mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-18 13:34:04 +00:00
7eacad03ef
Vectors were being manually scalarized by the backend. Instead, let the target-independent code do all of the work. The manual scalarization was from a time before good target-independent support for scalarization in LLVM. However, this forces us to specially-handle vector loads and stores, which we can turn into PTX instructions that produce/consume multiple operands. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174968 91177308-0d34-0410-b5e6-96231b3b80d8
1269 lines
46 KiB
C++
1269 lines
46 KiB
C++
//===-- NVPTXISelDAGToDAG.cpp - A dag to dag inst selector for NVPTX ------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines an instruction selector for the NVPTX target.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
#include "NVPTXISelDAGToDAG.h"
|
|
#include "llvm/IR/GlobalValue.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Target/TargetIntrinsicInfo.h"
|
|
|
|
#undef DEBUG_TYPE
|
|
#define DEBUG_TYPE "nvptx-isel"
|
|
|
|
using namespace llvm;
|
|
|
|
|
|
static cl::opt<bool>
|
|
UseFMADInstruction("nvptx-mad-enable",
|
|
cl::ZeroOrMore,
|
|
cl::desc("NVPTX Specific: Enable generating FMAD instructions"),
|
|
cl::init(false));
|
|
|
|
static cl::opt<int>
|
|
FMAContractLevel("nvptx-fma-level",
|
|
cl::ZeroOrMore,
|
|
cl::desc("NVPTX Specific: FMA contraction (0: don't do it"
|
|
" 1: do it 2: do it aggressively"),
|
|
cl::init(2));
|
|
|
|
|
|
static cl::opt<int>
|
|
UsePrecDivF32("nvptx-prec-divf32",
|
|
cl::ZeroOrMore,
|
|
cl::desc("NVPTX Specifies: 0 use div.approx, 1 use div.full, 2 use"
|
|
" IEEE Compliant F32 div.rnd if avaiable."),
|
|
cl::init(2));
|
|
|
|
/// createNVPTXISelDag - This pass converts a legalized DAG into a
|
|
/// NVPTX-specific DAG, ready for instruction scheduling.
|
|
FunctionPass *llvm::createNVPTXISelDag(NVPTXTargetMachine &TM,
|
|
llvm::CodeGenOpt::Level OptLevel) {
|
|
return new NVPTXDAGToDAGISel(TM, OptLevel);
|
|
}
|
|
|
|
|
|
NVPTXDAGToDAGISel::NVPTXDAGToDAGISel(NVPTXTargetMachine &tm,
|
|
CodeGenOpt::Level OptLevel)
|
|
: SelectionDAGISel(tm, OptLevel),
|
|
Subtarget(tm.getSubtarget<NVPTXSubtarget>())
|
|
{
|
|
// Always do fma.f32 fpcontract if the target supports the instruction.
|
|
// Always do fma.f64 fpcontract if the target supports the instruction.
|
|
// Do mad.f32 is nvptx-mad-enable is specified and the target does not
|
|
// support fma.f32.
|
|
|
|
doFMADF32 = (OptLevel > 0) && UseFMADInstruction && !Subtarget.hasFMAF32();
|
|
doFMAF32 = (OptLevel > 0) && Subtarget.hasFMAF32() &&
|
|
(FMAContractLevel>=1);
|
|
doFMAF64 = (OptLevel > 0) && Subtarget.hasFMAF64() &&
|
|
(FMAContractLevel>=1);
|
|
doFMAF32AGG = (OptLevel > 0) && Subtarget.hasFMAF32() &&
|
|
(FMAContractLevel==2);
|
|
doFMAF64AGG = (OptLevel > 0) && Subtarget.hasFMAF64() &&
|
|
(FMAContractLevel==2);
|
|
|
|
allowFMA = (FMAContractLevel >= 1) || UseFMADInstruction;
|
|
|
|
UseF32FTZ = false;
|
|
|
|
doMulWide = (OptLevel > 0);
|
|
|
|
// Decide how to translate f32 div
|
|
do_DIVF32_PREC = UsePrecDivF32;
|
|
// sm less than sm_20 does not support div.rnd. Use div.full.
|
|
if (do_DIVF32_PREC == 2 && !Subtarget.reqPTX20())
|
|
do_DIVF32_PREC = 1;
|
|
|
|
}
|
|
|
|
/// Select - Select instructions not customized! Used for
|
|
/// expanded, promoted and normal instructions.
|
|
SDNode* NVPTXDAGToDAGISel::Select(SDNode *N) {
|
|
|
|
if (N->isMachineOpcode())
|
|
return NULL; // Already selected.
|
|
|
|
SDNode *ResNode = NULL;
|
|
switch (N->getOpcode()) {
|
|
case ISD::LOAD:
|
|
ResNode = SelectLoad(N);
|
|
break;
|
|
case ISD::STORE:
|
|
ResNode = SelectStore(N);
|
|
break;
|
|
case NVPTXISD::LoadV2:
|
|
case NVPTXISD::LoadV4:
|
|
ResNode = SelectLoadVector(N);
|
|
break;
|
|
case NVPTXISD::LDGV2:
|
|
case NVPTXISD::LDGV4:
|
|
case NVPTXISD::LDUV2:
|
|
case NVPTXISD::LDUV4:
|
|
ResNode = SelectLDGLDUVector(N);
|
|
break;
|
|
case NVPTXISD::StoreV2:
|
|
case NVPTXISD::StoreV4:
|
|
ResNode = SelectStoreVector(N);
|
|
break;
|
|
default: break;
|
|
}
|
|
if (ResNode)
|
|
return ResNode;
|
|
return SelectCode(N);
|
|
}
|
|
|
|
|
|
static unsigned int
|
|
getCodeAddrSpace(MemSDNode *N, const NVPTXSubtarget &Subtarget)
|
|
{
|
|
const Value *Src = N->getSrcValue();
|
|
if (!Src)
|
|
return NVPTX::PTXLdStInstCode::LOCAL;
|
|
|
|
if (const PointerType *PT = dyn_cast<PointerType>(Src->getType())) {
|
|
switch (PT->getAddressSpace()) {
|
|
case llvm::ADDRESS_SPACE_LOCAL: return NVPTX::PTXLdStInstCode::LOCAL;
|
|
case llvm::ADDRESS_SPACE_GLOBAL: return NVPTX::PTXLdStInstCode::GLOBAL;
|
|
case llvm::ADDRESS_SPACE_SHARED: return NVPTX::PTXLdStInstCode::SHARED;
|
|
case llvm::ADDRESS_SPACE_CONST_NOT_GEN:
|
|
return NVPTX::PTXLdStInstCode::CONSTANT;
|
|
case llvm::ADDRESS_SPACE_GENERIC: return NVPTX::PTXLdStInstCode::GENERIC;
|
|
case llvm::ADDRESS_SPACE_PARAM: return NVPTX::PTXLdStInstCode::PARAM;
|
|
case llvm::ADDRESS_SPACE_CONST:
|
|
// If the arch supports generic address space, translate it to GLOBAL
|
|
// for correctness.
|
|
// If the arch does not support generic address space, then the arch
|
|
// does not really support ADDRESS_SPACE_CONST, translate it to
|
|
// to CONSTANT for better performance.
|
|
if (Subtarget.hasGenericLdSt())
|
|
return NVPTX::PTXLdStInstCode::GLOBAL;
|
|
else
|
|
return NVPTX::PTXLdStInstCode::CONSTANT;
|
|
default: break;
|
|
}
|
|
}
|
|
return NVPTX::PTXLdStInstCode::LOCAL;
|
|
}
|
|
|
|
|
|
SDNode* NVPTXDAGToDAGISel::SelectLoad(SDNode *N) {
|
|
DebugLoc dl = N->getDebugLoc();
|
|
LoadSDNode *LD = cast<LoadSDNode>(N);
|
|
EVT LoadedVT = LD->getMemoryVT();
|
|
SDNode *NVPTXLD= NULL;
|
|
|
|
// do not support pre/post inc/dec
|
|
if (LD->isIndexed())
|
|
return NULL;
|
|
|
|
if (!LoadedVT.isSimple())
|
|
return NULL;
|
|
|
|
// Address Space Setting
|
|
unsigned int codeAddrSpace = getCodeAddrSpace(LD, Subtarget);
|
|
|
|
// Volatile Setting
|
|
// - .volatile is only availalble for .global and .shared
|
|
bool isVolatile = LD->isVolatile();
|
|
if (codeAddrSpace != NVPTX::PTXLdStInstCode::GLOBAL &&
|
|
codeAddrSpace != NVPTX::PTXLdStInstCode::SHARED &&
|
|
codeAddrSpace != NVPTX::PTXLdStInstCode::GENERIC)
|
|
isVolatile = false;
|
|
|
|
// Vector Setting
|
|
MVT SimpleVT = LoadedVT.getSimpleVT();
|
|
unsigned vecType = NVPTX::PTXLdStInstCode::Scalar;
|
|
if (SimpleVT.isVector()) {
|
|
unsigned num = SimpleVT.getVectorNumElements();
|
|
if (num == 2)
|
|
vecType = NVPTX::PTXLdStInstCode::V2;
|
|
else if (num == 4)
|
|
vecType = NVPTX::PTXLdStInstCode::V4;
|
|
else
|
|
return NULL;
|
|
}
|
|
|
|
// Type Setting: fromType + fromTypeWidth
|
|
//
|
|
// Sign : ISD::SEXTLOAD
|
|
// Unsign : ISD::ZEXTLOAD, ISD::NON_EXTLOAD or ISD::EXTLOAD and the
|
|
// type is integer
|
|
// Float : ISD::NON_EXTLOAD or ISD::EXTLOAD and the type is float
|
|
MVT ScalarVT = SimpleVT.getScalarType();
|
|
unsigned fromTypeWidth = ScalarVT.getSizeInBits();
|
|
unsigned int fromType;
|
|
if ((LD->getExtensionType() == ISD::SEXTLOAD))
|
|
fromType = NVPTX::PTXLdStInstCode::Signed;
|
|
else if (ScalarVT.isFloatingPoint())
|
|
fromType = NVPTX::PTXLdStInstCode::Float;
|
|
else
|
|
fromType = NVPTX::PTXLdStInstCode::Unsigned;
|
|
|
|
// Create the machine instruction DAG
|
|
SDValue Chain = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
SDValue Addr;
|
|
SDValue Offset, Base;
|
|
unsigned Opcode;
|
|
MVT::SimpleValueType TargetVT = LD->getValueType(0).getSimpleVT().SimpleTy;
|
|
|
|
if (SelectDirectAddr(N1, Addr)) {
|
|
switch (TargetVT) {
|
|
case MVT::i8: Opcode = NVPTX::LD_i8_avar; break;
|
|
case MVT::i16: Opcode = NVPTX::LD_i16_avar; break;
|
|
case MVT::i32: Opcode = NVPTX::LD_i32_avar; break;
|
|
case MVT::i64: Opcode = NVPTX::LD_i64_avar; break;
|
|
case MVT::f32: Opcode = NVPTX::LD_f32_avar; break;
|
|
case MVT::f64: Opcode = NVPTX::LD_f64_avar; break;
|
|
default: return NULL;
|
|
}
|
|
SDValue Ops[] = { getI32Imm(isVolatile),
|
|
getI32Imm(codeAddrSpace),
|
|
getI32Imm(vecType),
|
|
getI32Imm(fromType),
|
|
getI32Imm(fromTypeWidth),
|
|
Addr, Chain };
|
|
NVPTXLD = CurDAG->getMachineNode(Opcode, dl, TargetVT,
|
|
MVT::Other, Ops, 7);
|
|
} else if (Subtarget.is64Bit()?
|
|
SelectADDRsi64(N1.getNode(), N1, Base, Offset):
|
|
SelectADDRsi(N1.getNode(), N1, Base, Offset)) {
|
|
switch (TargetVT) {
|
|
case MVT::i8: Opcode = NVPTX::LD_i8_asi; break;
|
|
case MVT::i16: Opcode = NVPTX::LD_i16_asi; break;
|
|
case MVT::i32: Opcode = NVPTX::LD_i32_asi; break;
|
|
case MVT::i64: Opcode = NVPTX::LD_i64_asi; break;
|
|
case MVT::f32: Opcode = NVPTX::LD_f32_asi; break;
|
|
case MVT::f64: Opcode = NVPTX::LD_f64_asi; break;
|
|
default: return NULL;
|
|
}
|
|
SDValue Ops[] = { getI32Imm(isVolatile),
|
|
getI32Imm(codeAddrSpace),
|
|
getI32Imm(vecType),
|
|
getI32Imm(fromType),
|
|
getI32Imm(fromTypeWidth),
|
|
Base, Offset, Chain };
|
|
NVPTXLD = CurDAG->getMachineNode(Opcode, dl, TargetVT,
|
|
MVT::Other, Ops, 8);
|
|
} else if (Subtarget.is64Bit()?
|
|
SelectADDRri64(N1.getNode(), N1, Base, Offset):
|
|
SelectADDRri(N1.getNode(), N1, Base, Offset)) {
|
|
if (Subtarget.is64Bit()) {
|
|
switch (TargetVT) {
|
|
case MVT::i8: Opcode = NVPTX::LD_i8_ari_64; break;
|
|
case MVT::i16: Opcode = NVPTX::LD_i16_ari_64; break;
|
|
case MVT::i32: Opcode = NVPTX::LD_i32_ari_64; break;
|
|
case MVT::i64: Opcode = NVPTX::LD_i64_ari_64; break;
|
|
case MVT::f32: Opcode = NVPTX::LD_f32_ari_64; break;
|
|
case MVT::f64: Opcode = NVPTX::LD_f64_ari_64; break;
|
|
default: return NULL;
|
|
}
|
|
} else {
|
|
switch (TargetVT) {
|
|
case MVT::i8: Opcode = NVPTX::LD_i8_ari; break;
|
|
case MVT::i16: Opcode = NVPTX::LD_i16_ari; break;
|
|
case MVT::i32: Opcode = NVPTX::LD_i32_ari; break;
|
|
case MVT::i64: Opcode = NVPTX::LD_i64_ari; break;
|
|
case MVT::f32: Opcode = NVPTX::LD_f32_ari; break;
|
|
case MVT::f64: Opcode = NVPTX::LD_f64_ari; break;
|
|
default: return NULL;
|
|
}
|
|
}
|
|
SDValue Ops[] = { getI32Imm(isVolatile),
|
|
getI32Imm(codeAddrSpace),
|
|
getI32Imm(vecType),
|
|
getI32Imm(fromType),
|
|
getI32Imm(fromTypeWidth),
|
|
Base, Offset, Chain };
|
|
NVPTXLD = CurDAG->getMachineNode(Opcode, dl, TargetVT,
|
|
MVT::Other, Ops, 8);
|
|
}
|
|
else {
|
|
if (Subtarget.is64Bit()) {
|
|
switch (TargetVT) {
|
|
case MVT::i8: Opcode = NVPTX::LD_i8_areg_64; break;
|
|
case MVT::i16: Opcode = NVPTX::LD_i16_areg_64; break;
|
|
case MVT::i32: Opcode = NVPTX::LD_i32_areg_64; break;
|
|
case MVT::i64: Opcode = NVPTX::LD_i64_areg_64; break;
|
|
case MVT::f32: Opcode = NVPTX::LD_f32_areg_64; break;
|
|
case MVT::f64: Opcode = NVPTX::LD_f64_areg_64; break;
|
|
default: return NULL;
|
|
}
|
|
} else {
|
|
switch (TargetVT) {
|
|
case MVT::i8: Opcode = NVPTX::LD_i8_areg; break;
|
|
case MVT::i16: Opcode = NVPTX::LD_i16_areg; break;
|
|
case MVT::i32: Opcode = NVPTX::LD_i32_areg; break;
|
|
case MVT::i64: Opcode = NVPTX::LD_i64_areg; break;
|
|
case MVT::f32: Opcode = NVPTX::LD_f32_areg; break;
|
|
case MVT::f64: Opcode = NVPTX::LD_f64_areg; break;
|
|
default: return NULL;
|
|
}
|
|
}
|
|
SDValue Ops[] = { getI32Imm(isVolatile),
|
|
getI32Imm(codeAddrSpace),
|
|
getI32Imm(vecType),
|
|
getI32Imm(fromType),
|
|
getI32Imm(fromTypeWidth),
|
|
N1, Chain };
|
|
NVPTXLD = CurDAG->getMachineNode(Opcode, dl, TargetVT,
|
|
MVT::Other, Ops, 7);
|
|
}
|
|
|
|
if (NVPTXLD != NULL) {
|
|
MachineSDNode::mmo_iterator MemRefs0 = MF->allocateMemRefsArray(1);
|
|
MemRefs0[0] = cast<MemSDNode>(N)->getMemOperand();
|
|
cast<MachineSDNode>(NVPTXLD)->setMemRefs(MemRefs0, MemRefs0 + 1);
|
|
}
|
|
|
|
return NVPTXLD;
|
|
}
|
|
|
|
SDNode *NVPTXDAGToDAGISel::SelectLoadVector(SDNode *N) {
|
|
|
|
SDValue Chain = N->getOperand(0);
|
|
SDValue Op1 = N->getOperand(1);
|
|
SDValue Addr, Offset, Base;
|
|
unsigned Opcode;
|
|
DebugLoc DL = N->getDebugLoc();
|
|
SDNode *LD;
|
|
MemSDNode *MemSD = cast<MemSDNode>(N);
|
|
EVT LoadedVT = MemSD->getMemoryVT();
|
|
|
|
|
|
if (!LoadedVT.isSimple())
|
|
return NULL;
|
|
|
|
// Address Space Setting
|
|
unsigned int CodeAddrSpace = getCodeAddrSpace(MemSD, Subtarget);
|
|
|
|
// Volatile Setting
|
|
// - .volatile is only availalble for .global and .shared
|
|
bool IsVolatile = MemSD->isVolatile();
|
|
if (CodeAddrSpace != NVPTX::PTXLdStInstCode::GLOBAL &&
|
|
CodeAddrSpace != NVPTX::PTXLdStInstCode::SHARED &&
|
|
CodeAddrSpace != NVPTX::PTXLdStInstCode::GENERIC)
|
|
IsVolatile = false;
|
|
|
|
// Vector Setting
|
|
MVT SimpleVT = LoadedVT.getSimpleVT();
|
|
|
|
// Type Setting: fromType + fromTypeWidth
|
|
//
|
|
// Sign : ISD::SEXTLOAD
|
|
// Unsign : ISD::ZEXTLOAD, ISD::NON_EXTLOAD or ISD::EXTLOAD and the
|
|
// type is integer
|
|
// Float : ISD::NON_EXTLOAD or ISD::EXTLOAD and the type is float
|
|
MVT ScalarVT = SimpleVT.getScalarType();
|
|
unsigned FromTypeWidth = ScalarVT.getSizeInBits();
|
|
unsigned int FromType;
|
|
// The last operand holds the original LoadSDNode::getExtensionType() value
|
|
unsigned ExtensionType =
|
|
cast<ConstantSDNode>(N->getOperand(N->getNumOperands()-1))->getZExtValue();
|
|
if (ExtensionType == ISD::SEXTLOAD)
|
|
FromType = NVPTX::PTXLdStInstCode::Signed;
|
|
else if (ScalarVT.isFloatingPoint())
|
|
FromType = NVPTX::PTXLdStInstCode::Float;
|
|
else
|
|
FromType = NVPTX::PTXLdStInstCode::Unsigned;
|
|
|
|
unsigned VecType;
|
|
|
|
switch (N->getOpcode()) {
|
|
case NVPTXISD::LoadV2: VecType = NVPTX::PTXLdStInstCode::V2; break;
|
|
case NVPTXISD::LoadV4: VecType = NVPTX::PTXLdStInstCode::V4; break;
|
|
default: return NULL;
|
|
}
|
|
|
|
EVT EltVT = N->getValueType(0);
|
|
|
|
if (SelectDirectAddr(Op1, Addr)) {
|
|
switch (N->getOpcode()) {
|
|
default: return NULL;
|
|
case NVPTXISD::LoadV2:
|
|
switch (EltVT.getSimpleVT().SimpleTy) {
|
|
default: return NULL;
|
|
case MVT::i8: Opcode = NVPTX::LDV_i8_v2_avar; break;
|
|
case MVT::i16: Opcode = NVPTX::LDV_i16_v2_avar; break;
|
|
case MVT::i32: Opcode = NVPTX::LDV_i32_v2_avar; break;
|
|
case MVT::i64: Opcode = NVPTX::LDV_i64_v2_avar; break;
|
|
case MVT::f32: Opcode = NVPTX::LDV_f32_v2_avar; break;
|
|
case MVT::f64: Opcode = NVPTX::LDV_f64_v2_avar; break;
|
|
}
|
|
break;
|
|
case NVPTXISD::LoadV4:
|
|
switch (EltVT.getSimpleVT().SimpleTy) {
|
|
default: return NULL;
|
|
case MVT::i8: Opcode = NVPTX::LDV_i8_v4_avar; break;
|
|
case MVT::i16: Opcode = NVPTX::LDV_i16_v4_avar; break;
|
|
case MVT::i32: Opcode = NVPTX::LDV_i32_v4_avar; break;
|
|
case MVT::f32: Opcode = NVPTX::LDV_f32_v4_avar; break;
|
|
}
|
|
break;
|
|
}
|
|
|
|
SDValue Ops[] = { getI32Imm(IsVolatile),
|
|
getI32Imm(CodeAddrSpace),
|
|
getI32Imm(VecType),
|
|
getI32Imm(FromType),
|
|
getI32Imm(FromTypeWidth),
|
|
Addr, Chain };
|
|
LD = CurDAG->getMachineNode(Opcode, DL, N->getVTList(), Ops, 7);
|
|
} else if (Subtarget.is64Bit()?
|
|
SelectADDRsi64(Op1.getNode(), Op1, Base, Offset):
|
|
SelectADDRsi(Op1.getNode(), Op1, Base, Offset)) {
|
|
switch (N->getOpcode()) {
|
|
default: return NULL;
|
|
case NVPTXISD::LoadV2:
|
|
switch (EltVT.getSimpleVT().SimpleTy) {
|
|
default: return NULL;
|
|
case MVT::i8: Opcode = NVPTX::LDV_i8_v2_asi; break;
|
|
case MVT::i16: Opcode = NVPTX::LDV_i16_v2_asi; break;
|
|
case MVT::i32: Opcode = NVPTX::LDV_i32_v2_asi; break;
|
|
case MVT::i64: Opcode = NVPTX::LDV_i64_v2_asi; break;
|
|
case MVT::f32: Opcode = NVPTX::LDV_f32_v2_asi; break;
|
|
case MVT::f64: Opcode = NVPTX::LDV_f64_v2_asi; break;
|
|
}
|
|
break;
|
|
case NVPTXISD::LoadV4:
|
|
switch (EltVT.getSimpleVT().SimpleTy) {
|
|
default: return NULL;
|
|
case MVT::i8: Opcode = NVPTX::LDV_i8_v4_asi; break;
|
|
case MVT::i16: Opcode = NVPTX::LDV_i16_v4_asi; break;
|
|
case MVT::i32: Opcode = NVPTX::LDV_i32_v4_asi; break;
|
|
case MVT::f32: Opcode = NVPTX::LDV_f32_v4_asi; break;
|
|
}
|
|
break;
|
|
}
|
|
|
|
SDValue Ops[] = { getI32Imm(IsVolatile),
|
|
getI32Imm(CodeAddrSpace),
|
|
getI32Imm(VecType),
|
|
getI32Imm(FromType),
|
|
getI32Imm(FromTypeWidth),
|
|
Base, Offset, Chain };
|
|
LD = CurDAG->getMachineNode(Opcode, DL, N->getVTList(), Ops, 8);
|
|
} else if (Subtarget.is64Bit()?
|
|
SelectADDRri64(Op1.getNode(), Op1, Base, Offset):
|
|
SelectADDRri(Op1.getNode(), Op1, Base, Offset)) {
|
|
if (Subtarget.is64Bit()) {
|
|
switch (N->getOpcode()) {
|
|
default: return NULL;
|
|
case NVPTXISD::LoadV2:
|
|
switch (EltVT.getSimpleVT().SimpleTy) {
|
|
default: return NULL;
|
|
case MVT::i8: Opcode = NVPTX::LDV_i8_v2_ari_64; break;
|
|
case MVT::i16: Opcode = NVPTX::LDV_i16_v2_ari_64; break;
|
|
case MVT::i32: Opcode = NVPTX::LDV_i32_v2_ari_64; break;
|
|
case MVT::i64: Opcode = NVPTX::LDV_i64_v2_ari_64; break;
|
|
case MVT::f32: Opcode = NVPTX::LDV_f32_v2_ari_64; break;
|
|
case MVT::f64: Opcode = NVPTX::LDV_f64_v2_ari_64; break;
|
|
}
|
|
break;
|
|
case NVPTXISD::LoadV4:
|
|
switch (EltVT.getSimpleVT().SimpleTy) {
|
|
default: return NULL;
|
|
case MVT::i8: Opcode = NVPTX::LDV_i8_v4_ari_64; break;
|
|
case MVT::i16: Opcode = NVPTX::LDV_i16_v4_ari_64; break;
|
|
case MVT::i32: Opcode = NVPTX::LDV_i32_v4_ari_64; break;
|
|
case MVT::f32: Opcode = NVPTX::LDV_f32_v4_ari_64; break;
|
|
}
|
|
break;
|
|
}
|
|
} else {
|
|
switch (N->getOpcode()) {
|
|
default: return NULL;
|
|
case NVPTXISD::LoadV2:
|
|
switch (EltVT.getSimpleVT().SimpleTy) {
|
|
default: return NULL;
|
|
case MVT::i8: Opcode = NVPTX::LDV_i8_v2_ari; break;
|
|
case MVT::i16: Opcode = NVPTX::LDV_i16_v2_ari; break;
|
|
case MVT::i32: Opcode = NVPTX::LDV_i32_v2_ari; break;
|
|
case MVT::i64: Opcode = NVPTX::LDV_i64_v2_ari; break;
|
|
case MVT::f32: Opcode = NVPTX::LDV_f32_v2_ari; break;
|
|
case MVT::f64: Opcode = NVPTX::LDV_f64_v2_ari; break;
|
|
}
|
|
break;
|
|
case NVPTXISD::LoadV4:
|
|
switch (EltVT.getSimpleVT().SimpleTy) {
|
|
default: return NULL;
|
|
case MVT::i8: Opcode = NVPTX::LDV_i8_v4_ari; break;
|
|
case MVT::i16: Opcode = NVPTX::LDV_i16_v4_ari; break;
|
|
case MVT::i32: Opcode = NVPTX::LDV_i32_v4_ari; break;
|
|
case MVT::f32: Opcode = NVPTX::LDV_f32_v4_ari; break;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
SDValue Ops[] = { getI32Imm(IsVolatile),
|
|
getI32Imm(CodeAddrSpace),
|
|
getI32Imm(VecType),
|
|
getI32Imm(FromType),
|
|
getI32Imm(FromTypeWidth),
|
|
Base, Offset, Chain };
|
|
|
|
LD = CurDAG->getMachineNode(Opcode, DL, N->getVTList(), Ops, 8);
|
|
} else {
|
|
if (Subtarget.is64Bit()) {
|
|
switch (N->getOpcode()) {
|
|
default: return NULL;
|
|
case NVPTXISD::LoadV2:
|
|
switch (EltVT.getSimpleVT().SimpleTy) {
|
|
default: return NULL;
|
|
case MVT::i8: Opcode = NVPTX::LDV_i8_v2_areg_64; break;
|
|
case MVT::i16: Opcode = NVPTX::LDV_i16_v2_areg_64; break;
|
|
case MVT::i32: Opcode = NVPTX::LDV_i32_v2_areg_64; break;
|
|
case MVT::i64: Opcode = NVPTX::LDV_i64_v2_areg_64; break;
|
|
case MVT::f32: Opcode = NVPTX::LDV_f32_v2_areg_64; break;
|
|
case MVT::f64: Opcode = NVPTX::LDV_f64_v2_areg_64; break;
|
|
}
|
|
break;
|
|
case NVPTXISD::LoadV4:
|
|
switch (EltVT.getSimpleVT().SimpleTy) {
|
|
default: return NULL;
|
|
case MVT::i8: Opcode = NVPTX::LDV_i8_v4_areg_64; break;
|
|
case MVT::i16: Opcode = NVPTX::LDV_i16_v4_areg_64; break;
|
|
case MVT::i32: Opcode = NVPTX::LDV_i32_v4_areg_64; break;
|
|
case MVT::f32: Opcode = NVPTX::LDV_f32_v4_areg_64; break;
|
|
}
|
|
break;
|
|
}
|
|
} else {
|
|
switch (N->getOpcode()) {
|
|
default: return NULL;
|
|
case NVPTXISD::LoadV2:
|
|
switch (EltVT.getSimpleVT().SimpleTy) {
|
|
default: return NULL;
|
|
case MVT::i8: Opcode = NVPTX::LDV_i8_v2_areg; break;
|
|
case MVT::i16: Opcode = NVPTX::LDV_i16_v2_areg; break;
|
|
case MVT::i32: Opcode = NVPTX::LDV_i32_v2_areg; break;
|
|
case MVT::i64: Opcode = NVPTX::LDV_i64_v2_areg; break;
|
|
case MVT::f32: Opcode = NVPTX::LDV_f32_v2_areg; break;
|
|
case MVT::f64: Opcode = NVPTX::LDV_f64_v2_areg; break;
|
|
}
|
|
break;
|
|
case NVPTXISD::LoadV4:
|
|
switch (EltVT.getSimpleVT().SimpleTy) {
|
|
default: return NULL;
|
|
case MVT::i8: Opcode = NVPTX::LDV_i8_v4_areg; break;
|
|
case MVT::i16: Opcode = NVPTX::LDV_i16_v4_areg; break;
|
|
case MVT::i32: Opcode = NVPTX::LDV_i32_v4_areg; break;
|
|
case MVT::f32: Opcode = NVPTX::LDV_f32_v4_areg; break;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
SDValue Ops[] = { getI32Imm(IsVolatile),
|
|
getI32Imm(CodeAddrSpace),
|
|
getI32Imm(VecType),
|
|
getI32Imm(FromType),
|
|
getI32Imm(FromTypeWidth),
|
|
Op1, Chain };
|
|
LD = CurDAG->getMachineNode(Opcode, DL, N->getVTList(), Ops, 7);
|
|
}
|
|
|
|
MachineSDNode::mmo_iterator MemRefs0 = MF->allocateMemRefsArray(1);
|
|
MemRefs0[0] = cast<MemSDNode>(N)->getMemOperand();
|
|
cast<MachineSDNode>(LD)->setMemRefs(MemRefs0, MemRefs0 + 1);
|
|
|
|
return LD;
|
|
}
|
|
|
|
SDNode *NVPTXDAGToDAGISel::SelectLDGLDUVector(SDNode *N) {
|
|
|
|
SDValue Chain = N->getOperand(0);
|
|
SDValue Op1 = N->getOperand(1);
|
|
unsigned Opcode;
|
|
DebugLoc DL = N->getDebugLoc();
|
|
SDNode *LD;
|
|
|
|
EVT RetVT = N->getValueType(0);
|
|
|
|
// Select opcode
|
|
if (Subtarget.is64Bit()) {
|
|
switch (N->getOpcode()) {
|
|
default: return NULL;
|
|
case NVPTXISD::LDGV2:
|
|
switch (RetVT.getSimpleVT().SimpleTy) {
|
|
default: return NULL;
|
|
case MVT::i8: Opcode = NVPTX::INT_PTX_LDG_G_v2i8_ELE_64; break;
|
|
case MVT::i16: Opcode = NVPTX::INT_PTX_LDG_G_v2i16_ELE_64; break;
|
|
case MVT::i32: Opcode = NVPTX::INT_PTX_LDG_G_v2i32_ELE_64; break;
|
|
case MVT::i64: Opcode = NVPTX::INT_PTX_LDG_G_v2i64_ELE_64; break;
|
|
case MVT::f32: Opcode = NVPTX::INT_PTX_LDG_G_v2f32_ELE_64; break;
|
|
case MVT::f64: Opcode = NVPTX::INT_PTX_LDG_G_v2f64_ELE_64; break;
|
|
}
|
|
break;
|
|
case NVPTXISD::LDGV4:
|
|
switch (RetVT.getSimpleVT().SimpleTy) {
|
|
default: return NULL;
|
|
case MVT::i8: Opcode = NVPTX::INT_PTX_LDG_G_v4i8_ELE_64; break;
|
|
case MVT::i16: Opcode = NVPTX::INT_PTX_LDG_G_v4i16_ELE_64; break;
|
|
case MVT::i32: Opcode = NVPTX::INT_PTX_LDG_G_v4i32_ELE_64; break;
|
|
case MVT::f32: Opcode = NVPTX::INT_PTX_LDG_G_v4f32_ELE_64; break;
|
|
}
|
|
break;
|
|
case NVPTXISD::LDUV2:
|
|
switch (RetVT.getSimpleVT().SimpleTy) {
|
|
default: return NULL;
|
|
case MVT::i8: Opcode = NVPTX::INT_PTX_LDU_G_v2i8_ELE_64; break;
|
|
case MVT::i16: Opcode = NVPTX::INT_PTX_LDU_G_v2i16_ELE_64; break;
|
|
case MVT::i32: Opcode = NVPTX::INT_PTX_LDU_G_v2i32_ELE_64; break;
|
|
case MVT::i64: Opcode = NVPTX::INT_PTX_LDU_G_v2i64_ELE_64; break;
|
|
case MVT::f32: Opcode = NVPTX::INT_PTX_LDU_G_v2f32_ELE_64; break;
|
|
case MVT::f64: Opcode = NVPTX::INT_PTX_LDU_G_v2f64_ELE_64; break;
|
|
}
|
|
break;
|
|
case NVPTXISD::LDUV4:
|
|
switch (RetVT.getSimpleVT().SimpleTy) {
|
|
default: return NULL;
|
|
case MVT::i8: Opcode = NVPTX::INT_PTX_LDU_G_v4i8_ELE_64; break;
|
|
case MVT::i16: Opcode = NVPTX::INT_PTX_LDU_G_v4i16_ELE_64; break;
|
|
case MVT::i32: Opcode = NVPTX::INT_PTX_LDU_G_v4i32_ELE_64; break;
|
|
case MVT::f32: Opcode = NVPTX::INT_PTX_LDU_G_v4f32_ELE_64; break;
|
|
}
|
|
break;
|
|
}
|
|
} else {
|
|
switch (N->getOpcode()) {
|
|
default: return NULL;
|
|
case NVPTXISD::LDGV2:
|
|
switch (RetVT.getSimpleVT().SimpleTy) {
|
|
default: return NULL;
|
|
case MVT::i8: Opcode = NVPTX::INT_PTX_LDG_G_v2i8_ELE_32; break;
|
|
case MVT::i16: Opcode = NVPTX::INT_PTX_LDG_G_v2i16_ELE_32; break;
|
|
case MVT::i32: Opcode = NVPTX::INT_PTX_LDG_G_v2i32_ELE_32; break;
|
|
case MVT::i64: Opcode = NVPTX::INT_PTX_LDG_G_v2i64_ELE_32; break;
|
|
case MVT::f32: Opcode = NVPTX::INT_PTX_LDG_G_v2f32_ELE_32; break;
|
|
case MVT::f64: Opcode = NVPTX::INT_PTX_LDG_G_v2f64_ELE_32; break;
|
|
}
|
|
break;
|
|
case NVPTXISD::LDGV4:
|
|
switch (RetVT.getSimpleVT().SimpleTy) {
|
|
default: return NULL;
|
|
case MVT::i8: Opcode = NVPTX::INT_PTX_LDG_G_v4i8_ELE_32; break;
|
|
case MVT::i16: Opcode = NVPTX::INT_PTX_LDG_G_v4i16_ELE_32; break;
|
|
case MVT::i32: Opcode = NVPTX::INT_PTX_LDG_G_v4i32_ELE_32; break;
|
|
case MVT::f32: Opcode = NVPTX::INT_PTX_LDG_G_v4f32_ELE_32; break;
|
|
}
|
|
break;
|
|
case NVPTXISD::LDUV2:
|
|
switch (RetVT.getSimpleVT().SimpleTy) {
|
|
default: return NULL;
|
|
case MVT::i8: Opcode = NVPTX::INT_PTX_LDU_G_v2i8_ELE_32; break;
|
|
case MVT::i16: Opcode = NVPTX::INT_PTX_LDU_G_v2i16_ELE_32; break;
|
|
case MVT::i32: Opcode = NVPTX::INT_PTX_LDU_G_v2i32_ELE_32; break;
|
|
case MVT::i64: Opcode = NVPTX::INT_PTX_LDU_G_v2i64_ELE_32; break;
|
|
case MVT::f32: Opcode = NVPTX::INT_PTX_LDU_G_v2f32_ELE_32; break;
|
|
case MVT::f64: Opcode = NVPTX::INT_PTX_LDU_G_v2f64_ELE_32; break;
|
|
}
|
|
break;
|
|
case NVPTXISD::LDUV4:
|
|
switch (RetVT.getSimpleVT().SimpleTy) {
|
|
default: return NULL;
|
|
case MVT::i8: Opcode = NVPTX::INT_PTX_LDU_G_v4i8_ELE_32; break;
|
|
case MVT::i16: Opcode = NVPTX::INT_PTX_LDU_G_v4i16_ELE_32; break;
|
|
case MVT::i32: Opcode = NVPTX::INT_PTX_LDU_G_v4i32_ELE_32; break;
|
|
case MVT::f32: Opcode = NVPTX::INT_PTX_LDU_G_v4f32_ELE_32; break;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
SDValue Ops[] = { Op1, Chain };
|
|
LD = CurDAG->getMachineNode(Opcode, DL, N->getVTList(), &Ops[0], 2);
|
|
|
|
MachineSDNode::mmo_iterator MemRefs0 = MF->allocateMemRefsArray(1);
|
|
MemRefs0[0] = cast<MemSDNode>(N)->getMemOperand();
|
|
cast<MachineSDNode>(LD)->setMemRefs(MemRefs0, MemRefs0 + 1);
|
|
|
|
return LD;
|
|
}
|
|
|
|
|
|
SDNode* NVPTXDAGToDAGISel::SelectStore(SDNode *N) {
|
|
DebugLoc dl = N->getDebugLoc();
|
|
StoreSDNode *ST = cast<StoreSDNode>(N);
|
|
EVT StoreVT = ST->getMemoryVT();
|
|
SDNode *NVPTXST = NULL;
|
|
|
|
// do not support pre/post inc/dec
|
|
if (ST->isIndexed())
|
|
return NULL;
|
|
|
|
if (!StoreVT.isSimple())
|
|
return NULL;
|
|
|
|
// Address Space Setting
|
|
unsigned int codeAddrSpace = getCodeAddrSpace(ST, Subtarget);
|
|
|
|
// Volatile Setting
|
|
// - .volatile is only availalble for .global and .shared
|
|
bool isVolatile = ST->isVolatile();
|
|
if (codeAddrSpace != NVPTX::PTXLdStInstCode::GLOBAL &&
|
|
codeAddrSpace != NVPTX::PTXLdStInstCode::SHARED &&
|
|
codeAddrSpace != NVPTX::PTXLdStInstCode::GENERIC)
|
|
isVolatile = false;
|
|
|
|
// Vector Setting
|
|
MVT SimpleVT = StoreVT.getSimpleVT();
|
|
unsigned vecType = NVPTX::PTXLdStInstCode::Scalar;
|
|
if (SimpleVT.isVector()) {
|
|
unsigned num = SimpleVT.getVectorNumElements();
|
|
if (num == 2)
|
|
vecType = NVPTX::PTXLdStInstCode::V2;
|
|
else if (num == 4)
|
|
vecType = NVPTX::PTXLdStInstCode::V4;
|
|
else
|
|
return NULL;
|
|
}
|
|
|
|
// Type Setting: toType + toTypeWidth
|
|
// - for integer type, always use 'u'
|
|
//
|
|
MVT ScalarVT = SimpleVT.getScalarType();
|
|
unsigned toTypeWidth = ScalarVT.getSizeInBits();
|
|
unsigned int toType;
|
|
if (ScalarVT.isFloatingPoint())
|
|
toType = NVPTX::PTXLdStInstCode::Float;
|
|
else
|
|
toType = NVPTX::PTXLdStInstCode::Unsigned;
|
|
|
|
// Create the machine instruction DAG
|
|
SDValue Chain = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
SDValue N2 = N->getOperand(2);
|
|
SDValue Addr;
|
|
SDValue Offset, Base;
|
|
unsigned Opcode;
|
|
MVT::SimpleValueType SourceVT =
|
|
N1.getNode()->getValueType(0).getSimpleVT().SimpleTy;
|
|
|
|
if (SelectDirectAddr(N2, Addr)) {
|
|
switch (SourceVT) {
|
|
case MVT::i8: Opcode = NVPTX::ST_i8_avar; break;
|
|
case MVT::i16: Opcode = NVPTX::ST_i16_avar; break;
|
|
case MVT::i32: Opcode = NVPTX::ST_i32_avar; break;
|
|
case MVT::i64: Opcode = NVPTX::ST_i64_avar; break;
|
|
case MVT::f32: Opcode = NVPTX::ST_f32_avar; break;
|
|
case MVT::f64: Opcode = NVPTX::ST_f64_avar; break;
|
|
default: return NULL;
|
|
}
|
|
SDValue Ops[] = { N1,
|
|
getI32Imm(isVolatile),
|
|
getI32Imm(codeAddrSpace),
|
|
getI32Imm(vecType),
|
|
getI32Imm(toType),
|
|
getI32Imm(toTypeWidth),
|
|
Addr, Chain };
|
|
NVPTXST = CurDAG->getMachineNode(Opcode, dl,
|
|
MVT::Other, Ops, 8);
|
|
} else if (Subtarget.is64Bit()?
|
|
SelectADDRsi64(N2.getNode(), N2, Base, Offset):
|
|
SelectADDRsi(N2.getNode(), N2, Base, Offset)) {
|
|
switch (SourceVT) {
|
|
case MVT::i8: Opcode = NVPTX::ST_i8_asi; break;
|
|
case MVT::i16: Opcode = NVPTX::ST_i16_asi; break;
|
|
case MVT::i32: Opcode = NVPTX::ST_i32_asi; break;
|
|
case MVT::i64: Opcode = NVPTX::ST_i64_asi; break;
|
|
case MVT::f32: Opcode = NVPTX::ST_f32_asi; break;
|
|
case MVT::f64: Opcode = NVPTX::ST_f64_asi; break;
|
|
default: return NULL;
|
|
}
|
|
SDValue Ops[] = { N1,
|
|
getI32Imm(isVolatile),
|
|
getI32Imm(codeAddrSpace),
|
|
getI32Imm(vecType),
|
|
getI32Imm(toType),
|
|
getI32Imm(toTypeWidth),
|
|
Base, Offset, Chain };
|
|
NVPTXST = CurDAG->getMachineNode(Opcode, dl,
|
|
MVT::Other, Ops, 9);
|
|
} else if (Subtarget.is64Bit()?
|
|
SelectADDRri64(N2.getNode(), N2, Base, Offset):
|
|
SelectADDRri(N2.getNode(), N2, Base, Offset)) {
|
|
if (Subtarget.is64Bit()) {
|
|
switch (SourceVT) {
|
|
case MVT::i8: Opcode = NVPTX::ST_i8_ari_64; break;
|
|
case MVT::i16: Opcode = NVPTX::ST_i16_ari_64; break;
|
|
case MVT::i32: Opcode = NVPTX::ST_i32_ari_64; break;
|
|
case MVT::i64: Opcode = NVPTX::ST_i64_ari_64; break;
|
|
case MVT::f32: Opcode = NVPTX::ST_f32_ari_64; break;
|
|
case MVT::f64: Opcode = NVPTX::ST_f64_ari_64; break;
|
|
default: return NULL;
|
|
}
|
|
} else {
|
|
switch (SourceVT) {
|
|
case MVT::i8: Opcode = NVPTX::ST_i8_ari; break;
|
|
case MVT::i16: Opcode = NVPTX::ST_i16_ari; break;
|
|
case MVT::i32: Opcode = NVPTX::ST_i32_ari; break;
|
|
case MVT::i64: Opcode = NVPTX::ST_i64_ari; break;
|
|
case MVT::f32: Opcode = NVPTX::ST_f32_ari; break;
|
|
case MVT::f64: Opcode = NVPTX::ST_f64_ari; break;
|
|
default: return NULL;
|
|
}
|
|
}
|
|
SDValue Ops[] = { N1,
|
|
getI32Imm(isVolatile),
|
|
getI32Imm(codeAddrSpace),
|
|
getI32Imm(vecType),
|
|
getI32Imm(toType),
|
|
getI32Imm(toTypeWidth),
|
|
Base, Offset, Chain };
|
|
NVPTXST = CurDAG->getMachineNode(Opcode, dl,
|
|
MVT::Other, Ops, 9);
|
|
} else {
|
|
if (Subtarget.is64Bit()) {
|
|
switch (SourceVT) {
|
|
case MVT::i8: Opcode = NVPTX::ST_i8_areg_64; break;
|
|
case MVT::i16: Opcode = NVPTX::ST_i16_areg_64; break;
|
|
case MVT::i32: Opcode = NVPTX::ST_i32_areg_64; break;
|
|
case MVT::i64: Opcode = NVPTX::ST_i64_areg_64; break;
|
|
case MVT::f32: Opcode = NVPTX::ST_f32_areg_64; break;
|
|
case MVT::f64: Opcode = NVPTX::ST_f64_areg_64; break;
|
|
default: return NULL;
|
|
}
|
|
} else {
|
|
switch (SourceVT) {
|
|
case MVT::i8: Opcode = NVPTX::ST_i8_areg; break;
|
|
case MVT::i16: Opcode = NVPTX::ST_i16_areg; break;
|
|
case MVT::i32: Opcode = NVPTX::ST_i32_areg; break;
|
|
case MVT::i64: Opcode = NVPTX::ST_i64_areg; break;
|
|
case MVT::f32: Opcode = NVPTX::ST_f32_areg; break;
|
|
case MVT::f64: Opcode = NVPTX::ST_f64_areg; break;
|
|
default: return NULL;
|
|
}
|
|
}
|
|
SDValue Ops[] = { N1,
|
|
getI32Imm(isVolatile),
|
|
getI32Imm(codeAddrSpace),
|
|
getI32Imm(vecType),
|
|
getI32Imm(toType),
|
|
getI32Imm(toTypeWidth),
|
|
N2, Chain };
|
|
NVPTXST = CurDAG->getMachineNode(Opcode, dl,
|
|
MVT::Other, Ops, 8);
|
|
}
|
|
|
|
if (NVPTXST != NULL) {
|
|
MachineSDNode::mmo_iterator MemRefs0 = MF->allocateMemRefsArray(1);
|
|
MemRefs0[0] = cast<MemSDNode>(N)->getMemOperand();
|
|
cast<MachineSDNode>(NVPTXST)->setMemRefs(MemRefs0, MemRefs0 + 1);
|
|
}
|
|
|
|
return NVPTXST;
|
|
}
|
|
|
|
SDNode *NVPTXDAGToDAGISel::SelectStoreVector(SDNode *N) {
|
|
SDValue Chain = N->getOperand(0);
|
|
SDValue Op1 = N->getOperand(1);
|
|
SDValue Addr, Offset, Base;
|
|
unsigned Opcode;
|
|
DebugLoc DL = N->getDebugLoc();
|
|
SDNode *ST;
|
|
EVT EltVT = Op1.getValueType();
|
|
MemSDNode *MemSD = cast<MemSDNode>(N);
|
|
EVT StoreVT = MemSD->getMemoryVT();
|
|
|
|
// Address Space Setting
|
|
unsigned CodeAddrSpace = getCodeAddrSpace(MemSD, Subtarget);
|
|
|
|
if (CodeAddrSpace == NVPTX::PTXLdStInstCode::CONSTANT) {
|
|
report_fatal_error("Cannot store to pointer that points to constant "
|
|
"memory space");
|
|
}
|
|
|
|
// Volatile Setting
|
|
// - .volatile is only availalble for .global and .shared
|
|
bool IsVolatile = MemSD->isVolatile();
|
|
if (CodeAddrSpace != NVPTX::PTXLdStInstCode::GLOBAL &&
|
|
CodeAddrSpace != NVPTX::PTXLdStInstCode::SHARED &&
|
|
CodeAddrSpace != NVPTX::PTXLdStInstCode::GENERIC)
|
|
IsVolatile = false;
|
|
|
|
// Type Setting: toType + toTypeWidth
|
|
// - for integer type, always use 'u'
|
|
assert(StoreVT.isSimple() && "Store value is not simple");
|
|
MVT ScalarVT = StoreVT.getSimpleVT().getScalarType();
|
|
unsigned ToTypeWidth = ScalarVT.getSizeInBits();
|
|
unsigned ToType;
|
|
if (ScalarVT.isFloatingPoint())
|
|
ToType = NVPTX::PTXLdStInstCode::Float;
|
|
else
|
|
ToType = NVPTX::PTXLdStInstCode::Unsigned;
|
|
|
|
|
|
SmallVector<SDValue, 12> StOps;
|
|
SDValue N2;
|
|
unsigned VecType;
|
|
|
|
switch (N->getOpcode()) {
|
|
case NVPTXISD::StoreV2:
|
|
VecType = NVPTX::PTXLdStInstCode::V2;
|
|
StOps.push_back(N->getOperand(1));
|
|
StOps.push_back(N->getOperand(2));
|
|
N2 = N->getOperand(3);
|
|
break;
|
|
case NVPTXISD::StoreV4:
|
|
VecType = NVPTX::PTXLdStInstCode::V4;
|
|
StOps.push_back(N->getOperand(1));
|
|
StOps.push_back(N->getOperand(2));
|
|
StOps.push_back(N->getOperand(3));
|
|
StOps.push_back(N->getOperand(4));
|
|
N2 = N->getOperand(5);
|
|
break;
|
|
default: return NULL;
|
|
}
|
|
|
|
StOps.push_back(getI32Imm(IsVolatile));
|
|
StOps.push_back(getI32Imm(CodeAddrSpace));
|
|
StOps.push_back(getI32Imm(VecType));
|
|
StOps.push_back(getI32Imm(ToType));
|
|
StOps.push_back(getI32Imm(ToTypeWidth));
|
|
|
|
if (SelectDirectAddr(N2, Addr)) {
|
|
switch (N->getOpcode()) {
|
|
default: return NULL;
|
|
case NVPTXISD::StoreV2:
|
|
switch (EltVT.getSimpleVT().SimpleTy) {
|
|
default: return NULL;
|
|
case MVT::i8: Opcode = NVPTX::STV_i8_v2_avar; break;
|
|
case MVT::i16: Opcode = NVPTX::STV_i16_v2_avar; break;
|
|
case MVT::i32: Opcode = NVPTX::STV_i32_v2_avar; break;
|
|
case MVT::i64: Opcode = NVPTX::STV_i64_v2_avar; break;
|
|
case MVT::f32: Opcode = NVPTX::STV_f32_v2_avar; break;
|
|
case MVT::f64: Opcode = NVPTX::STV_f64_v2_avar; break;
|
|
}
|
|
break;
|
|
case NVPTXISD::StoreV4:
|
|
switch (EltVT.getSimpleVT().SimpleTy) {
|
|
default: return NULL;
|
|
case MVT::i8: Opcode = NVPTX::STV_i8_v4_avar; break;
|
|
case MVT::i16: Opcode = NVPTX::STV_i16_v4_avar; break;
|
|
case MVT::i32: Opcode = NVPTX::STV_i32_v4_avar; break;
|
|
case MVT::f32: Opcode = NVPTX::STV_f32_v4_avar; break;
|
|
}
|
|
break;
|
|
}
|
|
StOps.push_back(Addr);
|
|
} else if (Subtarget.is64Bit()?
|
|
SelectADDRsi64(N2.getNode(), N2, Base, Offset):
|
|
SelectADDRsi(N2.getNode(), N2, Base, Offset)) {
|
|
switch (N->getOpcode()) {
|
|
default: return NULL;
|
|
case NVPTXISD::StoreV2:
|
|
switch (EltVT.getSimpleVT().SimpleTy) {
|
|
default: return NULL;
|
|
case MVT::i8: Opcode = NVPTX::STV_i8_v2_asi; break;
|
|
case MVT::i16: Opcode = NVPTX::STV_i16_v2_asi; break;
|
|
case MVT::i32: Opcode = NVPTX::STV_i32_v2_asi; break;
|
|
case MVT::i64: Opcode = NVPTX::STV_i64_v2_asi; break;
|
|
case MVT::f32: Opcode = NVPTX::STV_f32_v2_asi; break;
|
|
case MVT::f64: Opcode = NVPTX::STV_f64_v2_asi; break;
|
|
}
|
|
break;
|
|
case NVPTXISD::StoreV4:
|
|
switch (EltVT.getSimpleVT().SimpleTy) {
|
|
default: return NULL;
|
|
case MVT::i8: Opcode = NVPTX::STV_i8_v4_asi; break;
|
|
case MVT::i16: Opcode = NVPTX::STV_i16_v4_asi; break;
|
|
case MVT::i32: Opcode = NVPTX::STV_i32_v4_asi; break;
|
|
case MVT::f32: Opcode = NVPTX::STV_f32_v4_asi; break;
|
|
}
|
|
break;
|
|
}
|
|
StOps.push_back(Base);
|
|
StOps.push_back(Offset);
|
|
} else if (Subtarget.is64Bit()?
|
|
SelectADDRri64(N2.getNode(), N2, Base, Offset):
|
|
SelectADDRri(N2.getNode(), N2, Base, Offset)) {
|
|
if (Subtarget.is64Bit()) {
|
|
switch (N->getOpcode()) {
|
|
default: return NULL;
|
|
case NVPTXISD::StoreV2:
|
|
switch (EltVT.getSimpleVT().SimpleTy) {
|
|
default: return NULL;
|
|
case MVT::i8: Opcode = NVPTX::STV_i8_v2_ari_64; break;
|
|
case MVT::i16: Opcode = NVPTX::STV_i16_v2_ari_64; break;
|
|
case MVT::i32: Opcode = NVPTX::STV_i32_v2_ari_64; break;
|
|
case MVT::i64: Opcode = NVPTX::STV_i64_v2_ari_64; break;
|
|
case MVT::f32: Opcode = NVPTX::STV_f32_v2_ari_64; break;
|
|
case MVT::f64: Opcode = NVPTX::STV_f64_v2_ari_64; break;
|
|
}
|
|
break;
|
|
case NVPTXISD::StoreV4:
|
|
switch (EltVT.getSimpleVT().SimpleTy) {
|
|
default: return NULL;
|
|
case MVT::i8: Opcode = NVPTX::STV_i8_v4_ari_64; break;
|
|
case MVT::i16: Opcode = NVPTX::STV_i16_v4_ari_64; break;
|
|
case MVT::i32: Opcode = NVPTX::STV_i32_v4_ari_64; break;
|
|
case MVT::f32: Opcode = NVPTX::STV_f32_v4_ari_64; break;
|
|
}
|
|
break;
|
|
}
|
|
} else {
|
|
switch (N->getOpcode()) {
|
|
default: return NULL;
|
|
case NVPTXISD::StoreV2:
|
|
switch (EltVT.getSimpleVT().SimpleTy) {
|
|
default: return NULL;
|
|
case MVT::i8: Opcode = NVPTX::STV_i8_v2_ari; break;
|
|
case MVT::i16: Opcode = NVPTX::STV_i16_v2_ari; break;
|
|
case MVT::i32: Opcode = NVPTX::STV_i32_v2_ari; break;
|
|
case MVT::i64: Opcode = NVPTX::STV_i64_v2_ari; break;
|
|
case MVT::f32: Opcode = NVPTX::STV_f32_v2_ari; break;
|
|
case MVT::f64: Opcode = NVPTX::STV_f64_v2_ari; break;
|
|
}
|
|
break;
|
|
case NVPTXISD::StoreV4:
|
|
switch (EltVT.getSimpleVT().SimpleTy) {
|
|
default: return NULL;
|
|
case MVT::i8: Opcode = NVPTX::STV_i8_v4_ari; break;
|
|
case MVT::i16: Opcode = NVPTX::STV_i16_v4_ari; break;
|
|
case MVT::i32: Opcode = NVPTX::STV_i32_v4_ari; break;
|
|
case MVT::f32: Opcode = NVPTX::STV_f32_v4_ari; break;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
StOps.push_back(Base);
|
|
StOps.push_back(Offset);
|
|
} else {
|
|
if (Subtarget.is64Bit()) {
|
|
switch (N->getOpcode()) {
|
|
default: return NULL;
|
|
case NVPTXISD::StoreV2:
|
|
switch (EltVT.getSimpleVT().SimpleTy) {
|
|
default: return NULL;
|
|
case MVT::i8: Opcode = NVPTX::STV_i8_v2_areg_64; break;
|
|
case MVT::i16: Opcode = NVPTX::STV_i16_v2_areg_64; break;
|
|
case MVT::i32: Opcode = NVPTX::STV_i32_v2_areg_64; break;
|
|
case MVT::i64: Opcode = NVPTX::STV_i64_v2_areg_64; break;
|
|
case MVT::f32: Opcode = NVPTX::STV_f32_v2_areg_64; break;
|
|
case MVT::f64: Opcode = NVPTX::STV_f64_v2_areg_64; break;
|
|
}
|
|
break;
|
|
case NVPTXISD::StoreV4:
|
|
switch (EltVT.getSimpleVT().SimpleTy) {
|
|
default: return NULL;
|
|
case MVT::i8: Opcode = NVPTX::STV_i8_v4_areg_64; break;
|
|
case MVT::i16: Opcode = NVPTX::STV_i16_v4_areg_64; break;
|
|
case MVT::i32: Opcode = NVPTX::STV_i32_v4_areg_64; break;
|
|
case MVT::f32: Opcode = NVPTX::STV_f32_v4_areg_64; break;
|
|
}
|
|
break;
|
|
}
|
|
} else {
|
|
switch (N->getOpcode()) {
|
|
default: return NULL;
|
|
case NVPTXISD::StoreV2:
|
|
switch (EltVT.getSimpleVT().SimpleTy) {
|
|
default: return NULL;
|
|
case MVT::i8: Opcode = NVPTX::STV_i8_v2_areg; break;
|
|
case MVT::i16: Opcode = NVPTX::STV_i16_v2_areg; break;
|
|
case MVT::i32: Opcode = NVPTX::STV_i32_v2_areg; break;
|
|
case MVT::i64: Opcode = NVPTX::STV_i64_v2_areg; break;
|
|
case MVT::f32: Opcode = NVPTX::STV_f32_v2_areg; break;
|
|
case MVT::f64: Opcode = NVPTX::STV_f64_v2_areg; break;
|
|
}
|
|
break;
|
|
case NVPTXISD::StoreV4:
|
|
switch (EltVT.getSimpleVT().SimpleTy) {
|
|
default: return NULL;
|
|
case MVT::i8: Opcode = NVPTX::STV_i8_v4_areg; break;
|
|
case MVT::i16: Opcode = NVPTX::STV_i16_v4_areg; break;
|
|
case MVT::i32: Opcode = NVPTX::STV_i32_v4_areg; break;
|
|
case MVT::f32: Opcode = NVPTX::STV_f32_v4_areg; break;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
StOps.push_back(N2);
|
|
}
|
|
|
|
StOps.push_back(Chain);
|
|
|
|
ST = CurDAG->getMachineNode(Opcode, DL, MVT::Other, &StOps[0], StOps.size());
|
|
|
|
MachineSDNode::mmo_iterator MemRefs0 = MF->allocateMemRefsArray(1);
|
|
MemRefs0[0] = cast<MemSDNode>(N)->getMemOperand();
|
|
cast<MachineSDNode>(ST)->setMemRefs(MemRefs0, MemRefs0 + 1);
|
|
|
|
return ST;
|
|
}
|
|
|
|
// SelectDirectAddr - Match a direct address for DAG.
|
|
// A direct address could be a globaladdress or externalsymbol.
|
|
bool NVPTXDAGToDAGISel::SelectDirectAddr(SDValue N, SDValue &Address) {
|
|
// Return true if TGA or ES.
|
|
if (N.getOpcode() == ISD::TargetGlobalAddress
|
|
|| N.getOpcode() == ISD::TargetExternalSymbol) {
|
|
Address = N;
|
|
return true;
|
|
}
|
|
if (N.getOpcode() == NVPTXISD::Wrapper) {
|
|
Address = N.getOperand(0);
|
|
return true;
|
|
}
|
|
if (N.getOpcode() == ISD::INTRINSIC_WO_CHAIN) {
|
|
unsigned IID = cast<ConstantSDNode>(N.getOperand(0))->getZExtValue();
|
|
if (IID == Intrinsic::nvvm_ptr_gen_to_param)
|
|
if (N.getOperand(1).getOpcode() == NVPTXISD::MoveParam)
|
|
return (SelectDirectAddr(N.getOperand(1).getOperand(0), Address));
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// symbol+offset
|
|
bool NVPTXDAGToDAGISel::SelectADDRsi_imp(SDNode *OpNode, SDValue Addr,
|
|
SDValue &Base, SDValue &Offset,
|
|
MVT mvt) {
|
|
if (Addr.getOpcode() == ISD::ADD) {
|
|
if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Addr.getOperand(1))) {
|
|
SDValue base=Addr.getOperand(0);
|
|
if (SelectDirectAddr(base, Base)) {
|
|
Offset = CurDAG->getTargetConstant(CN->getZExtValue(), mvt);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// symbol+offset
|
|
bool NVPTXDAGToDAGISel::SelectADDRsi(SDNode *OpNode, SDValue Addr,
|
|
SDValue &Base, SDValue &Offset) {
|
|
return SelectADDRsi_imp(OpNode, Addr, Base, Offset, MVT::i32);
|
|
}
|
|
|
|
// symbol+offset
|
|
bool NVPTXDAGToDAGISel::SelectADDRsi64(SDNode *OpNode, SDValue Addr,
|
|
SDValue &Base, SDValue &Offset) {
|
|
return SelectADDRsi_imp(OpNode, Addr, Base, Offset, MVT::i64);
|
|
}
|
|
|
|
// register+offset
|
|
bool NVPTXDAGToDAGISel::SelectADDRri_imp(SDNode *OpNode, SDValue Addr,
|
|
SDValue &Base, SDValue &Offset,
|
|
MVT mvt) {
|
|
if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Addr)) {
|
|
Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), mvt);
|
|
Offset = CurDAG->getTargetConstant(0, mvt);
|
|
return true;
|
|
}
|
|
if (Addr.getOpcode() == ISD::TargetExternalSymbol ||
|
|
Addr.getOpcode() == ISD::TargetGlobalAddress)
|
|
return false; // direct calls.
|
|
|
|
if (Addr.getOpcode() == ISD::ADD) {
|
|
if (SelectDirectAddr(Addr.getOperand(0), Addr)) {
|
|
return false;
|
|
}
|
|
if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Addr.getOperand(1))) {
|
|
if (FrameIndexSDNode *FIN =
|
|
dyn_cast<FrameIndexSDNode>(Addr.getOperand(0)))
|
|
// Constant offset from frame ref.
|
|
Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), mvt);
|
|
else
|
|
Base = Addr.getOperand(0);
|
|
Offset = CurDAG->getTargetConstant(CN->getZExtValue(), mvt);
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// register+offset
|
|
bool NVPTXDAGToDAGISel::SelectADDRri(SDNode *OpNode, SDValue Addr,
|
|
SDValue &Base, SDValue &Offset) {
|
|
return SelectADDRri_imp(OpNode, Addr, Base, Offset, MVT::i32);
|
|
}
|
|
|
|
// register+offset
|
|
bool NVPTXDAGToDAGISel::SelectADDRri64(SDNode *OpNode, SDValue Addr,
|
|
SDValue &Base, SDValue &Offset) {
|
|
return SelectADDRri_imp(OpNode, Addr, Base, Offset, MVT::i64);
|
|
}
|
|
|
|
bool NVPTXDAGToDAGISel::ChkMemSDNodeAddressSpace(SDNode *N,
|
|
unsigned int spN) const {
|
|
const Value *Src = NULL;
|
|
// Even though MemIntrinsicSDNode is a subclas of MemSDNode,
|
|
// the classof() for MemSDNode does not include MemIntrinsicSDNode
|
|
// (See SelectionDAGNodes.h). So we need to check for both.
|
|
if (MemSDNode *mN = dyn_cast<MemSDNode>(N)) {
|
|
Src = mN->getSrcValue();
|
|
}
|
|
else if (MemSDNode *mN = dyn_cast<MemIntrinsicSDNode>(N)) {
|
|
Src = mN->getSrcValue();
|
|
}
|
|
if (!Src)
|
|
return false;
|
|
if (const PointerType *PT = dyn_cast<PointerType>(Src->getType()))
|
|
return (PT->getAddressSpace() == spN);
|
|
return false;
|
|
}
|
|
|
|
/// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
|
|
/// inline asm expressions.
|
|
bool NVPTXDAGToDAGISel::SelectInlineAsmMemoryOperand(const SDValue &Op,
|
|
char ConstraintCode,
|
|
std::vector<SDValue> &OutOps) {
|
|
SDValue Op0, Op1;
|
|
switch (ConstraintCode) {
|
|
default: return true;
|
|
case 'm': // memory
|
|
if (SelectDirectAddr(Op, Op0)) {
|
|
OutOps.push_back(Op0);
|
|
OutOps.push_back(CurDAG->getTargetConstant(0, MVT::i32));
|
|
return false;
|
|
}
|
|
if (SelectADDRri(Op.getNode(), Op, Op0, Op1)) {
|
|
OutOps.push_back(Op0);
|
|
OutOps.push_back(Op1);
|
|
return false;
|
|
}
|
|
break;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Return true if N is a undef or a constant.
|
|
// If N was undef, return a (i8imm 0) in Retval
|
|
// If N was imm, convert it to i8imm and return in Retval
|
|
// Note: The convert to i8imm is required, otherwise the
|
|
// pattern matcher inserts a bunch of IMOVi8rr to convert
|
|
// the imm to i8imm, and this causes instruction selection
|
|
// to fail.
|
|
bool NVPTXDAGToDAGISel::UndefOrImm(SDValue Op, SDValue N,
|
|
SDValue &Retval) {
|
|
if (!(N.getOpcode() == ISD::UNDEF) &&
|
|
!(N.getOpcode() == ISD::Constant))
|
|
return false;
|
|
|
|
if (N.getOpcode() == ISD::UNDEF)
|
|
Retval = CurDAG->getTargetConstant(0, MVT::i8);
|
|
else {
|
|
ConstantSDNode *cn = cast<ConstantSDNode>(N.getNode());
|
|
unsigned retval = cn->getZExtValue();
|
|
Retval = CurDAG->getTargetConstant(retval, MVT::i8);
|
|
}
|
|
return true;
|
|
}
|