llvm-6502/lib/ExecutionEngine/JIT/JIT.cpp
Duncan Sands b35fd448ce Fix the cleanup process of exception information in JIT. Now JIT
deregisters registered by it FDE structures allowing consecutive
JIT runs to succeed.  Patch by Yuri.  Fixes PR8285.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@117004 91177308-0d34-0410-b5e6-96231b3b80d8
2010-10-21 08:57:29 +00:00

837 lines
28 KiB
C++

//===-- JIT.cpp - LLVM Just in Time Compiler ------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This tool implements a just-in-time compiler for LLVM, allowing direct
// execution of LLVM bitcode in an efficient manner.
//
//===----------------------------------------------------------------------===//
#include "JIT.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/GlobalVariable.h"
#include "llvm/Instructions.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/CodeGen/JITCodeEmitter.h"
#include "llvm/CodeGen/MachineCodeInfo.h"
#include "llvm/ExecutionEngine/GenericValue.h"
#include "llvm/ExecutionEngine/JITEventListener.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetJITInfo.h"
#include "llvm/Support/Dwarf.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/MutexGuard.h"
#include "llvm/System/DynamicLibrary.h"
#include "llvm/Config/config.h"
using namespace llvm;
#ifdef __APPLE__
// Apple gcc defaults to -fuse-cxa-atexit (i.e. calls __cxa_atexit instead
// of atexit). It passes the address of linker generated symbol __dso_handle
// to the function.
// This configuration change happened at version 5330.
# include <AvailabilityMacros.h>
# if defined(MAC_OS_X_VERSION_10_4) && \
((MAC_OS_X_VERSION_MIN_REQUIRED > MAC_OS_X_VERSION_10_4) || \
(MAC_OS_X_VERSION_MIN_REQUIRED == MAC_OS_X_VERSION_10_4 && \
__APPLE_CC__ >= 5330))
# ifndef HAVE___DSO_HANDLE
# define HAVE___DSO_HANDLE 1
# endif
# endif
#endif
#if HAVE___DSO_HANDLE
extern void *__dso_handle __attribute__ ((__visibility__ ("hidden")));
#endif
namespace {
static struct RegisterJIT {
RegisterJIT() { JIT::Register(); }
} JITRegistrator;
}
extern "C" void LLVMLinkInJIT() {
}
#if defined(__GNUC__) && !defined(__ARM_EABI__) && !defined(__USING_SJLJ_EXCEPTIONS__)
// libgcc defines the __register_frame function to dynamically register new
// dwarf frames for exception handling. This functionality is not portable
// across compilers and is only provided by GCC. We use the __register_frame
// function here so that code generated by the JIT cooperates with the unwinding
// runtime of libgcc. When JITting with exception handling enable, LLVM
// generates dwarf frames and registers it to libgcc with __register_frame.
//
// The __register_frame function works with Linux.
//
// Unfortunately, this functionality seems to be in libgcc after the unwinding
// library of libgcc for darwin was written. The code for darwin overwrites the
// value updated by __register_frame with a value fetched with "keymgr".
// "keymgr" is an obsolete functionality, which should be rewritten some day.
// In the meantime, since "keymgr" is on all libgccs shipped with apple-gcc, we
// need a workaround in LLVM which uses the "keymgr" to dynamically modify the
// values of an opaque key, used by libgcc to find dwarf tables.
extern "C" void __register_frame(void*);
extern "C" void __deregister_frame(void*);
#if defined(__APPLE__) && MAC_OS_X_VERSION_MAX_ALLOWED <= 1050
# define USE_KEYMGR 1
#else
# define USE_KEYMGR 0
#endif
#if USE_KEYMGR
namespace {
// LibgccObject - This is the structure defined in libgcc. There is no #include
// provided for this structure, so we also define it here. libgcc calls it
// "struct object". The structure is undocumented in libgcc.
struct LibgccObject {
void *unused1;
void *unused2;
void *unused3;
/// frame - Pointer to the exception table.
void *frame;
/// encoding - The encoding of the object?
union {
struct {
unsigned long sorted : 1;
unsigned long from_array : 1;
unsigned long mixed_encoding : 1;
unsigned long encoding : 8;
unsigned long count : 21;
} b;
size_t i;
} encoding;
/// fde_end - libgcc defines this field only if some macro is defined. We
/// include this field even if it may not there, to make libgcc happy.
char *fde_end;
/// next - At least we know it's a chained list!
struct LibgccObject *next;
};
// "kemgr" stuff. Apparently, all frame tables are stored there.
extern "C" void _keymgr_set_and_unlock_processwide_ptr(int, void *);
extern "C" void *_keymgr_get_and_lock_processwide_ptr(int);
#define KEYMGR_GCC3_DW2_OBJ_LIST 302 /* Dwarf2 object list */
/// LibgccObjectInfo - libgcc defines this struct as km_object_info. It
/// probably contains all dwarf tables that are loaded.
struct LibgccObjectInfo {
/// seenObjects - LibgccObjects already parsed by the unwinding runtime.
///
struct LibgccObject* seenObjects;
/// unseenObjects - LibgccObjects not parsed yet by the unwinding runtime.
///
struct LibgccObject* unseenObjects;
unsigned unused[2];
};
/// darwin_register_frame - Since __register_frame does not work with darwin's
/// libgcc,we provide our own function, which "tricks" libgcc by modifying the
/// "Dwarf2 object list" key.
void DarwinRegisterFrame(void* FrameBegin) {
// Get the key.
LibgccObjectInfo* LOI = (struct LibgccObjectInfo*)
_keymgr_get_and_lock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST);
assert(LOI && "This should be preallocated by the runtime");
// Allocate a new LibgccObject to represent this frame. Deallocation of this
// object may be impossible: since darwin code in libgcc was written after
// the ability to dynamically register frames, things may crash if we
// deallocate it.
struct LibgccObject* ob = (struct LibgccObject*)
malloc(sizeof(struct LibgccObject));
// Do like libgcc for the values of the field.
ob->unused1 = (void *)-1;
ob->unused2 = 0;
ob->unused3 = 0;
ob->frame = FrameBegin;
ob->encoding.i = 0;
ob->encoding.b.encoding = llvm::dwarf::DW_EH_PE_omit;
// Put the info on both places, as libgcc uses the first or the second
// field. Note that we rely on having two pointers here. If fde_end was a
// char, things would get complicated.
ob->fde_end = (char*)LOI->unseenObjects;
ob->next = LOI->unseenObjects;
// Update the key's unseenObjects list.
LOI->unseenObjects = ob;
// Finally update the "key". Apparently, libgcc requires it.
_keymgr_set_and_unlock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST,
LOI);
}
}
#endif // __APPLE__
#endif // __GNUC__
/// createJIT - This is the factory method for creating a JIT for the current
/// machine, it does not fall back to the interpreter. This takes ownership
/// of the module.
ExecutionEngine *ExecutionEngine::createJIT(Module *M,
std::string *ErrorStr,
JITMemoryManager *JMM,
CodeGenOpt::Level OptLevel,
bool GVsWithCode,
CodeModel::Model CMM) {
// Use the defaults for extra parameters. Users can use EngineBuilder to
// set them.
StringRef MArch = "";
StringRef MCPU = "";
SmallVector<std::string, 1> MAttrs;
return JIT::createJIT(M, ErrorStr, JMM, OptLevel, GVsWithCode, CMM,
MArch, MCPU, MAttrs);
}
ExecutionEngine *JIT::createJIT(Module *M,
std::string *ErrorStr,
JITMemoryManager *JMM,
CodeGenOpt::Level OptLevel,
bool GVsWithCode,
CodeModel::Model CMM,
StringRef MArch,
StringRef MCPU,
const SmallVectorImpl<std::string>& MAttrs) {
// Try to register the program as a source of symbols to resolve against.
sys::DynamicLibrary::LoadLibraryPermanently(0, NULL);
// Pick a target either via -march or by guessing the native arch.
TargetMachine *TM = JIT::selectTarget(M, MArch, MCPU, MAttrs, ErrorStr);
if (!TM || (ErrorStr && ErrorStr->length() > 0)) return 0;
TM->setCodeModel(CMM);
// If the target supports JIT code generation, create a the JIT.
if (TargetJITInfo *TJ = TM->getJITInfo()) {
return new JIT(M, *TM, *TJ, JMM, OptLevel, GVsWithCode);
} else {
if (ErrorStr)
*ErrorStr = "target does not support JIT code generation";
return 0;
}
}
namespace {
/// This class supports the global getPointerToNamedFunction(), which allows
/// bugpoint or gdb users to search for a function by name without any context.
class JitPool {
SmallPtrSet<JIT*, 1> JITs; // Optimize for process containing just 1 JIT.
mutable sys::Mutex Lock;
public:
void Add(JIT *jit) {
MutexGuard guard(Lock);
JITs.insert(jit);
}
void Remove(JIT *jit) {
MutexGuard guard(Lock);
JITs.erase(jit);
}
void *getPointerToNamedFunction(const char *Name) const {
MutexGuard guard(Lock);
assert(JITs.size() != 0 && "No Jit registered");
//search function in every instance of JIT
for (SmallPtrSet<JIT*, 1>::const_iterator Jit = JITs.begin(),
end = JITs.end();
Jit != end; ++Jit) {
if (Function *F = (*Jit)->FindFunctionNamed(Name))
return (*Jit)->getPointerToFunction(F);
}
// The function is not available : fallback on the first created (will
// search in symbol of the current program/library)
return (*JITs.begin())->getPointerToNamedFunction(Name);
}
};
ManagedStatic<JitPool> AllJits;
}
extern "C" {
// getPointerToNamedFunction - This function is used as a global wrapper to
// JIT::getPointerToNamedFunction for the purpose of resolving symbols when
// bugpoint is debugging the JIT. In that scenario, we are loading an .so and
// need to resolve function(s) that are being mis-codegenerated, so we need to
// resolve their addresses at runtime, and this is the way to do it.
void *getPointerToNamedFunction(const char *Name) {
return AllJits->getPointerToNamedFunction(Name);
}
}
JIT::JIT(Module *M, TargetMachine &tm, TargetJITInfo &tji,
JITMemoryManager *JMM, CodeGenOpt::Level OptLevel, bool GVsWithCode)
: ExecutionEngine(M), TM(tm), TJI(tji), AllocateGVsWithCode(GVsWithCode),
isAlreadyCodeGenerating(false) {
setTargetData(TM.getTargetData());
jitstate = new JITState(M);
// Initialize JCE
JCE = createEmitter(*this, JMM, TM);
// Register in global list of all JITs.
AllJits->Add(this);
// Add target data
MutexGuard locked(lock);
FunctionPassManager &PM = jitstate->getPM(locked);
PM.add(new TargetData(*TM.getTargetData()));
// Turn the machine code intermediate representation into bytes in memory that
// may be executed.
if (TM.addPassesToEmitMachineCode(PM, *JCE, OptLevel)) {
report_fatal_error("Target does not support machine code emission!");
}
// Register routine for informing unwinding runtime about new EH frames
#if defined(__GNUC__) && !defined(__ARM_EABI__) && !defined(__USING_SJLJ_EXCEPTIONS__)
#if USE_KEYMGR
struct LibgccObjectInfo* LOI = (struct LibgccObjectInfo*)
_keymgr_get_and_lock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST);
// The key is created on demand, and libgcc creates it the first time an
// exception occurs. Since we need the key to register frames, we create
// it now.
if (!LOI)
LOI = (LibgccObjectInfo*)calloc(sizeof(struct LibgccObjectInfo), 1);
_keymgr_set_and_unlock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST, LOI);
InstallExceptionTableRegister(DarwinRegisterFrame);
// Not sure about how to deregister on Darwin.
#else
InstallExceptionTableRegister(__register_frame);
InstallExceptionTableDeregister(__deregister_frame);
#endif // __APPLE__
#endif // __GNUC__
// Initialize passes.
PM.doInitialization();
}
JIT::~JIT() {
// Unregister all exception tables registered by this JIT.
DeregisterAllTables();
// Cleanup.
AllJits->Remove(this);
delete jitstate;
delete JCE;
delete &TM;
}
/// addModule - Add a new Module to the JIT. If we previously removed the last
/// Module, we need re-initialize jitstate with a valid Module.
void JIT::addModule(Module *M) {
MutexGuard locked(lock);
if (Modules.empty()) {
assert(!jitstate && "jitstate should be NULL if Modules vector is empty!");
jitstate = new JITState(M);
FunctionPassManager &PM = jitstate->getPM(locked);
PM.add(new TargetData(*TM.getTargetData()));
// Turn the machine code intermediate representation into bytes in memory
// that may be executed.
if (TM.addPassesToEmitMachineCode(PM, *JCE, CodeGenOpt::Default)) {
report_fatal_error("Target does not support machine code emission!");
}
// Initialize passes.
PM.doInitialization();
}
ExecutionEngine::addModule(M);
}
/// removeModule - If we are removing the last Module, invalidate the jitstate
/// since the PassManager it contains references a released Module.
bool JIT::removeModule(Module *M) {
bool result = ExecutionEngine::removeModule(M);
MutexGuard locked(lock);
if (jitstate->getModule() == M) {
delete jitstate;
jitstate = 0;
}
if (!jitstate && !Modules.empty()) {
jitstate = new JITState(Modules[0]);
FunctionPassManager &PM = jitstate->getPM(locked);
PM.add(new TargetData(*TM.getTargetData()));
// Turn the machine code intermediate representation into bytes in memory
// that may be executed.
if (TM.addPassesToEmitMachineCode(PM, *JCE, CodeGenOpt::Default)) {
report_fatal_error("Target does not support machine code emission!");
}
// Initialize passes.
PM.doInitialization();
}
return result;
}
/// run - Start execution with the specified function and arguments.
///
GenericValue JIT::runFunction(Function *F,
const std::vector<GenericValue> &ArgValues) {
assert(F && "Function *F was null at entry to run()");
void *FPtr = getPointerToFunction(F);
assert(FPtr && "Pointer to fn's code was null after getPointerToFunction");
const FunctionType *FTy = F->getFunctionType();
const Type *RetTy = FTy->getReturnType();
assert((FTy->getNumParams() == ArgValues.size() ||
(FTy->isVarArg() && FTy->getNumParams() <= ArgValues.size())) &&
"Wrong number of arguments passed into function!");
assert(FTy->getNumParams() == ArgValues.size() &&
"This doesn't support passing arguments through varargs (yet)!");
// Handle some common cases first. These cases correspond to common `main'
// prototypes.
if (RetTy->isIntegerTy(32) || RetTy->isVoidTy()) {
switch (ArgValues.size()) {
case 3:
if (FTy->getParamType(0)->isIntegerTy(32) &&
FTy->getParamType(1)->isPointerTy() &&
FTy->getParamType(2)->isPointerTy()) {
int (*PF)(int, char **, const char **) =
(int(*)(int, char **, const char **))(intptr_t)FPtr;
// Call the function.
GenericValue rv;
rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(),
(char **)GVTOP(ArgValues[1]),
(const char **)GVTOP(ArgValues[2])));
return rv;
}
break;
case 2:
if (FTy->getParamType(0)->isIntegerTy(32) &&
FTy->getParamType(1)->isPointerTy()) {
int (*PF)(int, char **) = (int(*)(int, char **))(intptr_t)FPtr;
// Call the function.
GenericValue rv;
rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(),
(char **)GVTOP(ArgValues[1])));
return rv;
}
break;
case 1:
if (FTy->getNumParams() == 1 &&
FTy->getParamType(0)->isIntegerTy(32)) {
GenericValue rv;
int (*PF)(int) = (int(*)(int))(intptr_t)FPtr;
rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue()));
return rv;
}
break;
}
}
// Handle cases where no arguments are passed first.
if (ArgValues.empty()) {
GenericValue rv;
switch (RetTy->getTypeID()) {
default: llvm_unreachable("Unknown return type for function call!");
case Type::IntegerTyID: {
unsigned BitWidth = cast<IntegerType>(RetTy)->getBitWidth();
if (BitWidth == 1)
rv.IntVal = APInt(BitWidth, ((bool(*)())(intptr_t)FPtr)());
else if (BitWidth <= 8)
rv.IntVal = APInt(BitWidth, ((char(*)())(intptr_t)FPtr)());
else if (BitWidth <= 16)
rv.IntVal = APInt(BitWidth, ((short(*)())(intptr_t)FPtr)());
else if (BitWidth <= 32)
rv.IntVal = APInt(BitWidth, ((int(*)())(intptr_t)FPtr)());
else if (BitWidth <= 64)
rv.IntVal = APInt(BitWidth, ((int64_t(*)())(intptr_t)FPtr)());
else
llvm_unreachable("Integer types > 64 bits not supported");
return rv;
}
case Type::VoidTyID:
rv.IntVal = APInt(32, ((int(*)())(intptr_t)FPtr)());
return rv;
case Type::FloatTyID:
rv.FloatVal = ((float(*)())(intptr_t)FPtr)();
return rv;
case Type::DoubleTyID:
rv.DoubleVal = ((double(*)())(intptr_t)FPtr)();
return rv;
case Type::X86_FP80TyID:
case Type::FP128TyID:
case Type::PPC_FP128TyID:
llvm_unreachable("long double not supported yet");
return rv;
case Type::PointerTyID:
return PTOGV(((void*(*)())(intptr_t)FPtr)());
}
}
// Okay, this is not one of our quick and easy cases. Because we don't have a
// full FFI, we have to codegen a nullary stub function that just calls the
// function we are interested in, passing in constants for all of the
// arguments. Make this function and return.
// First, create the function.
FunctionType *STy=FunctionType::get(RetTy, false);
Function *Stub = Function::Create(STy, Function::InternalLinkage, "",
F->getParent());
// Insert a basic block.
BasicBlock *StubBB = BasicBlock::Create(F->getContext(), "", Stub);
// Convert all of the GenericValue arguments over to constants. Note that we
// currently don't support varargs.
SmallVector<Value*, 8> Args;
for (unsigned i = 0, e = ArgValues.size(); i != e; ++i) {
Constant *C = 0;
const Type *ArgTy = FTy->getParamType(i);
const GenericValue &AV = ArgValues[i];
switch (ArgTy->getTypeID()) {
default: llvm_unreachable("Unknown argument type for function call!");
case Type::IntegerTyID:
C = ConstantInt::get(F->getContext(), AV.IntVal);
break;
case Type::FloatTyID:
C = ConstantFP::get(F->getContext(), APFloat(AV.FloatVal));
break;
case Type::DoubleTyID:
C = ConstantFP::get(F->getContext(), APFloat(AV.DoubleVal));
break;
case Type::PPC_FP128TyID:
case Type::X86_FP80TyID:
case Type::FP128TyID:
C = ConstantFP::get(F->getContext(), APFloat(AV.IntVal));
break;
case Type::PointerTyID:
void *ArgPtr = GVTOP(AV);
if (sizeof(void*) == 4)
C = ConstantInt::get(Type::getInt32Ty(F->getContext()),
(int)(intptr_t)ArgPtr);
else
C = ConstantInt::get(Type::getInt64Ty(F->getContext()),
(intptr_t)ArgPtr);
// Cast the integer to pointer
C = ConstantExpr::getIntToPtr(C, ArgTy);
break;
}
Args.push_back(C);
}
CallInst *TheCall = CallInst::Create(F, Args.begin(), Args.end(),
"", StubBB);
TheCall->setCallingConv(F->getCallingConv());
TheCall->setTailCall();
if (!TheCall->getType()->isVoidTy())
// Return result of the call.
ReturnInst::Create(F->getContext(), TheCall, StubBB);
else
ReturnInst::Create(F->getContext(), StubBB); // Just return void.
// Finally, call our nullary stub function.
GenericValue Result = runFunction(Stub, std::vector<GenericValue>());
// Erase it, since no other function can have a reference to it.
Stub->eraseFromParent();
// And return the result.
return Result;
}
void JIT::RegisterJITEventListener(JITEventListener *L) {
if (L == NULL)
return;
MutexGuard locked(lock);
EventListeners.push_back(L);
}
void JIT::UnregisterJITEventListener(JITEventListener *L) {
if (L == NULL)
return;
MutexGuard locked(lock);
std::vector<JITEventListener*>::reverse_iterator I=
std::find(EventListeners.rbegin(), EventListeners.rend(), L);
if (I != EventListeners.rend()) {
std::swap(*I, EventListeners.back());
EventListeners.pop_back();
}
}
void JIT::NotifyFunctionEmitted(
const Function &F,
void *Code, size_t Size,
const JITEvent_EmittedFunctionDetails &Details) {
MutexGuard locked(lock);
for (unsigned I = 0, S = EventListeners.size(); I < S; ++I) {
EventListeners[I]->NotifyFunctionEmitted(F, Code, Size, Details);
}
}
void JIT::NotifyFreeingMachineCode(void *OldPtr) {
MutexGuard locked(lock);
for (unsigned I = 0, S = EventListeners.size(); I < S; ++I) {
EventListeners[I]->NotifyFreeingMachineCode(OldPtr);
}
}
/// runJITOnFunction - Run the FunctionPassManager full of
/// just-in-time compilation passes on F, hopefully filling in
/// GlobalAddress[F] with the address of F's machine code.
///
void JIT::runJITOnFunction(Function *F, MachineCodeInfo *MCI) {
MutexGuard locked(lock);
class MCIListener : public JITEventListener {
MachineCodeInfo *const MCI;
public:
MCIListener(MachineCodeInfo *mci) : MCI(mci) {}
virtual void NotifyFunctionEmitted(const Function &,
void *Code, size_t Size,
const EmittedFunctionDetails &) {
MCI->setAddress(Code);
MCI->setSize(Size);
}
};
MCIListener MCIL(MCI);
if (MCI)
RegisterJITEventListener(&MCIL);
runJITOnFunctionUnlocked(F, locked);
if (MCI)
UnregisterJITEventListener(&MCIL);
}
void JIT::runJITOnFunctionUnlocked(Function *F, const MutexGuard &locked) {
assert(!isAlreadyCodeGenerating && "Error: Recursive compilation detected!");
jitTheFunction(F, locked);
// If the function referred to another function that had not yet been
// read from bitcode, and we are jitting non-lazily, emit it now.
while (!jitstate->getPendingFunctions(locked).empty()) {
Function *PF = jitstate->getPendingFunctions(locked).back();
jitstate->getPendingFunctions(locked).pop_back();
assert(!PF->hasAvailableExternallyLinkage() &&
"Externally-defined function should not be in pending list.");
jitTheFunction(PF, locked);
// Now that the function has been jitted, ask the JITEmitter to rewrite
// the stub with real address of the function.
updateFunctionStub(PF);
}
}
void JIT::jitTheFunction(Function *F, const MutexGuard &locked) {
isAlreadyCodeGenerating = true;
jitstate->getPM(locked).run(*F);
isAlreadyCodeGenerating = false;
// clear basic block addresses after this function is done
getBasicBlockAddressMap(locked).clear();
}
/// getPointerToFunction - This method is used to get the address of the
/// specified function, compiling it if neccesary.
///
void *JIT::getPointerToFunction(Function *F) {
if (void *Addr = getPointerToGlobalIfAvailable(F))
return Addr; // Check if function already code gen'd
MutexGuard locked(lock);
// Now that this thread owns the lock, make sure we read in the function if it
// exists in this Module.
std::string ErrorMsg;
if (F->Materialize(&ErrorMsg)) {
report_fatal_error("Error reading function '" + F->getName()+
"' from bitcode file: " + ErrorMsg);
}
// ... and check if another thread has already code gen'd the function.
if (void *Addr = getPointerToGlobalIfAvailable(F))
return Addr;
if (F->isDeclaration() || F->hasAvailableExternallyLinkage()) {
bool AbortOnFailure = !F->hasExternalWeakLinkage();
void *Addr = getPointerToNamedFunction(F->getName(), AbortOnFailure);
addGlobalMapping(F, Addr);
return Addr;
}
runJITOnFunctionUnlocked(F, locked);
void *Addr = getPointerToGlobalIfAvailable(F);
assert(Addr && "Code generation didn't add function to GlobalAddress table!");
return Addr;
}
void JIT::addPointerToBasicBlock(const BasicBlock *BB, void *Addr) {
MutexGuard locked(lock);
BasicBlockAddressMapTy::iterator I =
getBasicBlockAddressMap(locked).find(BB);
if (I == getBasicBlockAddressMap(locked).end()) {
getBasicBlockAddressMap(locked)[BB] = Addr;
} else {
// ignore repeats: some BBs can be split into few MBBs?
}
}
void JIT::clearPointerToBasicBlock(const BasicBlock *BB) {
MutexGuard locked(lock);
getBasicBlockAddressMap(locked).erase(BB);
}
void *JIT::getPointerToBasicBlock(BasicBlock *BB) {
// make sure it's function is compiled by JIT
(void)getPointerToFunction(BB->getParent());
// resolve basic block address
MutexGuard locked(lock);
BasicBlockAddressMapTy::iterator I =
getBasicBlockAddressMap(locked).find(BB);
if (I != getBasicBlockAddressMap(locked).end()) {
return I->second;
} else {
assert(0 && "JIT does not have BB address for address-of-label, was"
" it eliminated by optimizer?");
return 0;
}
}
/// getOrEmitGlobalVariable - Return the address of the specified global
/// variable, possibly emitting it to memory if needed. This is used by the
/// Emitter.
void *JIT::getOrEmitGlobalVariable(const GlobalVariable *GV) {
MutexGuard locked(lock);
void *Ptr = getPointerToGlobalIfAvailable(GV);
if (Ptr) return Ptr;
// If the global is external, just remember the address.
if (GV->isDeclaration() || GV->hasAvailableExternallyLinkage()) {
#if HAVE___DSO_HANDLE
if (GV->getName() == "__dso_handle")
return (void*)&__dso_handle;
#endif
Ptr = sys::DynamicLibrary::SearchForAddressOfSymbol(GV->getName());
if (Ptr == 0) {
report_fatal_error("Could not resolve external global address: "
+GV->getName());
}
addGlobalMapping(GV, Ptr);
} else {
// If the global hasn't been emitted to memory yet, allocate space and
// emit it into memory.
Ptr = getMemoryForGV(GV);
addGlobalMapping(GV, Ptr);
EmitGlobalVariable(GV); // Initialize the variable.
}
return Ptr;
}
/// recompileAndRelinkFunction - This method is used to force a function
/// which has already been compiled, to be compiled again, possibly
/// after it has been modified. Then the entry to the old copy is overwritten
/// with a branch to the new copy. If there was no old copy, this acts
/// just like JIT::getPointerToFunction().
///
void *JIT::recompileAndRelinkFunction(Function *F) {
void *OldAddr = getPointerToGlobalIfAvailable(F);
// If it's not already compiled there is no reason to patch it up.
if (OldAddr == 0) { return getPointerToFunction(F); }
// Delete the old function mapping.
addGlobalMapping(F, 0);
// Recodegen the function
runJITOnFunction(F);
// Update state, forward the old function to the new function.
void *Addr = getPointerToGlobalIfAvailable(F);
assert(Addr && "Code generation didn't add function to GlobalAddress table!");
TJI.replaceMachineCodeForFunction(OldAddr, Addr);
return Addr;
}
/// getMemoryForGV - This method abstracts memory allocation of global
/// variable so that the JIT can allocate thread local variables depending
/// on the target.
///
char* JIT::getMemoryForGV(const GlobalVariable* GV) {
char *Ptr;
// GlobalVariable's which are not "constant" will cause trouble in a server
// situation. It's returned in the same block of memory as code which may
// not be writable.
if (isGVCompilationDisabled() && !GV->isConstant()) {
report_fatal_error("Compilation of non-internal GlobalValue is disabled!");
}
// Some applications require globals and code to live together, so they may
// be allocated into the same buffer, but in general globals are allocated
// through the memory manager which puts them near the code but not in the
// same buffer.
const Type *GlobalType = GV->getType()->getElementType();
size_t S = getTargetData()->getTypeAllocSize(GlobalType);
size_t A = getTargetData()->getPreferredAlignment(GV);
if (GV->isThreadLocal()) {
MutexGuard locked(lock);
Ptr = TJI.allocateThreadLocalMemory(S);
} else if (TJI.allocateSeparateGVMemory()) {
if (A <= 8) {
Ptr = (char*)malloc(S);
} else {
// Allocate S+A bytes of memory, then use an aligned pointer within that
// space.
Ptr = (char*)malloc(S+A);
unsigned MisAligned = ((intptr_t)Ptr & (A-1));
Ptr = Ptr + (MisAligned ? (A-MisAligned) : 0);
}
} else if (AllocateGVsWithCode) {
Ptr = (char*)JCE->allocateSpace(S, A);
} else {
Ptr = (char*)JCE->allocateGlobal(S, A);
}
return Ptr;
}
void JIT::addPendingFunction(Function *F) {
MutexGuard locked(lock);
jitstate->getPendingFunctions(locked).push_back(F);
}
JITEventListener::~JITEventListener() {}