Sanjay Patel 9615d702ad optimize vector fneg of bitcasted integer value
This patch allows a vector fneg of a bitcasted integer value to be optimized in the same way that we already optimize a scalar fneg. If the integer variable is a constant, we can precompute the result and not require any logic ops.

This patch is very similar to a fabs patch committed at r214892.

Differential Revision: http://reviews.llvm.org/D4852



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215646 91177308-0d34-0410-b5e6-96231b3b80d8
2014-08-14 15:15:28 +00:00

122 lines
3.5 KiB
LLVM

; RUN: llc -mtriple=arm-eabi -mattr=+vfp2 %s -o - \
; RUN: | FileCheck %s -check-prefix=VFP2
; RUN: llc -mtriple=arm-eabi -mattr=+neon,-neonfp %s -o - \
; RUN: | FileCheck %s -check-prefix=NFP0
; RUN: llc -mtriple=arm-eabi -mattr=+neon,+neonfp %s -o - \
; RUN: | FileCheck %s -check-prefix=NFP1
; RUN: llc -mtriple=arm-eabi -mcpu=cortex-a8 %s -o - \
; RUN: | FileCheck %s -check-prefix=CORTEXA8
; RUN: llc -mtriple=arm-eabi -mcpu=cortex-a8 --enable-unsafe-fp-math %s -o - \
; RUN: | FileCheck %s -check-prefix=CORTEXA8U
; RUN: llc -mtriple=arm-darwin -mcpu=cortex-a8 %s -o - \
; RUN: | FileCheck %s -check-prefix=CORTEXA8U
; RUN: llc -mtriple=arm-eabi -mcpu=cortex-a9 %s -o - \
; RUN: | FileCheck %s -check-prefix=CORTEXA9
define float @test1(float* %a) {
entry:
%0 = load float* %a, align 4 ; <float> [#uses=2]
%1 = fsub float -0.000000e+00, %0 ; <float> [#uses=2]
%2 = fpext float %1 to double ; <double> [#uses=1]
%3 = fcmp olt double %2, 1.234000e+00 ; <i1> [#uses=1]
%retval = select i1 %3, float %1, float %0 ; <float> [#uses=1]
ret float %retval
}
; VFP2-LABEL: test1:
; VFP2: vneg.f32 s{{.*}}, s{{.*}}
; NFP1-LABEL: test1:
; NFP1: vneg.f32 d{{.*}}, d{{.*}}
; NFP0-LABEL: test1:
; NFP0: vneg.f32 s{{.*}}, s{{.*}}
; CORTEXA8-LABEL: test1:
; CORTEXA8: vneg.f32 s{{.*}}, s{{.*}}
; CORTEXA8U-LABEL: test1:
; CORTEXA8U: vneg.f32 d{{.*}}, d{{.*}}
; CORTEXA9-LABEL: test1:
; CORTEXA9: vneg.f32 s{{.*}}, s{{.*}}
define float @test2(float* %a) {
entry:
%0 = load float* %a, align 4 ; <float> [#uses=2]
%1 = fmul float -1.000000e+00, %0 ; <float> [#uses=2]
%2 = fpext float %1 to double ; <double> [#uses=1]
%3 = fcmp olt double %2, 1.234000e+00 ; <i1> [#uses=1]
%retval = select i1 %3, float %1, float %0 ; <float> [#uses=1]
ret float %retval
}
; VFP2-LABEL: test2:
; VFP2: vneg.f32 s{{.*}}, s{{.*}}
; NFP1-LABEL: test2:
; NFP1: vneg.f32 d{{.*}}, d{{.*}}
; NFP0-LABEL: test2:
; NFP0: vneg.f32 s{{.*}}, s{{.*}}
; CORTEXA8-LABEL: test2:
; CORTEXA8: vneg.f32 s{{.*}}, s{{.*}}
; CORTEXA8U-LABEL: test2:
; CORTEXA8U: vneg.f32 d{{.*}}, d{{.*}}
; CORTEXA9-LABEL: test2:
; CORTEXA9: vneg.f32 s{{.*}}, s{{.*}}
; If we're bitcasting an integer to an FP vector, we should avoid the FP/vector unit entirely.
; Make sure that we're flipping the sign bit and only the sign bit of each float (PR20354).
; So instead of something like this:
; vmov d16, r0, r1
; vneg.f32 d16, d16
; vmov r0, r1, d16
;
; We should generate:
; eor r0, r0, #-214783648
; eor r1, r1, #-214783648
define <2 x float> @fneg_bitcast(i64 %i) {
%bitcast = bitcast i64 %i to <2 x float>
%fneg = fsub <2 x float> <float -0.0, float -0.0>, %bitcast
ret <2 x float> %fneg
}
; VFP2-LABEL: fneg_bitcast:
; VFP2-DAG: eor r0, r0, #-2147483648
; VFP2-DAG: eor r1, r1, #-2147483648
; VFP2-NOT: vneg.f32
; NFP1-LABEL: fneg_bitcast:
; NFP1-DAG: eor r0, r0, #-2147483648
; NFP1-DAG: eor r1, r1, #-2147483648
; NFP1-NOT: vneg.f32
; NFP0-LABEL: fneg_bitcast:
; NFP0-DAG: eor r0, r0, #-2147483648
; NFP0-DAG: eor r1, r1, #-2147483648
; NFP0-NOT: vneg.f32
; CORTEXA8-LABEL: fneg_bitcast:
; CORTEXA8-DAG: eor r0, r0, #-2147483648
; CORTEXA8-DAG: eor r1, r1, #-2147483648
; CORTEXA8-NOT: vneg.f32
; CORTEXA8U-LABEL: fneg_bitcast:
; CORTEXA8U-DAG: eor r0, r0, #-2147483648
; CORTEXA8U-DAG: eor r1, r1, #-2147483648
; CORTEXA8U-NOT: vneg.f32
; CORTEXA9-LABEL: fneg_bitcast:
; CORTEXA9-DAG: eor r0, r0, #-2147483648
; CORTEXA9-DAG: eor r1, r1, #-2147483648
; CORTEXA9-NOT: vneg.f32