llvm-6502/lib/Transforms/Instrumentation/ProfilePaths/EdgeCode.cpp
Chris Lattner f09c74c385 Convert code to use the DEBUG macro so that debug code can simply be
enabled with the -debug command line option.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@2721 91177308-0d34-0410-b5e6-96231b3b80d8
2002-05-22 21:56:32 +00:00

258 lines
7.4 KiB
C++

//===-- EdgeCode.cpp - generate LLVM instrumentation code --------*- C++ -*--=//
//It implements the class EdgeCode: which provides
//support for inserting "appropriate" instrumentation at
//designated points in the graph
//
//It also has methods to insert initialization code in
//top block of cfg
//===----------------------------------------------------------------------===//
#include "Graph.h"
#include "llvm/BasicBlock.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/iMemory.h"
#include "llvm/iTerminators.h"
#include "llvm/iOther.h"
#include "llvm/iOperators.h"
#include "llvm/iPHINode.h"
using std::vector;
//get the code to be inserted on the edge
//This is determined from cond (1-6)
void getEdgeCode::getCode(Instruction *rInst,
Instruction *countInst,
Function *M,
BasicBlock *BB){
BasicBlock::InstListType& instList=BB->getInstList();
BasicBlock::iterator here=instList.begin();
//case: r=k code to be inserted
switch(cond){
case 1:{
Value *val=ConstantSInt::get(Type::IntTy,inc);
Instruction *stInst=new StoreInst(val, rInst);
here=instList.insert(here,stInst)+1;
break;
}
//case: r=0 to be inserted
case 2:{
Value *val=ConstantSInt::get(Type::IntTy,0);
Instruction *stInst=new StoreInst(val, rInst);
here=instList.insert(here,stInst)+1;
break;
}
//r+=k
case 3:{
Instruction *ldInst=new LoadInst(rInst, "ti1");
Value *val=ConstantSInt::get(Type::IntTy,inc);
Instruction *addIn=BinaryOperator::
create(Instruction::Add, ldInst, val,"ti2");
Instruction *stInst=new StoreInst(addIn, rInst);
here=instList.insert(here,ldInst)+1;
here=instList.insert(here,addIn)+1;
here=instList.insert(here,stInst)+1;
break;
}
//count[inc]++
case 4:{
Instruction *ldInst=new
LoadInst(countInst,vector<Value *>
(1,ConstantUInt::get(Type::UIntTy, inc)), "ti1");
Value *val=ConstantSInt::get(Type::IntTy,1);
Instruction *addIn=BinaryOperator::
create(Instruction::Add, ldInst, val,"ti2");
assert(inc>=0 && "IT MUST BE POSITIVE NOW");
Instruction *stInst=new
StoreInst(addIn, countInst, vector<Value *>
(1, ConstantUInt::get(Type::UIntTy,inc)));
here=instList.insert(here,ldInst)+1;
here=instList.insert(here,addIn)+1;
here=instList.insert(here,stInst)+1;
break;
}
//case: count[r+inc]++
case 5:{
//ti1=inc+r
Instruction *ldIndex=new LoadInst(rInst, "ti1");
Value *val=ConstantSInt::get(Type::IntTy,inc);
Instruction *addIndex=BinaryOperator::
create(Instruction::Add, ldIndex, val,"ti2");
//now load count[addIndex]
Instruction *castInst=new CastInst(addIndex,
Type::UIntTy,"ctin");
Instruction *ldInst=new
LoadInst(countInst, vector<Value *>(1,castInst), "ti3");
Value *cons=ConstantSInt::get(Type::IntTy,1);
//count[addIndex]++
Instruction *addIn=BinaryOperator::
create(Instruction::Add, ldInst, cons,"ti4");
Instruction *stInst=new
StoreInst(addIn, countInst,
vector<Value *>(1,castInst));
here=instList.insert(here,ldIndex)+1;
here=instList.insert(here,addIndex)+1;
here=instList.insert(here,castInst)+1;
here=instList.insert(here,ldInst)+1;
here=instList.insert(here,addIn)+1;
here=instList.insert(here,stInst)+1;
break;
}
//case: count[r]+
case 6:{
//ti1=inc+r
Instruction *ldIndex=new LoadInst(rInst, "ti1");
//now load count[addIndex]
Instruction *castInst2=new
CastInst(ldIndex, Type::UIntTy,"ctin");
Instruction *ldInst=new
LoadInst(countInst, vector<Value *>(1,castInst2), "ti2");
Value *cons=ConstantSInt::get(Type::IntTy,1);
//count[addIndex]++
Instruction *addIn=BinaryOperator::
create(Instruction::Add, ldInst, cons,"ti3");
Instruction *stInst=new
StoreInst(addIn, countInst, vector<Value *>(1,castInst2));
here=instList.insert(here,ldIndex)+1;
here=instList.insert(here,castInst2)+1;
here=instList.insert(here,ldInst)+1;
here=instList.insert(here,addIn)+1;
here=instList.insert(here,stInst)+1;
break;
}
}
//now check for cdIn and cdOut
//first put cdOut
if(cdOut!=NULL){
cdOut->getCode(rInst, countInst, M, BB);
}
if(cdIn!=NULL){
cdIn->getCode(rInst, countInst, M, BB);
}
}
//Insert the initialization code in the top BB
//this includes initializing r, and count
//r is like an accumulator, that
//keeps on adding increments as we traverse along a path
//and at the end of the path, r contains the path
//number of that path
//Count is an array, where Count[k] represents
//the number of executions of path k
void insertInTopBB(BasicBlock *front,
int k,
Instruction *rVar,
Instruction *countVar){
//rVar is variable r,
//countVar is array Count, and these are allocatted outside
//store uint 0, uint *%R, uint 0
vector<Value *> idx;
idx.push_back(ConstantUInt::get(Type::UIntTy, 0));
Instruction *stInstr=new StoreInst(ConstantInt::get(Type::IntTy, 0), rVar,
idx);
//now push all instructions in front of the BB
BasicBlock::InstListType& instList=front->getInstList();
BasicBlock::iterator here=instList.begin();
here=front->getInstList().insert(here, rVar)+1;
here=front->getInstList().insert(here,countVar)+1;
//Initialize Count[...] with 0
for(int i=0;i<k; i++){
Instruction *stInstrC=new
StoreInst(ConstantInt::get(Type::IntTy, 0),
countVar, std::vector<Value *>
(1,ConstantUInt::get(Type::UIntTy, i)));
here=front->getInstList().insert(here,stInstrC)+1;
}
here=front->getInstList().insert(here,stInstr)+1;
}
//insert a basic block with appropriate code
//along a given edge
void insertBB(Edge ed,
getEdgeCode *edgeCode,
Instruction *rInst,
Instruction *countInst){
BasicBlock* BB1=ed.getFirst()->getElement();
BasicBlock* BB2=ed.getSecond()->getElement();
DEBUG(cerr << "Edges with codes ######################\n";
cerr << BB1->getName() << "->" << BB2->getName() << "\n";
cerr << "########################\n");
//We need to insert a BB between BB1 and BB2
TerminatorInst *TI=BB1->getTerminator();
BasicBlock *newBB=new BasicBlock("counter", BB1->getParent());
//get code for the new BB
edgeCode->getCode(rInst, countInst, BB1->getParent(), newBB);
//Is terminator a branch instruction?
//then we need to change branch destinations to include new BB
BranchInst *BI=cast<BranchInst>(TI);
if(BI->isUnconditional()){
BI->setUnconditionalDest(newBB);
Instruction *newBI2=new BranchInst(BB2);
newBB->getInstList().push_back(newBI2);
}
else{
Value *cond=BI->getCondition();
BasicBlock *fB, *tB;
if(BI->getSuccessor(0)==BB2){
tB=newBB;
fB=BI->getSuccessor(1);
}
else{
fB=newBB;
tB=BI->getSuccessor(0);
}
delete BB1->getInstList().pop_back();
Instruction *newBI=new BranchInst(tB,fB,cond);
Instruction *newBI2=new BranchInst(BB2);
BB1->getInstList().push_back(newBI);
newBB->getInstList().push_back(newBI2);
}
//now iterate over BB2, and set its Phi nodes right
for(BasicBlock::iterator BB2Inst=BB2->begin(), BBend=BB2->end();
BB2Inst!=BBend; ++BB2Inst){
if(PHINode *phiInst=dyn_cast<PHINode>(*BB2Inst)){
DEBUG(cerr<<"YYYYYYYYYYYYYYYYY\n");
int bbIndex=phiInst->getBasicBlockIndex(BB1);
if(bbIndex>=0)
phiInst->setIncomingBlock(bbIndex, newBB);
}
}
}