110001, "sadd16">;
def SADD8 : AAI<0b01100001, 0b11111001, "sadd8">;
def SSAX : AAI<0b01100001, 0b11110101, "ssax">;
def SSUB16 : AAI<0b01100001, 0b11110111, "ssub16">;
def SSUB8 : AAI<0b01100001, 0b11111111, "ssub8">;
def UASX : AAI<0b01100101, 0b11110011, "uasx">;
def UADD16 : AAI<0b01100101, 0b11110001, "uadd16">;
def UADD8 : AAI<0b01100101, 0b11111001, "uadd8">;
def USAX : AAI<0b01100101, 0b11110101, "usax">;
def USUB16 : AAI<0b01100101, 0b11110111, "usub16">;
def USUB8 : AAI<0b01100101, 0b11111111, "usub8">;
// Signed/Unsigned halving add/subtract
def SHASX : AAI<0b01100011, 0b11110011, "shasx">;
def SHADD16 : AAI<0b01100011, 0b11110001, "shadd16">;
def SHADD8 : AAI<0b01100011, 0b11111001, "shadd8">;
def SHSAX : AAI<0b01100011, 0b11110101, "shsax">;
def SHSUB16 : AAI<0b01100011, 0b11110111, "shsub16">;
def SHSUB8 : AAI<0b01100011, 0b11111111, "shsub8">;
def UHASX : AAI<0b01100111, 0b11110011, "uhasx">;
def UHADD16 : AAI<0b01100111, 0b11110001, "uhadd16">;
def UHADD8 : AAI<0b01100111, 0b11111001, "uhadd8">;
def UHSAX : AAI<0b01100111, 0b11110101, "uhsax">;
def UHSUB16 : AAI<0b01100111, 0b11110111, "uhsub16">;
def UHSUB8 : AAI<0b01100111, 0b11111111, "uhsub8">;
// Unsigned Sum of Absolute Differences [and Accumulate].
def USAD8 : AI<(outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
MulFrm /* for convenience */, NoItinerary, "usad8",
"\t$Rd, $Rn, $Rm", []>,
Requires<[IsARM, HasV6]>, Sched<[WriteALU, ReadALU, ReadALU]> {
bits<4> Rd;
bits<4> Rn;
bits<4> Rm;
let Inst{27-20} = 0b01111000;
let Inst{15-12} = 0b1111;
let Inst{7-4} = 0b0001;
let Inst{19-16} = Rd;
let Inst{11-8} = Rm;
let Inst{3-0} = Rn;
}
def USADA8 : AI<(outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm, GPR:$Ra),
MulFrm /* for convenience */, NoItinerary, "usada8",
"\t$Rd, $Rn, $Rm, $Ra", []>,
Requires<[IsARM, HasV6]>, Sched<[WriteALU, ReadALU, ReadALU]>{
bits<4> Rd;
bits<4> Rn;
bits<4> Rm;
bits<4> Ra;
let Inst{27-20} = 0b01111000;
let Inst{7-4} = 0b0001;
let Inst{19-16} = Rd;
let Inst{15-12} = Ra;
let Inst{11-8} = Rm;
let Inst{3-0} = Rn;
}
// Signed/Unsigned saturate
def SSAT : AI<(outs GPRnopc:$Rd),
(ins imm1_32:$sat_imm, GPRnopc:$Rn, shift_imm:$sh),
SatFrm, NoItinerary, "ssat", "\t$Rd, $sat_imm, $Rn$sh", []> {
bits<4> Rd;
bits<5> sat_imm;
bits<4> Rn;
bits<8> sh;
let Inst{27-21} = 0b0110101;
let Inst{5-4} = 0b01;
let Inst{20-16} = sat_imm;
let Inst{15-12} = Rd;
let Inst{11-7} = sh{4-0};
let Inst{6} = sh{5};
let Inst{3-0} = Rn;
}
def SSAT16 : AI<(outs GPRnopc:$Rd),
(ins imm1_16:$sat_imm, GPRnopc:$Rn), SatFrm,
NoItinerary, "ssat16", "\t$Rd, $sat_imm, $Rn", []> {
bits<4> Rd;
bits<4> sat_imm;
bits<4> Rn;
let Inst{27-20} = 0b01101010;
let Inst{11-4} = 0b11110011;
let Inst{15-12} = Rd;
let Inst{19-16} = sat_imm;
let Inst{3-0} = Rn;
}
def USAT : AI<(outs GPRnopc:$Rd),
(ins imm0_31:$sat_imm, GPRnopc:$Rn, shift_imm:$sh),
SatFrm, NoItinerary, "usat", "\t$Rd, $sat_imm, $Rn$sh", []> {
bits<4> Rd;
bits<5> sat_imm;
bits<4> Rn;
bits<8> sh;
let Inst{27-21} = 0b0110111;
let Inst{5-4} = 0b01;
let Inst{15-12} = Rd;
let Inst{11-7} = sh{4-0};
let Inst{6} = sh{5};
let Inst{20-16} = sat_imm;
let Inst{3-0} = Rn;
}
def USAT16 : AI<(outs GPRnopc:$Rd),
(ins imm0_15:$sat_imm, GPRnopc:$Rn), SatFrm,
NoItinerary, "usat16", "\t$Rd, $sat_imm, $Rn", []> {
bits<4> Rd;
bits<4> sat_imm;
bits<4> Rn;
let Inst{27-20} = 0b01101110;
let Inst{11-4} = 0b11110011;
let Inst{15-12} = Rd;
let Inst{19-16} = sat_imm;
let Inst{3-0} = Rn;
}
def : ARMV6Pat<(int_arm_ssat GPRnopc:$a, imm:$pos),
(SSAT imm:$pos, GPRnopc:$a, 0)>;
def : ARMV6Pat<(int_arm_usat GPRnopc:$a, imm:$pos),
(USAT imm:$pos, GPRnopc:$a, 0)>;
//===----------------------------------------------------------------------===//
// Bitwise Instructions.
//
defm AND : AsI1_bin_irs<0b0000, "and",
IIC_iBITi, IIC_iBITr, IIC_iBITsr,
BinOpFrag<(and node:$LHS, node:$RHS)>, 1>;
defm ORR : AsI1_bin_irs<0b1100, "orr",
IIC_iBITi, IIC_iBITr, IIC_iBITsr,
BinOpFrag<(or node:$LHS, node:$RHS)>, 1>;
defm EOR : AsI1_bin_irs<0b0001, "eor",
IIC_iBITi, IIC_iBITr, IIC_iBITsr,
BinOpFrag<(xor node:$LHS, node:$RHS)>, 1>;
defm BIC : AsI1_bin_irs<0b1110, "bic",
IIC_iBITi, IIC_iBITr, IIC_iBITsr,
BinOpFrag<(and node:$LHS, (not node:$RHS))>>;
// FIXME: bf_inv_mask_imm should be two operands, the lsb and the msb, just
// like in the actual instruction encoding. The complexity of mapping the mask
// to the lsb/msb pair should be handled by ISel, not encapsulated in the
// instruction description.
def BFC : I<(outs GPR:$Rd), (ins GPR:$src, bf_inv_mask_imm:$imm),
AddrMode1, 4, IndexModeNone, DPFrm, IIC_iUNAsi,
"bfc", "\t$Rd, $imm", "$src = $Rd",
[(set GPR:$Rd, (and GPR:$src, bf_inv_mask_imm:$imm))]>,
Requires<[IsARM, HasV6T2]> {
bits<4> Rd;
bits<10> imm;
let Inst{27-21} = 0b0111110;
let Inst{6-0} = 0b0011111;
let Inst{15-12} = Rd;
let Inst{11-7} = imm{4-0}; // lsb
let Inst{20-16} = imm{9-5}; // msb
}
// A8.6.18 BFI - Bitfield insert (Encoding A1)
def BFI:I<(outs GPRnopc:$Rd), (ins GPRnopc:$src, GPR:$Rn, bf_inv_mask_imm:$imm),
AddrMode1, 4, IndexModeNone, DPFrm, IIC_iUNAsi,
"bfi", "\t$Rd, $Rn, $imm", "$src = $Rd",
[(set GPRnopc:$Rd, (ARMbfi GPRnopc:$src, GPR:$Rn,
bf_inv_mask_imm:$imm))]>,
Requires<[IsARM, HasV6T2]> {
bits<4> Rd;
bits<4> Rn;
bits<10> imm;
let Inst{27-21} = 0b0111110;
let Inst{6-4} = 0b001; // Rn: Inst{3-0} != 15
let Inst{15-12} = Rd;
let Inst{11-7} = imm{4-0}; // lsb
let Inst{20-16} = imm{9-5}; // width
let Inst{3-0} = Rn;
}
def MVNr : AsI1<0b1111, (outs GPR:$Rd), (ins GPR:$Rm), DPFrm, IIC_iMVNr,
"mvn", "\t$Rd, $Rm",
[(set GPR:$Rd, (not GPR:$Rm))]>, UnaryDP, Sched<[WriteALU]> {
bits<4> Rd;
bits<4> Rm;
let Inst{25} = 0;
let Inst{19-16} = 0b0000;
let Inst{11-4} = 0b00000000;
let Inst{15-12} = Rd;
let Inst{3-0} = Rm;
}
def MVNsi : AsI1<0b1111, (outs GPR:$Rd), (ins so_reg_imm:$shift),
DPSoRegImmFrm, IIC_iMVNsr, "mvn", "\t$Rd, $shift",
[(set GPR:$Rd, (not so_reg_imm:$shift))]>, UnaryDP,
Sched<[WriteALU]> {
bits<4> Rd;
bits<12> shift;
let Inst{25} = 0;
let Inst{19-16} = 0b0000;
let Inst{15-12} = Rd;
let Inst{11-5} = shift{11-5};
let Inst{4} = 0;
let Inst{3-0} = shift{3-0};
}
def MVNsr : AsI1<0b1111, (outs GPR:$Rd), (ins so_reg_reg:$shift),
DPSoRegRegFrm, IIC_iMVNsr, "mvn", "\t$Rd, $shift",
[(set GPR:$Rd, (not so_reg_reg:$shift))]>, UnaryDP,
Sched<[WriteALU]> {
bits<4> Rd;
bits<12> shift;
let Inst{25} = 0;
let Inst{19-16} = 0b0000;
let Inst{15-12} = Rd;
let Inst{11-8} = shift{11-8};
let Inst{7} = 0;
let Inst{6-5} = shift{6-5};
let Inst{4} = 1;
let Inst{3-0} = shift{3-0};
}
let isReMaterializable = 1, isAsCheapAsAMove = 1, isMoveImm = 1 in
def MVNi : AsI1<0b1111, (outs GPR:$Rd), (ins mod_imm:$imm), DPFrm,
IIC_iMVNi, "mvn", "\t$Rd, $imm",
[(set GPR:$Rd, mod_imm_not:$imm)]>,UnaryDP, Sched<[WriteALU]> {
bits<4> Rd;
bits<12> imm;
let Inst{25} = 1;
let Inst{19-16} = 0b0000;
let Inst{15-12} = Rd;
let Inst{11-0} = imm;
}
def : ARMPat<(and GPR:$src, mod_imm_not:$imm),
(BICri GPR:$src, mod_imm_not:$imm)>;
//===----------------------------------------------------------------------===//
// Multiply Instructions.
//
class AsMul1I32<bits<7> opcod, dag oops, dag iops, InstrItinClass itin,
string opc, string asm, list<dag> pattern>
: AsMul1I<opcod, oops, iops, itin, opc, asm, pattern> {
bits<4> Rd;
bits<4> Rm;
bits<4> Rn;
let Inst{19-16} = Rd;
let Inst{11-8} = Rm;
let Inst{3-0} = Rn;
}
class AsMul1I64<bits<7> opcod, dag oops, dag iops, InstrItinClass itin,
string opc, string asm, list<dag> pattern>
: AsMul1I<opcod, oops, iops, itin, opc, asm, pattern> {
bits<4> RdLo;
bits<4> RdHi;
bits<4> Rm;
bits<4> Rn;
let Inst{19-16} = RdHi;
let Inst{15-12} = RdLo;
let Inst{11-8} = Rm;
let Inst{3-0} = Rn;
}
class AsMla1I64<bits<7> opcod, dag oops, dag iops, InstrItinClass itin,
string opc, string asm, list<dag> pattern>
: AsMul1I<opcod, oops, iops, itin, opc, asm, pattern> {
bits<4> RdLo;
bits<4> RdHi;
bits<4> Rm;
bits<4> Rn;
let Inst{19-16} = RdHi;
let Inst{15-12} = RdLo;
let Inst{11-8} = Rm;
let Inst{3-0} = Rn;
}
// FIXME: The v5 pseudos are only necessary for the additional Constraint
// property. Remove them when it's possible to add those properties
// on an individual MachineInstr, not just an instruction description.
let isCommutable = 1, TwoOperandAliasConstraint = "$Rn = $Rd" in {
def MUL : AsMul1I32<0b0000000, (outs GPRnopc:$Rd),
(ins GPRnopc:$Rn, GPRnopc:$Rm),
IIC_iMUL32, "mul", "\t$Rd, $Rn, $Rm",
[(set GPRnopc:$Rd, (mul GPRnopc:$Rn, GPRnopc:$Rm))]>,
Requires<[IsARM, HasV6]> {
let Inst{15-12} = 0b0000;
let Unpredictable{15-12} = 0b1111;
}
let Constraints = "@earlyclobber $Rd" in
def MULv5: ARMPseudoExpand<(outs GPRnopc:$Rd), (ins GPRnopc:$Rn, GPRnopc:$Rm,
pred:$p, cc_out:$s),
4, IIC_iMUL32,
[(set GPRnopc:$Rd, (mul GPRnopc:$Rn, GPRnopc:$Rm))],
(MUL GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, pred:$p, cc_out:$s)>,
Requires<[IsARM, NoV6, UseMulOps]>;
}
def MLA : AsMul1I32<0b0000001, (outs GPRnopc:$Rd),
(ins GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$Ra),
IIC_iMAC32, "mla", "\t$Rd, $Rn, $Rm, $Ra",
[(set GPRnopc:$Rd, (add (mul GPRnopc:$Rn, GPRnopc:$Rm), GPRnopc:$Ra))]>,
Requires<[IsARM, HasV6, UseMulOps]> {
bits<4> Ra;
let Inst{15-12} = Ra;
}
let Constraints = "@earlyclobber $Rd" in
def MLAv5: ARMPseudoExpand<(outs GPRnopc:$Rd),
(ins GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$Ra,
pred:$p, cc_out:$s), 4, IIC_iMAC32,
[(set GPRnopc:$Rd, (add (mul GPRnopc:$Rn, GPRnopc:$Rm), GPRnopc:$Ra))],
(MLA GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$Ra, pred:$p, cc_out:$s)>,
Requires<[IsARM, NoV6]>;
def MLS : AMul1I<0b0000011, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm, GPR:$Ra),
IIC_iMAC32, "mls", "\t$Rd, $Rn, $Rm, $Ra",
[(set GPR:$Rd, (sub GPR:$Ra, (mul GPR:$Rn, GPR:$Rm)))]>,
Requires<[IsARM, HasV6T2, UseMulOps]> {
bits<4> Rd;
bits<4> Rm;
bits<4> Rn;
bits<4> Ra;
let Inst{19-16} = Rd;
let Inst{15-12} = Ra;
let Inst{11-8} = Rm;
let Inst{3-0} = Rn;
}
// Extra precision multiplies with low / high results
let hasSideEffects = 0 in {
let isCommutable = 1 in {
def SMULL : AsMul1I64<0b0000110, (outs GPR:$RdLo, GPR:$RdHi),
(ins GPR:$Rn, GPR:$Rm), IIC_iMUL64,
"smull", "\t$RdLo, $RdHi, $Rn, $Rm", []>,
Requires<[IsARM, HasV6]>;
def UMULL : AsMul1I64<0b0000100, (outs GPR:$RdLo, GPR:$RdHi),
(ins GPR:$Rn, GPR:$Rm), IIC_iMUL64,
"umull", "\t$RdLo, $RdHi, $Rn, $Rm", []>,
Requires<[IsARM, HasV6]>;
let Constraints = "@earlyclobber $RdLo,@earlyclobber $RdHi" in {
def SMULLv5 : ARMPseudoExpand<(outs GPR:$RdLo, GPR:$RdHi),
(ins GPR:$Rn, GPR:$Rm, pred:$p, cc_out:$s),
4, IIC_iMUL64, [],
(SMULL GPR:$RdLo, GPR:$RdHi, GPR:$Rn, GPR:$Rm, pred:$p, cc_out:$s)>,
Requires<[IsARM, NoV6]>;
def UMULLv5 : ARMPseudoExpand<(outs GPR:$RdLo, GPR:$RdHi),
(ins GPR:$Rn, GPR:$Rm, pred:$p, cc_out:$s),
4, IIC_iMUL64, [],
(UMULL GPR:$RdLo, GPR:$RdHi, GPR:$Rn, GPR:$Rm, pred:$p, cc_out:$s)>,
Requires<[IsARM, NoV6]>;
}
}
// Multiply + accumulate
def SMLAL : AsMla1I64<0b0000111, (outs GPR:$RdLo, GPR:$RdHi),
(ins GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi), IIC_iMAC64,
"smlal", "\t$RdLo, $RdHi, $Rn, $Rm", []>,
RegConstraint<"$RLo = $RdLo, $RHi = $RdHi">, Requires<[IsARM, HasV6]>;
def UMLAL : AsMla1I64<0b0000101, (outs GPR:$RdLo, GPR:$RdHi),
(ins GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi), IIC_iMAC64,
"umlal", "\t$RdLo, $RdHi, $Rn, $Rm", []>,
RegConstraint<"$RLo = $RdLo, $RHi = $RdHi">, Requires<[IsARM, HasV6]>;
def UMAAL : AMul1I <0b0000010, (outs GPR:$RdLo, GPR:$RdHi),
(ins GPR:$Rn, GPR:$Rm), IIC_iMAC64,
"umaal", "\t$RdLo, $RdHi, $Rn, $Rm", []>,
Requires<[IsARM, HasV6]> {
bits<4> RdLo;
bits<4> RdHi;
bits<4> Rm;
bits<4> Rn;
let Inst{19-16} = RdHi;
let Inst{15-12} = RdLo;
let Inst{11-8} = Rm;
let Inst{3-0} = Rn;
}
let Constraints =
"@earlyclobber $RdLo,@earlyclobber $RdHi,$RLo = $RdLo,$RHi = $RdHi" in {
def SMLALv5 : ARMPseudoExpand<(outs GPR:$RdLo, GPR:$RdHi),
(ins GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi, pred:$p, cc_out:$s),
4, IIC_iMAC64, [],
(SMLAL GPR:$RdLo, GPR:$RdHi, GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi,
pred:$p, cc_out:$s)>,
Requires<[IsARM, NoV6]>;
def UMLALv5 : ARMPseudoExpand<(outs GPR:$RdLo, GPR:$RdHi),
(ins GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi, pred:$p, cc_out:$s),
4, IIC_iMAC64, [],
(UMLAL GPR:$RdLo, GPR:$RdHi, GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi,
pred:$p, cc_out:$s)>,
Requires<[IsARM, NoV6]>;
}
} // hasSideEffects
// Most significant word multiply
def SMMUL : AMul2I <0b0111010, 0b0001, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
IIC_iMUL32, "smmul", "\t$Rd, $Rn, $Rm",
[(set GPR:$Rd, (mulhs GPR:$Rn, GPR:$Rm))]>,
Requires<[IsARM, HasV6]> {
let Inst{15-12} = 0b1111;
}
def SMMULR : AMul2I <0b0111010, 0b0011, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
IIC_iMUL32, "smmulr", "\t$Rd, $Rn, $Rm", []>,
Requires<[IsARM, HasV6]> {
let Inst{15-12} = 0b1111;
}
def SMMLA : AMul2Ia <0b0111010, 0b0001, (outs GPR:$Rd),
(ins GPR:$Rn, GPR:$Rm, GPR:$Ra),
IIC_iMAC32, "smmla", "\t$Rd, $Rn, $Rm, $Ra",
[(set GPR:$Rd, (add (mulhs GPR:$Rn, GPR:$Rm), GPR:$Ra))]>,
Requires<[IsARM, HasV6, UseMulOps]>;
def SMMLAR : AMul2Ia <0b0111010, 0b0011, (outs GPR:$Rd),
(ins GPR:$Rn, GPR:$Rm, GPR:$Ra),
IIC_iMAC32, "smmlar", "\t$Rd, $Rn, $Rm, $Ra", []>,
Requires<[IsARM, HasV6]>;
def SMMLS : AMul2Ia <0b0111010, 0b1101, (outs GPR:$Rd),
(ins GPR:$Rn, GPR:$Rm, GPR:$Ra),
IIC_iMAC32, "smmls", "\t$Rd, $Rn, $Rm, $Ra", []>,
Requires<[IsARM, HasV6, UseMulOps]>;
def SMMLSR : AMul2Ia <0b0111010, 0b1111, (outs GPR:$Rd),
(ins GPR:$Rn, GPR:$Rm, GPR:$Ra),
IIC_iMAC32, "smmlsr", "\t$Rd, $Rn, $Rm, $Ra", []>,
Requires<[IsARM, HasV6]>;
multiclass AI_smul<string opc, PatFrag opnode> {
def BB : AMulxyI<0b0001011, 0b00, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
IIC_iMUL16, !strconcat(opc, "bb"), "\t$Rd, $Rn, $Rm",
[(set GPR:$Rd, (opnode (sext_inreg GPR:$Rn, i16),
(sext_inreg GPR:$Rm, i16)))]>,
Requires<[IsARM, HasV5TE]>;
def BT : AMulxyI<0b0001011, 0b10, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
IIC_iMUL16, !strconcat(opc, "bt"), "\t$Rd, $Rn, $Rm",
[(set GPR:$Rd, (opnode (sext_inreg GPR:$Rn, i16),
(sra GPR:$Rm, (i32 16))))]>,
Requires<[IsARM, HasV5TE]>;
def TB : AMulxyI<0b0001011, 0b01, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
IIC_iMUL16, !strconcat(opc, "tb"), "\t$Rd, $Rn, $Rm",
[(set GPR:$Rd, (opnode (sra GPR:$Rn, (i32 16)),
(sext_inreg GPR:$Rm, i16)))]>,
Requires<[IsARM, HasV5TE]>;
def TT : AMulxyI<0b0001011, 0b11, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
IIC_iMUL16, !strconcat(opc, "tt"), "\t$Rd, $Rn, $Rm",
[(set GPR:$Rd, (opnode (sra GPR:$Rn, (i32 16)),
(sra GPR:$Rm, (i32 16))))]>,
Requires<[IsARM, HasV5TE]>;
def WB : AMulxyI<0b0001001, 0b01, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
IIC_iMUL16, !strconcat(opc, "wb"), "\t$Rd, $Rn, $Rm",
[]>,
Requires<[IsARM, HasV5TE]>;
def WT : AMulxyI<0b0001001, 0b11, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
IIC_iMUL16, !strconcat(opc, "wt"), "\t$Rd, $Rn, $Rm",
[]>,
Requires<[IsARM, HasV5TE]>;
}
multiclass AI_smla<string opc, PatFrag opnode> {
let DecoderMethod = "DecodeSMLAInstruction" in {
def BB : AMulxyIa<0b0001000, 0b00, (outs GPRnopc:$Rd),
(ins GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra),
IIC_iMAC16, !strconcat(opc, "bb"), "\t$Rd, $Rn, $Rm, $Ra",
[(set GPRnopc:$Rd, (add GPR:$Ra,
(opnode (sext_inreg GPRnopc:$Rn, i16),
(sext_inreg GPRnopc:$Rm, i16))))]>,
Requires<[IsARM, HasV5TE, UseMulOps]>;
def BT : AMulxyIa<0b0001000, 0b10, (outs GPRnopc:$Rd),
(ins GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra),
IIC_iMAC16, !strconcat(opc, "bt"), "\t$Rd, $Rn, $Rm, $Ra",
[(set GPRnopc:$Rd,
(add GPR:$Ra, (opnode (sext_inreg GPRnopc:$Rn, i16),
(sra GPRnopc:$Rm, (i32 16)))))]>,
Requires<[IsARM, HasV5TE, UseMulOps]>;
def TB : AMulxyIa<0b0001000, 0b01, (outs GPRnopc:$Rd),
(ins GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra),
IIC_iMAC16, !strconcat(opc, "tb"), "\t$Rd, $Rn, $Rm, $Ra",
[(set GPRnopc:$Rd,
(add GPR:$Ra, (opnode (sra GPRnopc:$Rn, (i32 16)),
(sext_inreg GPRnopc:$Rm, i16))))]>,
Requires<[IsARM, HasV5TE, UseMulOps]>;
def TT : AMulxyIa<0b0001000, 0b11, (outs GPRnopc:$Rd),
(ins GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra),
IIC_iMAC16, !strconcat(opc, "tt"), "\t$Rd, $Rn, $Rm, $Ra",
[(set GPRnopc:$Rd,
(add GPR:$Ra, (opnode (sra GPRnopc:$Rn, (i32 16)),
(sra GPRnopc:$Rm, (i32 16)))))]>,
Requires<[IsARM, HasV5TE, UseMulOps]>;
def WB : AMulxyIa<0b0001001, 0b00, (outs GPRnopc:$Rd),
(ins GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra),
IIC_iMAC16, !strconcat(opc, "wb"), "\t$Rd, $Rn, $Rm, $Ra",
[]>,
Requires<[IsARM, HasV5TE, UseMulOps]>;
def WT : AMulxyIa<0b0001001, 0b10, (outs GPRnopc:$Rd),
(ins GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra),
IIC_iMAC16, !strconcat(opc, "wt"), "\t$Rd, $Rn, $Rm, $Ra",
[]>,
Requires<[IsARM, HasV5TE, UseMulOps]>;
}
}
defm SMUL : AI_smul<"smul", BinOpFrag<(mul node:$LHS, node:$RHS)>>;
defm SMLA : AI_smla<"smla", BinOpFrag<(mul node:$LHS, node:$RHS)>>;
// Halfword multiply accumulate long: SMLAL<x><y>.
def SMLALBB : AMulxyI64<0b0001010, 0b00, (outs GPRnopc:$RdLo, GPRnopc:$RdHi),
(ins GPRnopc:$Rn, GPRnopc:$Rm),
IIC_iMAC64, "smlalbb", "\t$RdLo, $RdHi, $Rn, $Rm", []>,
Requires<[IsARM, HasV5TE]>;
def SMLALBT : AMulxyI64<0b0001010, 0b10, (outs GPRnopc:$RdLo, GPRnopc:$RdHi),
(ins GPRnopc:$Rn, GPRnopc:$Rm),
IIC_iMAC64, "smlalbt", "\t$RdLo, $RdHi, $Rn, $Rm", []>,
Requires<[IsARM, HasV5TE]>;
def SMLALTB : AMulxyI64<0b0001010, 0b01, (outs GPRnopc:$RdLo, GPRnopc:$RdHi),
(ins GPRnopc:$Rn, GPRnopc:$Rm),
IIC_iMAC64, "smlaltb", "\t$RdLo, $RdHi, $Rn, $Rm", []>,
Requires<[IsARM, HasV5TE]>;
def SMLALTT : AMulxyI64<0b0001010, 0b11, (outs GPRnopc:$RdLo, GPRnopc:$RdHi),
(ins GPRnopc:$Rn, GPRnopc:$Rm),
IIC_iMAC64, "smlaltt", "\t$RdLo, $RdHi, $Rn, $Rm", []>,
Requires<[IsARM, HasV5TE]>;
// Helper class for AI_smld.
class AMulDualIbase<bit long, bit sub, bit swap, dag oops, dag iops,
InstrItinClass itin, string opc, string asm>
: AI<oops, iops, MulFrm, itin, opc, asm, []>, Requires<[IsARM, HasV6]> {
bits<4> Rn;
bits<4> Rm;
let Inst{27-23} = 0b01110;
let Inst{22} = long;
let Inst{21-20} = 0b00;
let Inst{11-8} = Rm;
let Inst{7} = 0;
let Inst{6} = sub;
let Inst{5} = swap;
let Inst{4} = 1;
let Inst{3-0} = Rn;
}
class AMulDualI<bit long, bit sub, bit swap, dag oops, dag iops,
InstrItinClass itin, string opc, string asm>
: AMulDualIbase<long, sub, swap, oops, iops, itin, opc, asm> {
bits<4> Rd;
let Inst{15-12} = 0b1111;
let Inst{19-16} = Rd;
}
class AMulDualIa<bit long, bit sub, bit swap, dag oops, dag iops,
InstrItinClass itin, string opc, string asm>
: AMulDualIbase<long, sub, swap, oops, iops, itin, opc, asm> {
bits<4> Ra;
bits<4> Rd;
let Inst{19-16} = Rd;
let Inst{15-12} = Ra;
}
class AMulDualI64<bit long, bit sub, bit swap, dag oops, dag iops,
InstrItinClass itin, string opc, string asm>
: AMulDualIbase<long, sub, swap, oops, iops, itin, opc, asm> {
bits<4> RdLo;
bits<4> RdHi;
let Inst{19-16} = RdHi;
let Inst{15-12} = RdLo;
}
multiclass AI_smld<bit sub, string opc> {
def D : AMulDualIa<0, sub, 0, (outs GPRnopc:$Rd),
(ins GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra),
NoItinerary, !strconcat(opc, "d"), "\t$Rd, $Rn, $Rm, $Ra">;
def DX: AMulDualIa<0, sub, 1, (outs GPRnopc:$Rd),
(ins GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra),
NoItinerary, !strconcat(opc, "dx"), "\t$Rd, $Rn, $Rm, $Ra">;
def LD: AMulDualI64<1, sub, 0, (outs GPRnopc:$RdLo, GPRnopc:$RdHi),
(ins GPRnopc:$Rn, GPRnopc:$Rm), NoItinerary,
!strconcat(opc, "ld"), "\t$RdLo, $RdHi, $Rn, $Rm">;
def LDX : AMulDualI64<1, sub, 1, (outs GPRnopc:$RdLo, GPRnopc:$RdHi),
(ins GPRnopc:$Rn, GPRnopc:$Rm), NoItinerary,
!strconcat(opc, "ldx"),"\t$RdLo, $RdHi, $Rn, $Rm">;
}
defm SMLA : AI_smld<0, "smla">;
defm SMLS : AI_smld<1, "smls">;
multiclass AI_sdml<bit sub, string opc> {
def D:AMulDualI<0, sub, 0, (outs GPRnopc:$Rd), (ins GPRnopc:$Rn, GPRnopc:$Rm),
NoItinerary, !strconcat(opc, "d"), "\t$Rd, $Rn, $Rm">;
def DX:AMulDualI<0, sub, 1, (outs GPRnopc:$Rd),(ins GPRnopc:$Rn, GPRnopc:$Rm),
NoItinerary, !strconcat(opc, "dx"), "\t$Rd, $Rn, $Rm">;
}
defm SMUA : AI_sdml<0, "smua">;
defm SMUS : AI_sdml<1, "smus">;
//===----------------------------------------------------------------------===//
// Division Instructions (ARMv7-A with virtualization extension)
//
def SDIV : ADivA1I<0b001, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), IIC_iDIV,
"sdiv", "\t$Rd, $Rn, $Rm",
[(set GPR:$Rd, (sdiv GPR:$Rn, GPR:$Rm))]>,
Requires<[IsARM, HasDivideInARM]>;
def UDIV : ADivA1I<0b011, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), IIC_iDIV,
"udiv", "\t$Rd, $Rn, $Rm",
[(set GPR:$Rd, (udiv GPR:$Rn, GPR:$Rm))]>,
Requires<[IsARM, HasDivideInARM]>;
//===----------------------------------------------------------------------===//
// Misc. Arithmetic Instructions.
//
def CLZ : AMiscA1I<0b00010110, 0b0001, (outs GPR:$Rd), (ins GPR:$Rm),
IIC_iUNAr, "clz", "\t$Rd, $Rm",
[(set GPR:$Rd, (ctlz GPR:$Rm))]>, Requires<[IsARM, HasV5T]>,
Sched<[WriteALU]>;
def RBIT : AMiscA1I<0b01101111, 0b0011, (outs GPR:$Rd), (ins GPR:$Rm),
IIC_iUNAr, "rbit", "\t$Rd, $Rm",
[(set GPR:$Rd, (ARMrbit GPR:$Rm))]>,
Requires<[IsARM, HasV6T2]>,
Sched<[WriteALU]>;
def REV : AMiscA1I<0b01101011, 0b0011, (outs GPR:$Rd), (ins GPR:$Rm),
IIC_iUNAr, "rev", "\t$Rd, $Rm",
[(set GPR:$Rd, (bswap GPR:$Rm))]>, Requires<[IsARM, HasV6]>,
Sched<[WriteALU]>;
let AddedComplexity = 5 in
def REV16 : AMiscA1I<0b01101011, 0b1011, (outs GPR:$Rd), (ins GPR:$Rm),
IIC_iUNAr, "rev16", "\t$Rd, $Rm",
[(set GPR:$Rd, (rotr (bswap GPR:$Rm), (i32 16)))]>,
Requires<[IsARM, HasV6]>,
Sched<[WriteALU]>;
def : ARMV6Pat<(srl (bswap (extloadi16 addrmode3:$addr)), (i32 16)),
(REV16 (LDRH addrmode3:$addr))>;
def : ARMV6Pat<(truncstorei16 (srl (bswap GPR:$Rn), (i32 16)), addrmode3:$addr),
(STRH (REV16 GPR:$Rn), addrmode3:$addr)>;
let AddedComplexity = 5 in
def REVSH : AMiscA1I<0b01101111, 0b1011, (outs GPR:$Rd), (ins GPR:$Rm),
IIC_iUNAr, "revsh", "\t$Rd, $Rm",
[(set GPR:$Rd, (sra (bswap GPR:$Rm), (i32 16)))]>,
Requires<[IsARM, HasV6]>,
Sched<[WriteALU]>;
def : ARMV6Pat<(or (sra (shl GPR:$Rm, (i32 24)), (i32 16)),
(and (srl GPR:$Rm, (i32 8)), 0xFF)),
(REVSH GPR:$Rm)>;
def PKHBT : APKHI<0b01101000, 0, (outs GPRnopc:$Rd),
(ins GPRnopc:$Rn, GPRnopc:$Rm, pkh_lsl_amt:$sh),
IIC_iALUsi, "pkhbt", "\t$Rd, $Rn, $Rm$sh",
[(set GPRnopc:$Rd, (or (and GPRnopc:$Rn, 0xFFFF),
(and (shl GPRnopc:$Rm, pkh_lsl_amt:$sh),
0xFFFF0000)))]>,
Requires<[IsARM, HasV6]>,
Sched<[WriteALUsi, ReadALU]>;
// Alternate cases for PKHBT where identities eliminate some nodes.
def : ARMV6Pat<(or (and GPRnopc:$Rn, 0xFFFF), (and GPRnopc:$Rm, 0xFFFF0000)),
(PKHBT GPRnopc:$Rn, GPRnopc:$Rm, 0)>;
def : ARMV6Pat<(or (and GPRnopc:$Rn, 0xFFFF), (shl GPRnopc:$Rm, imm16_31:$sh)),
(PKHBT GPRnopc:$Rn, GPRnopc:$Rm, imm16_31:$sh)>;
// Note: Shifts of 1-15 bits will be transformed to srl instead of sra and
// will match the pattern below.
def PKHTB : APKHI<0b01101000, 1, (outs GPRnopc:$Rd),
(ins GPRnopc:$Rn, GPRnopc:$Rm, pkh_asr_amt:$sh),
IIC_iBITsi, "pkhtb", "\t$Rd, $Rn, $Rm$sh",
[(set GPRnopc:$Rd, (or (and GPRnopc:$Rn, 0xFFFF0000),
(and (sra GPRnopc:$Rm, pkh_asr_amt:$sh),
0xFFFF)))]>,
Requires<[IsARM, HasV6]>,
Sched<[WriteALUsi, ReadALU]>;
// Alternate cases for PKHTB where identities eliminate some nodes. Note that
// a shift amount of 0 is *not legal* here, it is PKHBT instead.
// We also can not replace a srl (17..31) by an arithmetic shift we would use in
// pkhtb src1, src2, asr (17..31).
def : ARMV6Pat<(or (and GPRnopc:$src1, 0xFFFF0000),
(srl GPRnopc:$src2, imm16:$sh)),
(PKHTB GPRnopc:$src1, GPRnopc:$src2, imm16:$sh)>;
def : ARMV6Pat<(or (and GPRnopc:$src1, 0xFFFF0000),
(sra GPRnopc:$src2, imm16_31:$sh)),
(PKHTB GPRnopc:$src1, GPRnopc:$src2, imm16_31:$sh)>;
def : ARMV6Pat<(or (and GPRnopc:$src1, 0xFFFF0000),
(and (srl GPRnopc:$src2, imm1_15:$sh), 0xFFFF)),
(PKHTB GPRnopc:$src1, GPRnopc:$src2, imm1_15:$sh)>;
//===----------------------------------------------------------------------===//
// CRC Instructions
//
// Polynomials:
// + CRC32{B,H,W} 0x04C11DB7
// + CRC32C{B,H,W} 0x1EDC6F41
//
class AI_crc32<bit C, bits<2> sz, string suffix, SDPatternOperator builtin>
: AInoP<(outs GPRnopc:$Rd), (ins GPRnopc:$Rn, GPRnopc:$Rm), MiscFrm, NoItinerary,
!strconcat("crc32", suffix), "\t$Rd, $Rn, $Rm",
[(set GPRnopc:$Rd, (builtin GPRnopc:$Rn, GPRnopc:$Rm))]>,
Requires<[IsARM, HasV8, HasCRC]> {
bits<4> Rd;
bits<4> Rn;
bits<4> Rm;
let Inst{31-28} = 0b1110;
let Inst{27-23} = 0b00010;
let Inst{22-21} = sz;
let Inst{20} = 0;
let Inst{19-16} = Rn;
let Inst{15-12} = Rd;
let Inst{11-10} = 0b00;
let Inst{9} = C;
let Inst{8} = 0;
let Inst{7-4} = 0b0100;
let Inst{3-0} = Rm;
let Unpredictable{11-8} = 0b1101;
}
def CRC32B : AI_crc32<0, 0b00, "b", int_arm_crc32b>;
def CRC32CB : AI_crc32<1, 0b00, "cb", int_arm_crc32cb>;
def CRC32H : AI_crc32<0, 0b01, "h", int_arm_crc32h>;
def CRC32CH : AI_crc32<1, 0b01, "ch", int_arm_crc32ch>;
def CRC32W : AI_crc32<0, 0b10, "w", int_arm_crc32w>;
def CRC32CW : AI_crc32<1, 0b10, "cw", int_arm_crc32cw>;
//===----------------------------------------------------------------------===//
// ARMv8.1a Privilege Access Never extension
//
// SETPAN #imm1
def SETPAN : AInoP<(outs), (ins imm0_1:$imm), MiscFrm, NoItinerary, "setpan",
"\t$imm", []>, Requires<[IsARM, HasV8, HasV8_1a]> {
bits<1> imm;
let Inst{31-28} = 0b1111;
let Inst{27-20} = 0b00010001;
let Inst{19-16} = 0b0000;
let Inst{15-10} = 0b000000;
let Inst{9} = imm;
let Inst{8} = 0b0;
let Inst{7-4} = 0b0000;
let Inst{3-0} = 0b0000;
let Unpredictable{19-16} = 0b1111;
let Unpredictable{15-10} = 0b111111;
let Unpredictable{8} = 0b1;
let Unpredictable{3-0} = 0b1111;
}
//===----------------------------------------------------------------------===//
// Comparison Instructions...
//
defm CMP : AI1_cmp_irs<0b1010, "cmp",
IIC_iCMPi, IIC_iCMPr, IIC_iCMPsr,
BinOpFrag<(ARMcmp node:$LHS, node:$RHS)>>;
// ARMcmpZ can re-use the above instruction definitions.
def : ARMPat<(ARMcmpZ GPR:$src, mod_imm:$imm),
(CMPri GPR:$src, mod_imm:$imm)>;
def : ARMPat<(ARMcmpZ GPR:$src, GPR:$rhs),
(CMPrr GPR:$src, GPR:$rhs)>;
def : ARMPat<(ARMcmpZ GPR:$src, so_reg_imm:$rhs),
(CMPrsi GPR:$src, so_reg_imm:$rhs)>;
def : ARMPat<(ARMcmpZ GPR:$src, so_reg_reg:$rhs),
(CMPrsr GPR:$src, so_reg_reg:$rhs)>;
// CMN register-integer
let isCompare = 1, Defs = [CPSR] in {
def CMNri : AI1<0b1011, (outs), (ins GPR:$Rn, mod_imm:$imm), DPFrm, IIC_iCMPi,
"cmn", "\t$Rn, $imm",
[(ARMcmn GPR:$Rn, mod_imm:$imm)]>,
Sched<[WriteCMP, ReadALU]> {
bits<4> Rn;
bits<12> imm;
let Inst{25} = 1;
let Inst{20} = 1;
let Inst{19-16} = Rn;
let Inst{15-12} = 0b0000;
let Inst{11-0} = imm;
let Unpredictable{15-12} = 0b1111;
}
// CMN register-register/shift
def CMNzrr : AI1<0b1011, (outs), (ins GPR:$Rn, GPR:$Rm), DPFrm, IIC_iCMPr,
"cmn", "\t$Rn, $Rm",
[(BinOpFrag<(ARMcmpZ node:$LHS,(ineg node:$RHS))>
GPR:$Rn, GPR:$Rm)]>, Sched<[WriteCMP, ReadALU, ReadALU]> {
bits<4> Rn;
bits<4> Rm;
let isCommutable = 1;
let Inst{25} = 0;
let Inst{20} = 1;
let Inst{19-16} = Rn;
let Inst{15-12} = 0b0000;
let Inst{11-4} = 0b00000000;
let Inst{3-0} = Rm;
let Unpredictable{15-12} = 0b1111;
}
def CMNzrsi : AI1<0b1011, (outs),
(ins GPR:$Rn, so_reg_imm:$shift), DPSoRegImmFrm, IIC_iCMPsr,
"cmn", "\t$Rn, $shift",
[(BinOpFrag<(ARMcmpZ node:$LHS,(ineg node:$RHS))>
GPR:$Rn, so_reg_imm:$shift)]>,
Sched<[WriteCMPsi, ReadALU]> {
bits<4> Rn;
bits<12> shift;
let Inst{25} = 0;
let Inst{20} = 1;
let Inst{19-16} = Rn;
let Inst{15-12} = 0b0000;
let Inst{11-5} = shift{11-5};
let Inst{4} = 0;
let Inst{3-0} = shift{3-0};
let Unpredictable{15-12} = 0b1111;
}
def CMNzrsr : AI1<0b1011, (outs),
(ins GPRnopc:$Rn, so_reg_reg:$shift), DPSoRegRegFrm, IIC_iCMPsr,
"cmn", "\t$Rn, $shift",
[(BinOpFrag<(ARMcmpZ node:$LHS,(ineg node:$RHS))>
GPRnopc:$Rn, so_reg_reg:$shift)]>,
Sched<[WriteCMPsr, ReadALU]> {
bits<4> Rn;
bits<12> shift;
let Inst{25} = 0;
let Inst{20} = 1;
let Inst{19-16} = Rn;
let Inst{15-12} = 0b0000;
let Inst{11-8} = shift{11-8};
let Inst{7} = 0;
let Inst{6-5} = shift{6-5};
let Inst{4} = 1;
let Inst{3-0} = shift{3-0};
let Unpredictable{15-12} = 0b1111;
}
}
def : ARMPat<(ARMcmp GPR:$src, mod_imm_neg:$imm),
(CMNri GPR:$src, mod_imm_neg:$imm)>;
def : ARMPat<(ARMcmpZ GPR:$src, mod_imm_neg:$imm),
(CMNri GPR:$src, mod_imm_neg:$imm)>;
// Note that TST/TEQ don't set all the same flags that CMP does!
defm TST : AI1_cmp_irs<0b1000, "tst",
IIC_iTSTi, IIC_iTSTr, IIC_iTSTsr,
BinOpFrag<(ARMcmpZ (and_su node:$LHS, node:$RHS), 0)>, 1,
"DecodeTSTInstruction">;
defm TEQ : AI1_cmp_irs<0b1001, "teq",
IIC_iTSTi, IIC_iTSTr, IIC_iTSTsr,
BinOpFrag<(ARMcmpZ (xor_su node:$LHS, node:$RHS), 0)>, 1>;
// Pseudo i64 compares for some floating point compares.
let usesCustomInserter = 1, isBranch = 1, isTerminator = 1,
Defs = [CPSR] in {
def BCCi64 : PseudoInst<(outs),
(ins i32imm:$cc, GPR:$lhs1, GPR:$lhs2, GPR:$rhs1, GPR:$rhs2, brtarget:$dst),
IIC_Br,
[(ARMBcci64 imm:$cc, GPR:$lhs1, GPR:$lhs2, GPR:$rhs1, GPR:$rhs2, bb:$dst)]>,
Sched<[WriteBr]>;
def BCCZi64 : PseudoInst<(outs),
(ins i32imm:$cc, GPR:$lhs1, GPR:$lhs2, brtarget:$dst), IIC_Br,
[(ARMBcci64 imm:$cc, GPR:$lhs1, GPR:$lhs2, 0, 0, bb:$dst)]>,
Sched<[WriteBr]>;
} // usesCustomInserter
// Conditional moves
let hasSideEffects = 0 in {
let isCommutable = 1, isSelect = 1 in
def MOVCCr : ARMPseudoInst<(outs GPR:$Rd),
(ins GPR:$false, GPR:$Rm, cmovpred:$p),
4, IIC_iCMOVr,
[(set GPR:$Rd, (ARMcmov GPR:$false, GPR:$Rm,
cmovpred:$p))]>,
RegConstraint<"$false = $Rd">, Sched<[WriteALU]>;
def MOVCCsi : ARMPseudoInst<(outs GPR:$Rd),
(ins GPR:$false, so_reg_imm:$shift, cmovpred:$p),
4, IIC_iCMOVsr,
[(set GPR:$Rd,
(ARMcmov GPR:$false, so_reg_imm:$shift,
cmovpred:$p))]>,
RegConstraint<"$false = $Rd">, Sched<[WriteALU]>;
def MOVCCsr : ARMPseudoInst<(outs GPR:$Rd),
(ins GPR:$false, so_reg_reg:$shift, cmovpred:$p),
4, IIC_iCMOVsr,
[(set GPR:$Rd, (ARMcmov GPR:$false, so_reg_reg:$shift,
cmovpred:$p))]>,
RegConstraint<"$false = $Rd">, Sched<[WriteALU]>;
let isMoveImm = 1 in
def MOVCCi16
: ARMPseudoInst<(outs GPR:$Rd),
(ins GPR:$false, imm0_65535_expr:$imm, cmovpred:$p),
4, IIC_iMOVi,
[(set GPR:$Rd, (ARMcmov GPR:$false, imm0_65535:$imm,
cmovpred:$p))]>,
RegConstraint<"$false = $Rd">, Requires<[IsARM, HasV6T2]>,
Sched<[WriteALU]>;
let isMoveImm = 1 in
def MOVCCi : ARMPseudoInst<(outs GPR:$Rd),
(ins GPR:$false, mod_imm:$imm, cmovpred:$p),
4, IIC_iCMOVi,
[(set GPR:$Rd, (ARMcmov GPR:$false, mod_imm:$imm,
cmovpred:$p))]>,
RegConstraint<"$false = $Rd">, Sched<[WriteALU]>;
// Two instruction predicate mov immediate.
let isMoveImm = 1 in
def MOVCCi32imm
: ARMPseudoInst<(outs GPR:$Rd),
(ins GPR:$false, i32imm:$src, cmovpred:$p),
8, IIC_iCMOVix2,
[(set GPR:$Rd, (ARMcmov GPR:$false, imm:$src,
cmovpred:$p))]>,
RegConstraint<"$false = $Rd">, Requires<[IsARM, HasV6T2]>;
let isMoveImm = 1 in
def MVNCCi : ARMPseudoInst<(outs GPR:$Rd),
(ins GPR:$false, mod_imm:$imm, cmovpred:$p),
4, IIC_iCMOVi,
[(set GPR:$Rd, (ARMcmov GPR:$false, mod_imm_not:$imm,
cmovpred:$p))]>,
RegConstraint<"$false = $Rd">, Sched<[WriteALU]>;
} // hasSideEffects
//===----------------------------------------------------------------------===//
// Atomic operations intrinsics
//
def MemBarrierOptOperand : AsmOperandClass {
let Name = "MemBarrierOpt";
let ParserMethod = "parseMemBarrierOptOperand";
}
def memb_opt : Operand<i32> {
let PrintMethod = "printMemBOption";
let ParserMatchClass = MemBarrierOptOperand;
let DecoderMethod = "DecodeMemBarrierOption";
}
def InstSyncBarrierOptOperand : AsmOperandClass {
let Name = "InstSyncBarrierOpt";
let ParserMethod = "parseInstSyncBarrierOptOperand";
}
def instsyncb_opt : Operand<i32> {
let PrintMethod = "printInstSyncBOption";
let ParserMatchClass = InstSyncBarrierOptOperand;
let DecoderMethod = "DecodeInstSyncBarrierOption";
}
// Memory barriers protect the atomic sequences
let hasSideEffects = 1 in {
def DMB : AInoP<(outs), (ins memb_opt:$opt), MiscFrm, NoItinerary,
"dmb", "\t$opt", [(int_arm_dmb (i32 imm0_15:$opt))]>,
Requires<[IsARM, HasDB]> {
bits<4> opt;
let Inst{31-4} = 0xf57ff05;
let Inst{3-0} = opt;
}
def DSB : AInoP<(outs), (ins memb_opt:$opt), MiscFrm, NoItinerary,
"dsb", "\t$opt", [(int_arm_dsb (i32 imm0_15:$opt))]>,
Requires<[IsARM, HasDB]> {
bits<4> opt;
let Inst{31-4} = 0xf57ff04;
let Inst{3-0} = opt;
}
// ISB has only full system option
def ISB : AInoP<(outs), (ins instsyncb_opt:$opt), MiscFrm, NoItinerary,
"isb", "\t$opt", [(int_arm_isb (i32 imm0_15:$opt))]>,
Requires<[IsARM, HasDB]> {
bits<4> opt;
let Inst{31-4} = 0xf57ff06;
let Inst{3-0} = opt;
}
}
let usesCustomInserter = 1, Defs = [CPSR] in {
// Pseudo instruction that combines movs + predicated rsbmi
// to implement integer ABS
def ABS : ARMPseudoInst<(outs GPR:$dst), (ins GPR:$src), 8, NoItinerary, []>;
}
let usesCustomInserter = 1 in {
def COPY_STRUCT_BYVAL_I32 : PseudoInst<
(outs), (ins GPR:$dst, GPR:$src, i32imm:$size, i32imm:$alignment),
NoItinerary,
[(ARMcopystructbyval GPR:$dst, GPR:$src, imm:$size, imm:$alignment)]>;
}
def ldrex_1 : PatFrag<(ops node:$ptr), (int_arm_ldrex node:$ptr), [{
return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i8;
}]>;
def ldrex_2 : PatFrag<(ops node:$ptr), (int_arm_ldrex node:$ptr), [{
return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i16;
}]>;
def ldrex_4 : PatFrag<(ops node:$ptr), (int_arm_ldrex node:$ptr), [{
return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i32;
}]>;
def strex_1 : PatFrag<(ops node:$val, node:$ptr),
(int_arm_strex node:$val, node:$ptr), [{
return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i8;
}]>;
def strex_2 : PatFrag<(ops node:$val, node:$ptr),
(int_arm_strex node:$val, node:$ptr), [{
return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i16;
}]>;
def strex_4 : PatFrag<(ops node:$val, node:$ptr),
(int_arm_strex node:$val, node:$ptr), [{
return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i32;
}]>;
def ldaex_1 : PatFrag<(ops node:$ptr), (int_arm_ldaex node:$ptr), [{
return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i8;
}]>;
def ldaex_2 : PatFrag<(ops node:$ptr), (int_arm_ldaex node:$ptr), [{
return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i16;
}]>;
def ldaex_4 : PatFrag<(ops node:$ptr), (int_arm_ldaex node:$ptr), [{
return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i32;
}]>;
def stlex_1 : PatFrag<(ops node:$val, node:$ptr),
(int_arm_stlex node:$val, node:$ptr), [{
return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i8;
}]>;
def stlex_2 : PatFrag<(ops node:$val, node:$ptr),
(int_arm_stlex node:$val, node:$ptr), [{
return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i16;
}]>;
def stlex_4 : PatFrag<(ops node:$val, node:$ptr),
(int_arm_stlex node:$val, node:$ptr), [{
return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i32;
}]>;
let mayLoad = 1 in {
def LDREXB : AIldrex<0b10, (outs GPR:$Rt), (ins addr_offset_none:$addr),
NoItinerary, "ldrexb", "\t$Rt, $addr",
[(set GPR:$Rt, (ldrex_1 addr_offset_none:$addr))]>;
def LDREXH : AIldrex<0b11, (outs GPR:$Rt), (ins addr_offset_none:$addr),
NoItinerary, "ldrexh", "\t$Rt, $addr",
[(set GPR:$Rt, (ldrex_2 addr_offset_none:$addr))]>;
def LDREX : AIldrex<0b00, (outs GPR:$Rt), (ins addr_offset_none:$addr),
NoItinerary, "ldrex", "\t$Rt, $addr",
[(set GPR:$Rt, (ldrex_4 addr_offset_none:$addr))]>;
let hasExtraDefRegAllocReq = 1 in
def LDREXD : AIldrex<0b01, (outs GPRPairOp:$Rt),(ins addr_offset_none:$addr),
NoItinerary, "ldrexd", "\t$Rt, $addr", []> {
let DecoderMethod = "DecodeDoubleRegLoad";
}
def LDAEXB : AIldaex<0b10, (outs GPR:$Rt), (ins addr_offset_none:$addr),
NoItinerary, "ldaexb", "\t$Rt, $addr",
[(set GPR:$Rt, (ldaex_1 addr_offset_none:$addr))]>;
def LDAEXH : AIldaex<0b11, (outs GPR:$Rt), (ins addr_offset_none:$addr),
NoItinerary, "ldaexh", "\t$Rt, $addr",
[(set GPR:$Rt, (ldaex_2 addr_offset_none:$addr))]>;
def LDAEX : AIldaex<0b00, (outs GPR:$Rt), (ins addr_offset_none:$addr),
NoItinerary, "ldaex", "\t$Rt, $addr",
[(set GPR:$Rt, (ldaex_4 addr_offset_none:$addr))]>;
let hasExtraDefRegAllocReq = 1 in
def LDAEXD : AIldaex<0b01, (outs GPRPairOp:$Rt),(ins addr_offset_none:$addr),
NoItinerary, "ldaexd", "\t$Rt, $addr", []> {
let DecoderMethod = "DecodeDoubleRegLoad";
}
}
let mayStore = 1, Constraints = "@earlyclobber $Rd" in {
def STREXB: AIstrex<0b10, (outs GPR:$Rd), (ins GPR:$Rt, addr_offset_none:$addr),
NoItinerary, "strexb", "\t$Rd, $Rt, $addr",
[(set GPR:$Rd, (strex_1 GPR:$Rt,
addr_offset_none:$addr))]>;
def STREXH: AIstrex<0b11, (outs GPR:$Rd), (ins GPR:$Rt, addr_offset_none:$addr),
NoItinerary, "strexh", "\t$Rd, $Rt, $addr",
[(set GPR:$Rd, (strex_2 GPR:$Rt,
addr_offset_none:$addr))]>;
def STREX : AIstrex<0b00, (outs GPR:$Rd), (ins GPR:$Rt, addr_offset_none:$addr),
NoItinerary, "strex", "\t$Rd, $Rt, $addr",
[(set GPR:$Rd, (strex_4 GPR:$Rt,
addr_offset_none:$addr))]>;
let hasExtraSrcRegAllocReq = 1 in
def STREXD : AIstrex<0b01, (outs GPR:$Rd),
(ins GPRPairOp:$Rt, addr_offset_none:$addr),
NoItinerary, "strexd", "\t$Rd, $Rt, $addr", []> {
let DecoderMethod = "DecodeDoubleRegStore";
}
def STLEXB: AIstlex<0b10, (outs GPR:$Rd), (ins GPR:$Rt, addr_offset_none:$addr),
NoItinerary, "stlexb", "\t$Rd, $Rt, $addr",
[(set GPR:$Rd,
(stlex_1 GPR:$Rt, addr_offset_none:$addr))]>;
def STLEXH: AIstlex<0b11, (outs GPR:$Rd), (ins GPR:$Rt, addr_offset_none:$addr),
NoItinerary, "stlexh", "\t$Rd, $Rt, $addr",
[(set GPR:$Rd,
(stlex_2 GPR:$Rt, addr_offset_none:$addr))]>;
def STLEX : AIstlex<0b00, (outs GPR:$Rd), (ins GPR:$Rt, addr_offset_none:$addr),
NoItinerary, "stlex", "\t$Rd, $Rt, $addr",
[(set GPR:$Rd,
(stlex_4 GPR:$Rt, addr_offset_none:$addr))]>;
let hasExtraSrcRegAllocReq = 1 in
def STLEXD : AIstlex<0b01, (outs GPR:$Rd),
(ins GPRPairOp:$Rt, addr_offset_none:$addr),
NoItinerary, "stlexd", "\t$Rd, $Rt, $addr", []> {
let DecoderMethod = "DecodeDoubleRegStore";
}
}
def CLREX : AXI<(outs), (ins), MiscFrm, NoItinerary, "clrex",
[(int_arm_clrex)]>,
Requires<[IsARM, HasV7]> {
let Inst{31-0} = 0b11110101011111111111000000011111;
}
def : ARMPat<(strex_1 (and GPR:$Rt, 0xff), addr_offset_none:$addr),
(STREXB GPR:$Rt, addr_offset_none:$addr)>;
def : ARMPat<(strex_2 (and GPR:$Rt, 0xffff), addr_offset_none:$addr),
(STREXH GPR:$Rt, addr_offset_none:$addr)>;
def : ARMPat<(stlex_1 (and GPR:$Rt, 0xff), addr_offset_none:$addr),
(STLEXB GPR:$Rt, addr_offset_none:$addr)>;
def : ARMPat<(stlex_2 (and GPR:$Rt, 0xffff), addr_offset_none:$addr),
(STLEXH GPR:$Rt, addr_offset_none:$addr)>;
class acquiring_load<PatFrag base>
: PatFrag<(ops node:$ptr), (base node:$ptr), [{
AtomicOrdering Ordering = cast<AtomicSDNode>(N)->getOrdering();
return isAtLeastAcquire(Ordering);
}]>;
def atomic_load_acquire_8 : acquiring_load<atomic_load_8>;
def atomic_load_acquire_16 : acquiring_load<atomic_load_16>;
def atomic_load_acquire_32 : acquiring_load<atomic_load_32>;
class releasing_store<PatFrag base>
: PatFrag<(ops node:$ptr, node:$val), (base node:$ptr, node:$val), [{
AtomicOrdering Ordering = cast<AtomicSDNode>(N)->getOrdering();
return isAtLeastRelease(Ordering);
}]>;
def atomic_store_release_8 : releasing_store<atomic_store_8>;
def atomic_store_release_16 : releasing_store<atomic_store_16>;
def atomic_store_release_32 : releasing_store<atomic_store_32>;
let AddedComplexity = 8 in {
def : ARMPat<(atomic_load_acquire_8 addr_offset_none:$addr), (LDAB addr_offset_none:$addr)>;
def : ARMPat<(atomic_load_acquire_16 addr_offset_none:$addr), (LDAH addr_offset_none:$addr)>;
def : ARMPat<(atomic_load_acquire_32 addr_offset_none:$addr), (LDA addr_offset_none:$addr)>;
def : ARMPat<(atomic_store_release_8 addr_offset_none:$addr, GPR:$val), (STLB GPR:$val, addr_offset_none:$addr)>;
def : ARMPat<(atomic_store_release_16 addr_offset_none:$addr, GPR:$val), (STLH GPR:$val, addr_offset_none:$addr)>;
def : ARMPat<(atomic_store_release_32 addr_offset_none:$addr, GPR:$val), (STL GPR:$val, addr_offset_none:$addr)>;
}
// SWP/SWPB are deprecated in V6/V7.
let mayLoad = 1, mayStore = 1 in {
def SWP : AIswp<0, (outs GPRnopc:$Rt),
(ins GPRnopc:$Rt2, addr_offset_none:$addr), "swp", []>,
Requires<[PreV8]>;
def SWPB: AIswp<1, (outs GPRnopc:$Rt),
(ins GPRnopc:$Rt2, addr_offset_none:$addr), "swpb", []>,
Requires<[PreV8]>;
}
//===----------------------------------------------------------------------===//
// Coprocessor Instructions.
//
def CDP : ABI<0b1110, (outs), (ins p_imm:$cop, imm0_15:$opc1,
c_imm:$CRd, c_imm:$CRn, c_imm:$CRm, imm0_7:$opc2),
NoItinerary, "cdp", "\t$cop, $opc1, $CRd, $CRn, $CRm, $opc2",
[(int_arm_cdp imm:$cop, imm:$opc1, imm:$CRd, imm:$CRn,
imm:$CRm, imm:$opc2)]>,
Requires<[PreV8]> {
bits<4> opc1;
bits<4> CRn;
bits<4> CRd;
bits<4> cop;
bits<3> opc2;
bits<4> CRm;
let Inst{3-0} = CRm;
let Inst{4} = 0;
let Inst{7-5} = opc2;
let Inst{11-8} = cop;
let Inst{15-12} = CRd;
let Inst{19-16} = CRn;
let Inst{23-20} = opc1;
}
def CDP2 : ABXI<0b1110, (outs), (ins p_imm:$cop, imm0_15:$opc1,
c_imm:$CRd, c_imm:$CRn, c_imm:$CRm, imm0_7:$opc2),
NoItinerary, "cdp2\t$cop, $opc1, $CRd, $CRn, $CRm, $opc2",
[(int_arm_cdp2 imm:$cop, imm:$opc1, imm:$CRd, imm:$CRn,
imm:$CRm, imm:$opc2)]>,
Requires<[PreV8]> {
let Inst{31-28} = 0b1111;
bits<4> opc1;
bits<4> CRn;
bits<4> CRd;
bits<4> cop;
bits<3> opc2;
bits<4> CRm;
let Inst{3-0} = CRm;
let Inst{4} = 0;
let Inst{7-5} = opc2;
let Inst{11-8} = cop;
let Inst{15-12} = CRd;
let Inst{19-16} = CRn;
let Inst{23-20} = opc1;
}
class ACI<dag oops, dag iops, string opc, string asm,
IndexMode im = IndexModeNone>
: I<oops, iops, AddrModeNone, 4, im, BrFrm, NoItinerary,
opc, asm, "", []> {
let Inst{27-25} = 0b110;
}
class ACInoP<dag oops, dag iops, string opc, string asm,
IndexMode im = IndexModeNone>
: InoP<oops, iops, AddrModeNone, 4, im, BrFrm, NoItinerary,
opc, asm, "", []> {
let Inst{31-28} = 0b1111;
let Inst{27-25} = 0b110;
}
multiclass LdStCop<bit load, bit Dbit, string asm> {
def _OFFSET : ACI<(outs), (ins p_imm:$cop, c_imm:$CRd, addrmode5:$addr),
asm, "\t$cop, $CRd, $addr"> {
bits<13> addr;
bits<4> cop;
bits<4> CRd;
let Inst{24} = 1; // P = 1
let Inst{23} = addr{8};
let Inst{22} = Dbit;
let Inst{21} = 0; // W = 0
let Inst{20} = load;
let Inst{19-16} = addr{12-9};
let Inst{15-12} = CRd;
let Inst{11-8} = cop;
let Inst{7-0} = addr{7-0};
let DecoderMethod = "DecodeCopMemInstruction";
}
def _PRE : ACI<(outs), (ins p_imm:$cop, c_imm:$CRd, addrmode5_pre:$addr),
asm, "\t$cop, $CRd, $addr!", IndexModePre> {
bits<13> addr;
bits<4> cop;
bits<4> CRd;
let Inst{24} = 1; // P = 1
let Inst{23} = addr{8};
let Inst{22} = Dbit;
let Inst{21} = 1; // W = 1
let Inst{20} = load;
let Inst{19-16} = addr{12-9};
let Inst{15-12} = CRd;
let Inst{11-8} = cop;
let Inst{7-0} = addr{7-0};
let DecoderMethod = "DecodeCopMemInstruction";
}
def _POST: ACI<(outs), (ins p_imm:$cop, c_imm:$CRd, addr_offset_none:$addr,
postidx_imm8s4:$offset),
asm, "\t$cop, $CRd, $addr, $offset", IndexModePost> {
bits<9> offset;
bits<4> addr;
bits<4> cop;
bits<4> CRd;
let Inst{24} = 0; // P = 0
let Inst{23} = offset{8};
let Inst{22} = Dbit;
let Inst{21} = 1; // W = 1
let Inst{20} = load;
let Inst{19-16} = addr;
let Inst{15-12} = CRd;
let Inst{11-8} = cop;
let Inst{7-0} = offset{7-0};
let DecoderMethod = "DecodeCopMemInstruction";
}
def _OPTION : ACI<(outs),
(ins p_imm:$cop, c_imm:$CRd, addr_offset_none:$addr,
coproc_option_imm:$option),
asm, "\t$cop, $CRd, $addr, $option"> {
bits<8> option;
bits<4> addr;
bits<4> cop;
bits<4> CRd;
let Inst{24} = 0; // P = 0
let Inst{23} = 1; // U = 1
let Inst{22} = Dbit;
let Inst{21} = 0; // W = 0
let Inst{20} = load;
let Inst{19-16} = addr;
let Inst{15-12} = CRd;
let Inst{11-8} = cop;
let Inst{7-0} = option;
let DecoderMethod = "DecodeCopMemInstruction";
}
}
multiclass LdSt2Cop<bit load, bit Dbit, string asm> {
def _OFFSET : ACInoP<(outs), (ins p_imm:$cop, c_imm:$CRd, addrmode5:$addr),
asm, "\t$cop, $CRd, $addr"> {
bits<13> addr;
bits<4> cop;
bits<4> CRd;
let Inst{24} = 1; // P = 1
let Inst{23} = addr{8};
let Inst{22} = Dbit;
let Inst{21} = 0; // W = 0
let Inst{20} = load;
let Inst{19-16} = addr{12-9};
let Inst{15-12} = CRd;
let Inst{11-8} = cop;
let Inst{7-0} = addr{7-0};
let DecoderMethod = "DecodeCopMemInstruction";
}
def _PRE : ACInoP<(outs), (ins p_imm:$cop, c_imm:$CRd, addrmode5_pre:$addr),
asm, "\t$cop, $CRd, $addr!", IndexModePre> {
bits<13> addr;
bits<4> cop;
bits<4> CRd;
let Inst{24} = 1; // P = 1
let Inst{23} = addr{8};
let Inst{22} = Dbit;
let Inst{21} = 1; // W = 1
let Inst{20} = load;
let Inst{19-16} = addr{12-9};
let Inst{15-12} = CRd;
let Inst{11-8} = cop;
let Inst{7-0} = addr{7-0};
let DecoderMethod = "DecodeCopMemInstruction";
}
def _POST: ACInoP<(outs), (ins p_imm:$cop, c_imm:$CRd, addr_offset_none:$addr,
postidx_imm8s4:$offset),
asm, "\t$cop, $CRd, $addr, $offset", IndexModePost> {
bits<9> offset;
bits<4> addr;
bits<4> cop;
bits<4> CRd;
let Inst{24} = 0; // P = 0
let Inst{23} = offset{8};
let Inst{22} = Dbit;
let Inst{21} = 1; // W = 1
let Inst{20} = load;
let Inst{19-16} = addr;
let Inst{15-12} = CRd;
let Inst{11-8} = cop;
let Inst{7-0} = offset{7-0};
let DecoderMethod = "DecodeCopMemInstruction";
}
def _OPTION : ACInoP<(outs),
(ins p_imm:$cop, c_imm:$CRd, addr_offset_none:$addr,
coproc_option_imm:$option),
asm, "\t$cop, $CRd, $addr, $option"> {
bits<8> option;
bits<4> addr;
bits<4> cop;
bits<4> CRd;
let Inst{24} = 0; // P = 0
let Inst{23} = 1; // U = 1
let Inst{22} = Dbit;
let Inst{21} = 0; // W = 0
let Inst{20} = load;
let Inst{19-16} = addr;
let Inst{15-12} = CRd;
let Inst{11-8} = cop;
let Inst{7-0} = option;
let DecoderMethod = "DecodeCopMemInstruction";
}
}
defm LDC : LdStCop <1, 0, "ldc">;
defm LDCL : LdStCop <1, 1, "ldcl">;
defm STC : LdStCop <0, 0, "stc">;
defm STCL : LdStCop <0, 1, "stcl">;
defm LDC2 : LdSt2Cop<1, 0, "ldc2">, Requires<[PreV8]>;
defm LDC2L : LdSt2Cop<1, 1, "ldc2l">, Requires<[PreV8]>;
defm STC2 : LdSt2Cop<0, 0, "stc2">, Requires<[PreV8]>;
defm STC2L : LdSt2Cop<0, 1, "stc2l">, Requires<[PreV8]>;
//===----------------------------------------------------------------------===//
// Move between coprocessor and ARM core register.
//
class MovRCopro<string opc, bit direction, dag oops, dag iops,
list<dag> pattern>
: ABI<0b1110, oops, iops, NoItinerary, opc,
"\t$cop, $opc1, $Rt, $CRn, $CRm, $opc2", pattern> {
let Inst{20} = direction;
let Inst{4} = 1;
bits<4> Rt;
bits<4> cop;
bits<3> opc1;
bits<3> opc2;
bits<4> CRm;
bits<4> CRn;
let Inst{15-12} = Rt;
let Inst{11-8} = cop;
let Inst{23-21} = opc1;
let Inst{7-5} = opc2;
let Inst{3-0} = CRm;
let Inst{19-16} = CRn;
}
def MCR : MovRCopro<"mcr", 0 /* from ARM core register to coprocessor */,
(outs),
(ins p_imm:$cop, imm0_7:$opc1, GPR:$Rt, c_imm:$CRn,
c_imm:$CRm, imm0_7:$opc2),
[(int_arm_mcr imm:$cop, imm:$opc1, GPR:$Rt, imm:$CRn,
imm:$CRm, imm:$opc2)]>,
ComplexDeprecationPredicate<"MCR">;
def : ARMInstAlias<"mcr${p} $cop, $opc1, $Rt, $CRn, $CRm",
(MCR p_imm:$cop, imm0_7:$opc1, GPR:$Rt, c_imm:$CRn,
c_imm:$CRm, 0, pred:$p)>;
def MRC : MovRCopro<"mrc", 1 /* from coprocessor to ARM core register */,
(outs GPRwithAPSR:$Rt),
(ins p_imm:$cop, imm0_7:$opc1, c_imm:$CRn, c_imm:$CRm,
imm0_7:$opc2), []>;
def : ARMInstAlias<"mrc${p} $cop, $opc1, $Rt, $CRn, $CRm",
(MRC GPRwithAPSR:$Rt, p_imm:$cop, imm0_7:$opc1, c_imm:$CRn,
c_imm:$CRm, 0, pred:$p)>;
def : ARMPat<(int_arm_mrc imm:$cop, imm:$opc1, imm:$CRn, imm:$CRm, imm:$opc2),
(MRC imm:$cop, imm:$opc1, imm:$CRn, imm:$CRm, imm:$opc2)>;
class MovRCopro2<string opc, bit direction, dag oops, dag iops,
list<dag> pattern>
: ABXI<0b1110, oops, iops, NoItinerary,
!strconcat(opc, "\t$cop, $opc1, $Rt, $CRn, $CRm, $opc2"), pattern> {
let Inst{31-24} = 0b11111110;
let Inst{20} = direction;
let Inst{4} = 1;
bits<4> Rt;
bits<4> cop;
bits<3> opc1;
bits<3> opc2;
bits<4> CRm;
bits<4> CRn;
let Inst{15-12} = Rt;
let Inst{11-8} = cop;
let Inst{23-21} = opc1;
let Inst{7-5} = opc2;
let Inst{3-0} = CRm;
let Inst{19-16} = CRn;
}
def MCR2 : MovRCopro2<"mcr2", 0 /* from ARM core register to coprocessor */,
(outs),
(ins p_imm:$cop, imm0_7:$opc1, GPR:$Rt, c_imm:$CRn,
c_imm:$CRm, imm0_7:$opc2),
[(int_arm_mcr2 imm:$cop, imm:$opc1, GPR:$Rt, imm:$CRn,
imm:$CRm, imm:$opc2)]>,
Requires<[PreV8]>;
def : ARMInstAlias<"mcr2 $cop, $opc1, $Rt, $CRn, $CRm",
(MCR2 p_imm:$cop, imm0_7:$opc1, GPR:$Rt, c_imm:$CRn,
c_imm:$CRm, 0)>;
def MRC2 : MovRCopro2<"mrc2", 1 /* from coprocessor to ARM core register */,
(outs GPRwithAPSR:$Rt),
(ins p_imm:$cop, imm0_7:$opc1, c_imm:$CRn, c_imm:$CRm,
imm0_7:$opc2), []>,
Requires<[PreV8]>;
def : ARMInstAlias<"mrc2 $cop, $opc1, $Rt, $CRn, $CRm",
(MRC2 GPRwithAPSR:$Rt, p_imm:$cop, imm0_7:$opc1, c_imm:$CRn,
c_imm:$CRm, 0)>;
def : ARMV5TPat<(int_arm_mrc2 imm:$cop, imm:$opc1, imm:$CRn,
imm:$CRm, imm:$opc2),
(MRC2 imm:$cop, imm:$opc1, imm:$CRn, imm:$CRm, imm:$opc2)>;
class MovRRCopro<string opc, bit direction, dag oops, dag iops, list<dag>
pattern = []>
: ABI<0b1100, oops, iops, NoItinerary, opc, "\t$cop, $opc1, $Rt, $Rt2, $CRm",
pattern> {
let Inst{23-21} = 0b010;
let Inst{20} = direction;
bits<4> Rt;
bits<4> Rt2;
bits<4> cop;
bits<4> opc1;
bits<4> CRm;
let Inst{15-12} = Rt;
let Inst{19-16} = Rt2;
let Inst{11-8} = cop;
let Inst{7-4} = opc1;
let Inst{3-0} = CRm;
}
def MCRR : MovRRCopro<"mcrr", 0 /* from ARM core register to coprocessor */,
(outs), (ins p_imm:$cop, imm0_15:$opc1, GPRnopc:$Rt,
GPRnopc:$Rt2, c_imm:$CRm),
[(int_arm_mcrr imm:$cop, imm:$opc1, GPRnopc:$Rt,
GPRnopc:$Rt2, imm:$CRm)]>;
def MRRC : MovRRCopro<"mrrc", 1 /* from coprocessor to ARM core register */,
(outs GPRnopc:$Rt, GPRnopc:$Rt2),
(ins p_imm:$cop, imm0_15:$opc1, c_imm:$CRm), []>;
class MovRRCopro2<string opc, bit direction, list<dag> pattern = []>
: ABXI<0b1100, (outs), (ins p_imm:$cop, imm0_15:$opc1,
GPRnopc:$Rt, GPRnopc:$Rt2, c_imm:$CRm), NoItinerary,
!strconcat(opc, "\t$cop, $opc1, $Rt, $Rt2, $CRm"), pattern>,
Requires<[PreV8]> {
let Inst{31-28} = 0b1111;
let Inst{23-21} = 0b010;
let Inst{20} = direction;
bits<4> Rt;
bits<4> Rt2;
bits<4> cop;
bits<4> opc1;
bits<4> CRm;
let Inst{15-12} = Rt;
let Inst{19-16} = Rt2;
let Inst{11-8} = cop;
let Inst{7-4} = opc1;
let Inst{3-0} = CRm;
let DecoderMethod = "DecodeMRRC2";
}
def MCRR2 : MovRRCopro2<"mcrr2", 0 /* from ARM core register to coprocessor */,
[(int_arm_mcrr2 imm:$cop, imm:$opc1, GPRnopc:$Rt,
GPRnopc:$Rt2, imm:$CRm)]>;
def MRRC2 : MovRRCopro2<"mrrc2", 1 /* from coprocessor to ARM core register */>;
//===----------------------------------------------------------------------===//
// Move between special register and ARM core register
//
// Move to ARM core register from Special Register
def MRS : ABI<0b0001, (outs GPRnopc:$Rd), (ins), NoItinerary,
"mrs", "\t$Rd, apsr", []> {
bits<4> Rd;
let Inst{23-16} = 0b00001111;
let Unpredictable{19-17} = 0b111;
let Inst{15-12} = Rd;
let Inst{11-0} = 0b000000000000;
let Unpredictable{11-0} = 0b110100001111;
}
def : InstAlias<"mrs${p} $Rd, cpsr", (MRS GPRnopc:$Rd, pred:$p)>,
Requires<[IsARM]>;
// The MRSsys instruction is the MRS instruction from the ARM ARM,
// section B9.3.9, with the R bit set to 1.
def MRSsys : ABI<0b0001, (outs GPRnopc:$Rd), (ins), NoItinerary,
"mrs", "\t$Rd, spsr", []> {
bits<4> Rd;
let Inst{23-16} = 0b01001111;
let Unpredictable{19-16} = 0b1111;
let Inst{15-12} = Rd;
let Inst{11-0} = 0b000000000000;
let Unpredictable{11-0} = 0b110100001111;
}
// However, the MRS (banked register) system instruction (ARMv7VE) *does* have a
// separate encoding (distinguished by bit 5.
def MRSbanked : ABI<0b0001, (outs GPRnopc:$Rd), (ins banked_reg:$banked),
NoItinerary, "mrs", "\t$Rd, $banked", []>,
Requires<[IsARM, HasVirtualization]> {
bits<6> banked;
bits<4> Rd;
let Inst{23} = 0;
let Inst{22} = banked{5}; // R bit
let Inst{21-20} = 0b00;
let Inst{19-16} = banked{3-0};
let Inst{15-12} = Rd;
let Inst{11-9} = 0b001;
let Inst{8} = banked{4};
let Inst{7-0} = 0b00000000;
}
// Move from ARM core register to Special Register
//
// No need to have both system and application versions of MSR (immediate) or
// MSR (register), the encodings are the same and the assembly parser has no way
// to distinguish between them. The mask operand contains the special register
// (R Bit) in bit 4 and bits 3-0 contains the mask with the fields to be
// accessed in the special register.
def MSR : ABI<0b0001, (outs), (ins msr_mask:$mask, GPR:$Rn), NoItinerary,
"msr", "\t$mask, $Rn", []> {
bits<5> mask;
bits<4> Rn;
let Inst{23} = 0;
let Inst{22} = mask{4}; // R bit
let Inst{21-20} = 0b10;
let Inst{19-16} = mask{3-0};
let Inst{15-12} = 0b1111;
let Inst{11-4} = 0b00000000;
let Inst{3-0} = Rn;
}
def MSRi : ABI<0b0011, (outs), (ins msr_mask:$mask, mod_imm:$imm), NoItinerary,
"msr", "\t$mask, $imm", []> {
bits<5> mask;
bits<12> imm;
let Inst{23} = 0;
let Inst{22} = mask{4}; // R bit
let Inst{21-20} = 0b10;
let Inst{19-16} = mask{3-0};
let Inst{15-12} = 0b1111;
let Inst{11-0} = imm;
}
// However, the MSR (banked register) system instruction (ARMv7VE) *does* have a
// separate encoding (distinguished by bit 5.
def MSRbanked : ABI<0b0001, (outs), (ins banked_reg:$banked, GPRnopc:$Rn),
NoItinerary, "msr", "\t$banked, $Rn", []>,
Requires<[IsARM, HasVirtualization]> {
bits<6> banked;
bits<4> Rn;
let Inst{23} = 0;
let Inst{22} = banked{5}; // R bit
let Inst{21-20} = 0b10;
let Inst{19-16} = banked{3-0};
let Inst{15-12} = 0b1111;
let Inst{11-9} = 0b001;
let Inst{8} = banked{4};
let Inst{7-4} = 0b0000;
let Inst{3-0} = Rn;
}
// Dynamic stack allocation yields a _chkstk for Windows targets. These calls
// are needed to probe the stack when allocating more than
// 4k bytes in one go. Touching the stack at 4K increments is necessary to
// ensure that the guard pages used by the OS virtual memory manager are
// allocated in correct sequence.
// The main point of having separate instruction are extra unmodelled effects
// (compared to ordinary calls) like stack pointer change.
def win__chkstk : SDNode<"ARMISD::WIN__CHKSTK", SDTNone,
[SDNPHasChain, SDNPSideEffect]>;
let usesCustomInserter = 1, Uses = [R4], Defs = [R4, SP] in
def WIN__CHKSTK : PseudoInst<(outs), (ins), NoItinerary, [(win__chkstk)]>;
//===----------------------------------------------------------------------===//
// TLS Instructions
//
// __aeabi_read_tp preserves the registers r1-r3.
// This is a pseudo inst so that we can get the encoding right,
// complete with fixup for the aeabi_read_tp function.
// TPsoft is valid for ARM mode only, in case of Thumb mode a tTPsoft pattern
// is defined in "ARMInstrThumb.td".
let isCall = 1,
Defs = [R0, R12, LR, CPSR], Uses = [SP] in {
def TPsoft : ARMPseudoInst<(outs), (ins), 4, IIC_Br,
[(set R0, ARMthread_pointer)]>, Sched<[WriteBr]>;
}
//===----------------------------------------------------------------------===//
// SJLJ Exception handling intrinsics
// eh_sjlj_setjmp() is an instruction sequence to store the return
// address and save #0 in R0 for the non-longjmp case.
// Since by its nature we may be coming from some other function to get
// here, and we're using the stack frame for the containing function to
// save/restore registers, we can't keep anything live in regs across
// the eh_sjlj_setjmp(), else it will almost certainly have been tromped upon
// when we get here from a longjmp(). We force everything out of registers
// except for our own input by listing the relevant registers in Defs. By
// doing so, we also cause the prologue/epilogue code to actively preserve
// all of the callee-saved resgisters, which is exactly what we want.
// A constant value is passed in $val, and we use the location as a scratch.
//
// These are pseudo-instructions and are lowered to individual MC-insts, so
// no encoding information is necessary.
let Defs =
[ R0, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, LR, CPSR,
Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9, Q10, Q11, Q12, Q13, Q14, Q15 ],
hasSideEffects = 1, isBarrier = 1, usesCustomInserter = 1 in {
def Int_eh_sjlj_setjmp : PseudoInst<(outs), (ins GPR:$src, GPR:$val),
NoItinerary,
[(set R0, (ARMeh_sjlj_setjmp GPR:$src, GPR:$val))]>,
Requires<[IsARM, HasVFP2]>;
}
let Defs =
[ R0, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, LR, CPSR ],
hasSideEffects = 1, isBarrier = 1, usesCustomInserter = 1 in {
def Int_eh_sjlj_setjmp_nofp : PseudoInst<(outs), (ins GPR:$src, GPR:$val),
NoItinerary,
[(set R0, (ARMeh_sjlj_setjmp GPR:$src, GPR:$val))]>,
Requires<[IsARM, NoVFP]>;
}
// FIXME: Non-IOS version(s)
let isBarrier = 1, hasSideEffects = 1, isTerminator = 1,
Defs = [ R7, LR, SP ] in {
def Int_eh_sjlj_longjmp : PseudoInst<(outs), (ins GPR:$src, GPR:$scratch),
NoItinerary,
[(ARMeh_sjlj_longjmp GPR:$src, GPR:$scratch)]>,
Requires<[IsARM]>;
}
let isBarrier = 1, hasSideEffects = 1, usesCustomInserter = 1 in
def Int_eh_sjlj_setup_dispatch : PseudoInst<(outs), (ins), NoItinerary,
[(ARMeh_sjlj_setup_dispatch)]>;
// eh.sjlj.dispatchsetup pseudo-instruction.
// This pseudo is used for both ARM and Thumb. Any differences are handled when
// the pseudo is expanded (which happens before any passes that need the
// instruction size).
let isBarrier = 1 in
def Int_eh_sjlj_dispatchsetup : PseudoInst<(outs), (ins), NoItinerary, []>;
//===----------------------------------------------------------------------===//
// Non-Instruction Patterns
//
// ARMv4 indirect branch using (MOVr PC, dst)
let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in
def MOVPCRX : ARMPseudoExpand<(outs), (ins GPR:$dst),
4, IIC_Br, [(brind GPR:$dst)],
(MOVr PC, GPR:$dst, (ops 14, zero_reg), zero_reg)>,
Requires<[IsARM, NoV4T]>, Sched<[WriteBr]>;
// Large immediate handling.
// 32-bit immediate using two piece mod_imms or movw + movt.
// This is a single pseudo instruction, the benefit is that it can be remat'd
// as a single unit instead of having to handle reg inputs.
// FIXME: Remove this when we can do generalized remat.
let isReMaterializable = 1, isMoveImm = 1 in
def MOVi32imm : PseudoInst<(outs GPR:$dst), (ins i32imm:$src), IIC_iMOVix2,
[(set GPR:$dst, (arm_i32imm:$src))]>,
Requires<[IsARM]>;
def LDRLIT_ga_abs : PseudoInst<(outs GPR:$dst), (ins i32imm:$src), IIC_iLoad_i,
[(set GPR:$dst, (ARMWrapper tglobaladdr:$src))]>,
Requires<[IsARM, DontUseMovt]>;
// Pseudo instruction that combines movw + movt + add pc (if PIC).
// It also makes it possible to rematerialize the instructions.
// FIXME: Remove this when we can do generalized remat and when machine licm
// can properly the instructions.
let isReMaterializable = 1 in {
def MOV_ga_pcrel : PseudoInst<(outs GPR:$dst), (ins i32imm:$addr),
IIC_iMOVix2addpc,
[(set GPR:$dst, (ARMWrapperPIC tglobaladdr:$addr))]>,
Requires<[IsARM, UseMovt]>;
def LDRLIT_ga_pcrel : PseudoInst<(outs GPR:$dst), (ins i32imm:$addr),
IIC_iLoadiALU,
[(set GPR:$dst,
(ARMWrapperPIC tglobaladdr:$addr))]>,
Requires<[IsARM, DontUseMovt]>;
let AddedComplexity = 10 in
def LDRLIT_ga_pcrel_ldr : PseudoInst<(outs GPR:$dst), (ins i32imm:$addr),
NoItinerary,
[(set GPR:$dst,
(load (ARMWrapperPIC tglobaladdr:$addr)))]>,
Requires<[IsARM, DontUseMovt]>;
let AddedComplexity = 10 in
def MOV_ga_pcrel_ldr : PseudoInst<(outs GPR:$dst), (ins i32imm:$addr),
IIC_iMOVix2ld,
[(set GPR:$dst, (load (ARMWrapperPIC tglobaladdr:$addr)))]>,
Requires<[IsARM, UseMovt]>;
} // isReMaterializable
// ConstantPool, GlobalAddress, and JumpTable
def : ARMPat<(ARMWrapper tconstpool :$dst), (LEApcrel tconstpool :$dst)>;
def : ARMPat<(ARMWrapper tglobaladdr :$dst), (MOVi32imm tglobaladdr :$dst)>,
Requires<[IsARM, UseMovt]>;
def : ARMPat<(ARMWrapperJT tjumptable:$dst),
(LEApcrelJT tjumptable:$dst)>;
// TODO: add,sub,and, 3-instr forms?
// Tail calls. These patterns also apply to Thumb mode.
def : Pat<(ARMtcret tcGPR:$dst), (TCRETURNri tcGPR:$dst)>;
def : Pat<(ARMtcret (i32 tglobaladdr:$dst)), (TCRETURNdi texternalsym:$dst)>;
def : Pat<(ARMtcret (i32 texternalsym:$dst)), (TCRETURNdi texternalsym:$dst)>;
// Direct calls
def : ARMPat<(ARMcall texternalsym:$func), (BL texternalsym:$func)>;
def : ARMPat<(ARMcall_nolink texternalsym:$func),
(BMOVPCB_CALL texternalsym:$func)>;
// zextload i1 -> zextload i8
def : ARMPat<(zextloadi1 addrmode_imm12:$addr), (LDRBi12 addrmode_imm12:$addr)>;
def : ARMPat<(zextloadi1 ldst_so_reg:$addr), (LDRBrs ldst_so_reg:$addr)>;
// extload -> zextload
def : ARMPat<(extloadi1 addrmode_imm12:$addr), (LDRBi12 addrmode_imm12:$addr)>;
def : ARMPat<(extloadi1 ldst_so_reg:$addr), (LDRBrs ldst_so_reg:$addr)>;
def : ARMPat<(extloadi8 addrmode_imm12:$addr), (LDRBi12 addrmode_imm12:$addr)>;
def : ARMPat<(extloadi8 ldst_so_reg:$addr), (LDRBrs ldst_so_reg:$addr)>;
def : ARMPat<(extloadi16 addrmode3:$addr), (LDRH addrmode3:$addr)>;
def : ARMPat<(extloadi8 addrmodepc:$addr), (PICLDRB addrmodepc:$addr)>;
def : ARMPat<(extloadi16 addrmodepc:$addr), (PICLDRH addrmodepc:$addr)>;
// smul* and smla*
def : ARMV5TEPat<(mul (sra (shl GPR:$a, (i32 16)), (i32 16)),
(sra (shl GPR:$b, (i32 16)), (i32 16))),
(SMULBB GPR:$a, GPR:$b)>;
def : ARMV5TEPat<(mul sext_16_node:$a, sext_16_node:$b),
(SMULBB GPR:$a, GPR:$b)>;
def : ARMV5TEPat<(mul (sra (shl GPR:$a, (i32 16)), (i32 16)),
(sra GPR:$b, (i32 16))),
(SMULBT GPR:$a, GPR:$b)>;
def : ARMV5TEPat<(mul sext_16_node:$a, (sra GPR:$b, (i32 16))),
(SMULBT GPR:$a, GPR:$b)>;
def : ARMV5TEPat<(mul (sra GPR:$a, (i32 16)),
(sra (shl GPR:$b, (i32 16)), (i32 16))),
(SMULTB GPR:$a, GPR:$b)>;
def : ARMV5TEPat<(mul (sra GPR:$a, (i32 16)), sext_16_node:$b),
(SMULTB GPR:$a, GPR:$b)>;
def : ARMV5MOPat<(add GPR:$acc,
(mul (sra (shl GPR:$a, (i32 16)), (i32 16)),
(sra (shl GPR:$b, (i32 16)), (i32 16)))),
(SMLABB GPR:$a, GPR:$b, GPR:$acc)>;
def : ARMV5MOPat<(add GPR:$acc,
(mul sext_16_node:$a, sext_16_node:$b)),
(SMLABB GPR:$a, GPR:$b, GPR:$acc)>;
def : ARMV5MOPat<(add GPR:$acc,
(mul (sra (shl GPR:$a, (i32 16)), (i32 16)),
(sra GPR:$b, (i32 16)))),
(SMLABT GPR:$a, GPR:$b, GPR:$acc)>;
def : ARMV5MOPat<(add GPR:$acc,
(mul sext_16_node:$a, (sra GPR:$b, (i32 16)))),
(SMLABT GPR:$a, GPR:$b, GPR:$acc)>;
def : ARMV5MOPat<(add GPR:$acc,
(mul (sra GPR:$a, (i32 16)),
(sra (shl GPR:$b, (i32 16)), (i32 16)))),
(SMLATB GPR:$a, GPR:$b, GPR:$acc)>;
def : ARMV5MOPat<(add GPR:$acc,
(mul (sra GPR:$a, (i32 16)), sext_16_node:$b)),
(SMLATB GPR:$a, GPR:$b, GPR:$acc)>;
// Pre-v7 uses MCR for synchronization barriers.
def : ARMPat<(ARMMemBarrierMCR GPR:$zero), (MCR 15, 0, GPR:$zero, 7, 10, 5)>,
Requires<[IsARM, HasV6]>;
// SXT/UXT with no rotate
let AddedComplexity = 16 in {
def : ARMV6Pat<(and GPR:$Src, 0x000000FF), (UXTB GPR:$Src, 0)>;
def : ARMV6Pat<(and GPR:$Src, 0x0000FFFF), (UXTH GPR:$Src, 0)>;
def : ARMV6Pat<(and GPR:$Src, 0x00FF00FF), (UXTB16 GPR:$Src, 0)>;
def : ARMV6Pat<(add GPR:$Rn, (and GPR:$Rm, 0x00FF)),
(UXTAB GPR:$Rn, GPR:$Rm, 0)>;
def : ARMV6Pat<(add GPR:$Rn, (and GPR:$Rm, 0xFFFF)),
(UXTAH GPR:$Rn, GPR:$Rm, 0)>;
}
def : ARMV6Pat<(sext_inreg GPR:$Src, i8), (SXTB GPR:$Src, 0)>;
def : ARMV6Pat<(sext_inreg GPR:$Src, i16), (SXTH GPR:$Src, 0)>;
def : ARMV6Pat<(add GPR:$Rn, (sext_inreg GPRnopc:$Rm, i8)),
(SXTAB GPR:$Rn, GPRnopc:$Rm, 0)>;
def : ARMV6Pat<(add GPR:$Rn, (sext_inreg GPRnopc:$Rm, i16)),
(SXTAH GPR:$Rn, GPRnopc:$Rm, 0)>;
// Atomic load/store patterns
def : ARMPat<(atomic_load_8 ldst_so_reg:$src),
(LDRBrs ldst_so_reg:$src)>;
def : ARMPat<(atomic_load_8 addrmode_imm12:$src),
(LDRBi12 addrmode_imm12:$src)>;
def : ARMPat<(atomic_load_16 addrmode3:$src),
(LDRH addrmode3:$src)>;
def : ARMPat<(atomic_load_32 ldst_so_reg:$src),
(LDRrs ldst_so_reg:$src)>;
def : ARMPat<(atomic_load_32 addrmode_imm12:$src),
(LDRi12 addrmode_imm12:$src)>;
def : ARMPat<(atomic_store_8 ldst_so_reg:$ptr, GPR:$val),
(STRBrs GPR:$val, ldst_so_reg:$ptr)>;
def : ARMPat<(atomic_store_8 addrmode_imm12:$ptr, GPR:$val),
(STRBi12 GPR:$val, addrmode_imm12:$ptr)>;
def : ARMPat<(atomic_store_16 addrmode3:$ptr, GPR:$val),
(STRH GPR:$val, addrmode3:$ptr)>;
def : ARMPat<(atomic_store_32 ldst_so_reg:$ptr, GPR:$val),
(STRrs GPR:$val, ldst_so_reg:$ptr)>;
def : ARMPat<(atomic_store_32 addrmode_imm12:$ptr, GPR:$val),
(STRi12 GPR:$val, addrmode_imm12:$ptr)>;
//===----------------------------------------------------------------------===//
// Thumb Support
//
include "ARMInstrThumb.td"
//===----------------------------------------------------------------------===//
// Thumb2 Support
//
include "ARMInstrThumb2.td"
//===----------------------------------------------------------------------===//
// Floating Point Support
//
include "ARMInstrVFP.td"
//===----------------------------------------------------------------------===//
// Advanced SIMD (NEON) Support
//
include "ARMInstrNEON.td"
//===----------------------------------------------------------------------===//
// Assembler aliases
//
// Memory barriers
def : InstAlias<"dmb", (DMB 0xf)>, Requires<[IsARM, HasDB]>;
def : InstAlias<"dsb", (DSB 0xf)>, Requires<[IsARM, HasDB]>;
def : InstAlias<"isb", (ISB 0xf)>, Requires<[IsARM, HasDB]>;
// System instructions
def : MnemonicAlias<"swi", "svc">;
// Load / Store Multiple
def : MnemonicAlias<"ldmfd", "ldm">;
def : MnemonicAlias<"ldmia", "ldm">;
def : MnemonicAlias<"ldmea", "ldmdb">;
def : MnemonicAlias<"stmfd", "stmdb">;
def : MnemonicAlias<"stmia", "stm">;
def : MnemonicAlias<"stmea", "stm">;
// PKHBT/PKHTB with default shift amount. PKHTB is equivalent to PKHBT when the
// shift amount is zero (i.e., unspecified).
def : InstAlias<"pkhbt${p} $Rd, $Rn, $Rm",
(PKHBT GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, 0, pred:$p)>,
Requires<[IsARM, HasV6]>;
def : InstAlias<"pkhtb${p} $Rd, $Rn, $Rm",
(PKHBT GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, 0, pred:$p)>,
Requires<[IsARM, HasV6]>;
// PUSH/POP aliases for STM/LDM
def : ARMInstAlias<"push${p} $regs", (STMDB_UPD SP, pred:$p, reglist:$regs)>;
def : ARMInstAlias<"pop${p} $regs", (LDMIA_UPD SP, pred:$p, reglist:$regs)>;
// SSAT/USAT optional shift operand.
def : ARMInstAlias<"ssat${p} $Rd, $sat_imm, $Rn",
(SSAT GPRnopc:$Rd, imm1_32:$sat_imm, GPRnopc:$Rn, 0, pred:$p)>;
def : ARMInstAlias<"usat${p} $Rd, $sat_imm, $Rn",
(USAT GPRnopc:$Rd, imm0_31:$sat_imm, GPRnopc:$Rn, 0, pred:$p)>;
// Extend instruction optional rotate operand.
def : ARMInstAlias<"sxtab${p} $Rd, $Rn, $Rm",
(SXTAB GPRnopc:$Rd, GPR:$Rn, GPRnopc:$Rm, 0, pred:$p)>;
def : ARMInstAlias<"sxtah${p} $Rd, $Rn, $Rm",
(SXTAH GPRnopc:$Rd, GPR:$Rn, GPRnopc:$Rm, 0, pred:$p)>;
def : ARMInstAlias<"sxtab16${p} $Rd, $Rn, $Rm",
(SXTAB16 GPRnopc:$Rd, GPR:$Rn, GPRnopc:$Rm, 0, pred:$p)>;
def : ARMInstAlias<"sxtb${p} $Rd, $Rm",
(SXTB GPRnopc:$Rd, GPRnopc:$Rm, 0, pred:$p)>;
def : ARMInstAlias<"sxtb16${p} $Rd, $Rm",
(SXTB16 GPRnopc:$Rd, GPRnopc:$Rm, 0, pred:$p)>;
def : ARMInstAlias<"sxth${p} $Rd, $Rm",
(SXTH GPRnopc:$Rd, GPRnopc:$Rm, 0, pred:$p)>;
def : ARMInstAlias<"uxtab${p} $Rd, $Rn, $Rm",
(UXTAB GPRnopc:$Rd, GPR:$Rn, GPRnopc:$Rm, 0, pred:$p)>;
def : ARMInstAlias<"uxtah${p} $Rd, $Rn, $Rm",
(UXTAH GPRnopc:$Rd, GPR:$Rn, GPRnopc:$Rm, 0, pred:$p)>;
def : ARMInstAlias<"uxtab16${p} $Rd, $Rn, $Rm",
(UXTAB16 GPRnopc:$Rd, GPR:$Rn, GPRnopc:$Rm, 0, pred:$p)>;
def : ARMInstAlias<"uxtb${p} $Rd, $Rm",
(UXTB GPRnopc:$Rd, GPRnopc:$Rm, 0, pred:$p)>;
def : ARMInstAlias<"uxtb16${p} $Rd, $Rm",
(UXTB16 GPRnopc:$Rd, GPRnopc:$Rm, 0, pred:$p)>;
def : ARMInstAlias<"uxth${p} $Rd, $Rm",
(UXTH GPRnopc:$Rd, GPRnopc:$Rm, 0, pred:$p)>;
// RFE aliases
def : MnemonicAlias<"rfefa", "rfeda">;
def : MnemonicAlias<"rfeea", "rfedb">;
def : MnemonicAlias<"rfefd", "rfeia">;
def : MnemonicAlias<"rfeed", "rfeib">;
def : MnemonicAlias<"rfe", "rfeia">;
// SRS aliases
def : MnemonicAlias<"srsfa", "srsib">;
def : MnemonicAlias<"srsea", "srsia">;
def : MnemonicAlias<"srsfd", "srsdb">;
def : MnemonicAlias<"srsed", "srsda">;
def : MnemonicAlias<"srs", "srsia">;
// QSAX == QSUBADDX
def : MnemonicAlias<"qsubaddx", "qsax">;
// SASX == SADDSUBX
def : MnemonicAlias<"saddsubx", "sasx">;
// SHASX == SHADDSUBX
def : MnemonicAlias<"shaddsubx", "shasx">;
// SHSAX == SHSUBADDX
def : MnemonicAlias<"shsubaddx", "shsax">;
// SSAX == SSUBADDX
def : MnemonicAlias<"ssubaddx", "ssax">;
// UASX == UADDSUBX
def : MnemonicAlias<"uaddsubx", "uasx">;
// UHASX == UHADDSUBX
def : MnemonicAlias<"uhaddsubx", "uhasx">;
// UHSAX == UHSUBADDX
def : MnemonicAlias<"uhsubaddx", "uhsax">;
// UQASX == UQADDSUBX
def : MnemonicAlias<"uqaddsubx", "uqasx">;
// UQSAX == UQSUBADDX
def : MnemonicAlias<"uqsubaddx", "uqsax">;
// USAX == USUBADDX
def : MnemonicAlias<"usubaddx", "usax">;
// "mov Rd, mod_imm_not" can be handled via "mvn" in assembly, just like
// for isel.
def : ARMInstAlias<"mov${s}${p} $Rd, $imm",
(MVNi rGPR:$Rd, mod_imm_not:$imm, pred:$p, cc_out:$s)>;
def : ARMInstAlias<"mvn${s}${p} $Rd, $imm",
(MOVi rGPR:$Rd, mod_imm_not:$imm, pred:$p, cc_out:$s)>;
// Same for AND <--> BIC
def : ARMInstAlias<"bic${s}${p} $Rd, $Rn, $imm",
(ANDri rGPR:$Rd, rGPR:$Rn, mod_imm_not:$imm,
pred:$p, cc_out:$s)>;
def : ARMInstAlias<"bic${s}${p} $Rdn, $imm",
(ANDri rGPR:$Rdn, rGPR:$Rdn, mod_imm_not:$imm,
pred:$p, cc_out:$s)>;
def : ARMInstAlias<"and${s}${p} $Rd, $Rn, $imm",
(BICri rGPR:$Rd, rGPR:$Rn, mod_imm_not:$imm,
pred:$p, cc_out:$s)>;
def : ARMInstAlias<"and${s}${p} $Rdn, $imm",
(BICri rGPR:$Rdn, rGPR:$Rdn, mod_imm_not:$imm,
pred:$p, cc_out:$s)>;
// Likewise, "add Rd, mod_imm_neg" -> sub
def : ARMInstAlias<"add${s}${p} $Rd, $Rn, $imm",
(SUBri GPR:$Rd, GPR:$Rn, mod_imm_neg:$imm, pred:$p, cc_out:$s)>;
def : ARMInstAlias<"add${s}${p} $Rd, $imm",
(SUBri GPR:$Rd, GPR:$Rd, mod_imm_neg:$imm, pred:$p, cc_out:$s)>;
// Same for CMP <--> CMN via mod_imm_neg
def : ARMInstAlias<"cmp${p} $Rd, $imm",
(CMNri rGPR:$Rd, mod_imm_neg:$imm, pred:$p)>;
def : ARMInstAlias<"cmn${p} $Rd, $imm",
(CMPri rGPR:$Rd, mod_imm_neg:$imm, pred:$p)>;
// The shifter forms of the MOV instruction are aliased to the ASR, LSL,
// LSR, ROR, and RRX instructions.
// FIXME: We need C++ parser hooks to map the alias to the MOV
// encoding. It seems we should be able to do that sort of thing
// in tblgen, but it could get ugly.
let TwoOperandAliasConstraint = "$Rm = $Rd" in {
def ASRi : ARMAsmPseudo<"asr${s}${p} $Rd, $Rm, $imm",
(ins GPR:$Rd, GPR:$Rm, imm0_32:$imm, pred:$p,
cc_out:$s)>;
def LSRi : ARMAsmPseudo<"lsr${s}${p} $Rd, $Rm, $imm",
(ins GPR:$Rd, GPR:$Rm, imm0_32:$imm, pred:$p,
cc_out:$s)>;
def LSLi : ARMAsmPseudo<"lsl${s}${p} $Rd, $Rm, $imm",
(ins GPR:$Rd, GPR:$Rm, imm0_31:$imm, pred:$p,
cc_out:$s)>;
def RORi : ARMAsmPseudo<"ror${s}${p} $Rd, $Rm, $imm",
(ins GPR:$Rd, GPR:$Rm, imm0_31:$imm, pred:$p,
cc_out:$s)>;
}
def RRXi : ARMAsmPseudo<"rrx${s}${p} $Rd, $Rm",
(ins GPR:$Rd, GPR:$Rm, pred:$p, cc_out:$s)>;
let TwoOperandAliasConstraint = "$Rn = $Rd" in {
def ASRr : ARMAsmPseudo<"asr${s}${p} $Rd, $Rn, $Rm",
(ins GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, pred:$p,
cc_out:$s)>;
def LSRr : ARMAsmPseudo<"lsr${s}${p} $Rd, $Rn, $Rm",
(ins GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, pred:$p,
cc_out:$s)>;
def LSLr : ARMAsmPseudo<"lsl${s}${p} $Rd, $Rn, $Rm",
(ins GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, pred:$p,
cc_out:$s)>;
def RORr : ARMAsmPseudo<"ror${s}${p} $Rd, $Rn, $Rm",
(ins GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, pred:$p,
cc_out:$s)>;
}
// "neg" is and alias for "rsb rd, rn, #0"
def : ARMInstAlias<"neg${s}${p} $Rd, $Rm",
(RSBri GPR:$Rd, GPR:$Rm, 0, pred:$p, cc_out:$s)>;
// Pre-v6, 'mov r0, r0' was used as a NOP encoding.
def : InstAlias<"nop${p}", (MOVr R0, R0, pred:$p, zero_reg)>,
Requires<[IsARM, NoV6]>;
// MUL/UMLAL/SMLAL/UMULL/SMULL are available on all arches, but
// the instruction definitions need difference constraints pre-v6.
// Use these aliases for the assembly parsing on pre-v6.
def : InstAlias<"mul${s}${p} $Rd, $Rn, $Rm",
(MUL GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, pred:$p, cc_out:$s)>,
Requires<[IsARM, NoV6]>;
def : InstAlias<"mla${s}${p} $Rd, $Rn, $Rm, $Ra",
(MLA GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$Ra,
pred:$p, cc_out:$s)>,
Requires<[IsARM, NoV6]>;
def : InstAlias<"smlal${s}${p} $RdLo, $RdHi, $Rn, $Rm",
(SMLAL GPR:$RdLo, GPR:$RdHi, GPR:$Rn, GPR:$Rm, pred:$p, cc_out:$s)>,
Requires<[IsARM, NoV6]>;
def : InstAlias<"umlal${s}${p} $RdLo, $RdHi, $Rn, $Rm",
(UMLAL GPR:$RdLo, GPR:$RdHi, GPR:$Rn, GPR:$Rm, pred:$p, cc_out:$s)>,
Requires<[IsARM, NoV6]>;
def : InstAlias<"smull${s}${p} $RdLo, $RdHi, $Rn, $Rm",
(SMULL GPR:$RdLo, GPR:$RdHi, GPR:$Rn, GPR:$Rm, pred:$p, cc_out:$s)>,
Requires<[IsARM, NoV6]>;
def : InstAlias<"umull${s}${p} $RdLo, $RdHi, $Rn, $Rm",
(UMULL GPR:$RdLo, GPR:$RdHi, GPR:$Rn, GPR:$Rm, pred:$p, cc_out:$s)>,
Requires<[IsARM, NoV6]>;
// 'it' blocks in ARM mode just validate the predicates. The IT itself
// is discarded.
def ITasm : ARMAsmPseudo<"it$mask $cc", (ins it_pred:$cc, it_mask:$mask)>,
ComplexDeprecationPredicate<"IT">;
let mayLoad = 1, mayStore =1, hasSideEffects = 1 in
def SPACE : PseudoInst<(outs GPR:$Rd), (ins i32imm:$size, GPR:$Rn),
NoItinerary,
[(set GPR:$Rd, (int_arm_space imm:$size, GPR:$Rn))]>;