llvm-6502/include/llvm/InlineAsm.h
Jakob Stoklund Olesen 459b74b964 Encode register class constreaints in inline asm instructions.
The inline asm operand constraint is initially encoded in the virtual
register for the operand, but that register class may change during
coalescing, and the original constraint is lost.

Encode the original register class as part of the flag word for each
inline asm operand.  This makes it possible to recover the actual
constraint required by inline asm, just like we can for normal
instructions.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@141833 91177308-0d34-0410-b5e6-96231b3b80d8
2011-10-12 23:37:29 +00:00

297 lines
11 KiB
C++

//===-- llvm/InlineAsm.h - Class to represent inline asm strings-*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This class represents the inline asm strings, which are Value*'s that are
// used as the callee operand of call instructions. InlineAsm's are uniqued
// like constants, and created via InlineAsm::get(...).
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_INLINEASM_H
#define LLVM_INLINEASM_H
#include "llvm/Value.h"
#include <vector>
namespace llvm {
class PointerType;
class FunctionType;
class Module;
struct InlineAsmKeyType;
template<class ValType, class ValRefType, class TypeClass, class ConstantClass,
bool HasLargeKey>
class ConstantUniqueMap;
template<class ConstantClass, class TypeClass, class ValType>
struct ConstantCreator;
class InlineAsm : public Value {
friend struct ConstantCreator<InlineAsm, PointerType, InlineAsmKeyType>;
friend class ConstantUniqueMap<InlineAsmKeyType, const InlineAsmKeyType&,
PointerType, InlineAsm, false>;
InlineAsm(const InlineAsm &); // do not implement
void operator=(const InlineAsm&); // do not implement
std::string AsmString, Constraints;
bool HasSideEffects;
bool IsAlignStack;
InlineAsm(PointerType *Ty, const std::string &AsmString,
const std::string &Constraints, bool hasSideEffects,
bool isAlignStack);
virtual ~InlineAsm();
/// When the ConstantUniqueMap merges two types and makes two InlineAsms
/// identical, it destroys one of them with this method.
void destroyConstant();
public:
/// InlineAsm::get - Return the specified uniqued inline asm string.
///
static InlineAsm *get(FunctionType *Ty, StringRef AsmString,
StringRef Constraints, bool hasSideEffects,
bool isAlignStack = false);
bool hasSideEffects() const { return HasSideEffects; }
bool isAlignStack() const { return IsAlignStack; }
/// getType - InlineAsm's are always pointers.
///
PointerType *getType() const {
return reinterpret_cast<PointerType*>(Value::getType());
}
/// getFunctionType - InlineAsm's are always pointers to functions.
///
FunctionType *getFunctionType() const;
const std::string &getAsmString() const { return AsmString; }
const std::string &getConstraintString() const { return Constraints; }
/// Verify - This static method can be used by the parser to check to see if
/// the specified constraint string is legal for the type. This returns true
/// if legal, false if not.
///
static bool Verify(FunctionType *Ty, StringRef Constraints);
// Constraint String Parsing
enum ConstraintPrefix {
isInput, // 'x'
isOutput, // '=x'
isClobber // '~x'
};
typedef std::vector<std::string> ConstraintCodeVector;
struct SubConstraintInfo {
/// MatchingInput - If this is not -1, this is an output constraint where an
/// input constraint is required to match it (e.g. "0"). The value is the
/// constraint number that matches this one (for example, if this is
/// constraint #0 and constraint #4 has the value "0", this will be 4).
signed char MatchingInput;
/// Code - The constraint code, either the register name (in braces) or the
/// constraint letter/number.
ConstraintCodeVector Codes;
/// Default constructor.
SubConstraintInfo() : MatchingInput(-1) {}
};
typedef std::vector<SubConstraintInfo> SubConstraintInfoVector;
struct ConstraintInfo;
typedef std::vector<ConstraintInfo> ConstraintInfoVector;
struct ConstraintInfo {
/// Type - The basic type of the constraint: input/output/clobber
///
ConstraintPrefix Type;
/// isEarlyClobber - "&": output operand writes result before inputs are all
/// read. This is only ever set for an output operand.
bool isEarlyClobber;
/// MatchingInput - If this is not -1, this is an output constraint where an
/// input constraint is required to match it (e.g. "0"). The value is the
/// constraint number that matches this one (for example, if this is
/// constraint #0 and constraint #4 has the value "0", this will be 4).
signed char MatchingInput;
/// hasMatchingInput - Return true if this is an output constraint that has
/// a matching input constraint.
bool hasMatchingInput() const { return MatchingInput != -1; }
/// isCommutative - This is set to true for a constraint that is commutative
/// with the next operand.
bool isCommutative;
/// isIndirect - True if this operand is an indirect operand. This means
/// that the address of the source or destination is present in the call
/// instruction, instead of it being returned or passed in explicitly. This
/// is represented with a '*' in the asm string.
bool isIndirect;
/// Code - The constraint code, either the register name (in braces) or the
/// constraint letter/number.
ConstraintCodeVector Codes;
/// isMultipleAlternative - '|': has multiple-alternative constraints.
bool isMultipleAlternative;
/// multipleAlternatives - If there are multiple alternative constraints,
/// this array will contain them. Otherwise it will be empty.
SubConstraintInfoVector multipleAlternatives;
/// The currently selected alternative constraint index.
unsigned currentAlternativeIndex;
///Default constructor.
ConstraintInfo();
/// Copy constructor.
ConstraintInfo(const ConstraintInfo &other);
/// Parse - Analyze the specified string (e.g. "=*&{eax}") and fill in the
/// fields in this structure. If the constraint string is not understood,
/// return true, otherwise return false.
bool Parse(StringRef Str, ConstraintInfoVector &ConstraintsSoFar);
/// selectAlternative - Point this constraint to the alternative constraint
/// indicated by the index.
void selectAlternative(unsigned index);
};
/// ParseConstraints - Split up the constraint string into the specific
/// constraints and their prefixes. If this returns an empty vector, and if
/// the constraint string itself isn't empty, there was an error parsing.
static ConstraintInfoVector ParseConstraints(StringRef ConstraintString);
/// ParseConstraints - Parse the constraints of this inlineasm object,
/// returning them the same way that ParseConstraints(str) does.
ConstraintInfoVector ParseConstraints() const {
return ParseConstraints(Constraints);
}
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const InlineAsm *) { return true; }
static inline bool classof(const Value *V) {
return V->getValueID() == Value::InlineAsmVal;
}
// These are helper methods for dealing with flags in the INLINEASM SDNode
// in the backend.
enum {
// Fixed operands on an INLINEASM SDNode.
Op_InputChain = 0,
Op_AsmString = 1,
Op_MDNode = 2,
Op_ExtraInfo = 3, // HasSideEffects, IsAlignStack
Op_FirstOperand = 4,
// Fixed operands on an INLINEASM MachineInstr.
MIOp_AsmString = 0,
MIOp_ExtraInfo = 1, // HasSideEffects, IsAlignStack
MIOp_FirstOperand = 2,
// Interpretation of the MIOp_ExtraInfo bit field.
Extra_HasSideEffects = 1,
Extra_IsAlignStack = 2,
// Inline asm operands map to multiple SDNode / MachineInstr operands.
// The first operand is an immediate describing the asm operand, the low
// bits is the kind:
Kind_RegUse = 1, // Input register, "r".
Kind_RegDef = 2, // Output register, "=r".
Kind_RegDefEarlyClobber = 3, // Early-clobber output register, "=&r".
Kind_Clobber = 4, // Clobbered register, "~r".
Kind_Imm = 5, // Immediate.
Kind_Mem = 6, // Memory operand, "m".
Flag_MatchingOperand = 0x80000000
};
static unsigned getFlagWord(unsigned Kind, unsigned NumOps) {
assert(((NumOps << 3) & ~0xffff) == 0 && "Too many inline asm operands!");
assert(Kind >= Kind_RegUse && Kind <= Kind_Mem && "Invalid Kind");
return Kind | (NumOps << 3);
}
/// getFlagWordForMatchingOp - Augment an existing flag word returned by
/// getFlagWord with information indicating that this input operand is tied
/// to a previous output operand.
static unsigned getFlagWordForMatchingOp(unsigned InputFlag,
unsigned MatchedOperandNo) {
assert(MatchedOperandNo <= 0x7fff && "Too big matched operand");
assert((InputFlag & ~0xffff) == 0 && "High bits already contain data");
return InputFlag | Flag_MatchingOperand | (MatchedOperandNo << 16);
}
/// getFlagWordForRegClass - Augment an existing flag word returned by
/// getFlagWord with the required register class for the following register
/// operands.
/// A tied use operand cannot have a register class, use the register class
/// from the def operand instead.
static unsigned getFlagWordForRegClass(unsigned InputFlag, unsigned RC) {
// Store RC + 1, reserve the value 0 to mean 'no register class'.
++RC;
assert(RC <= 0x7fff && "Too large register class ID");
assert((InputFlag & ~0xffff) == 0 && "High bits already contain data");
return InputFlag | (RC << 16);
}
static unsigned getKind(unsigned Flags) {
return Flags & 7;
}
static bool isRegDefKind(unsigned Flag){ return getKind(Flag) == Kind_RegDef;}
static bool isImmKind(unsigned Flag) { return getKind(Flag) == Kind_Imm; }
static bool isMemKind(unsigned Flag) { return getKind(Flag) == Kind_Mem; }
static bool isRegDefEarlyClobberKind(unsigned Flag) {
return getKind(Flag) == Kind_RegDefEarlyClobber;
}
static bool isClobberKind(unsigned Flag) {
return getKind(Flag) == Kind_Clobber;
}
/// getNumOperandRegisters - Extract the number of registers field from the
/// inline asm operand flag.
static unsigned getNumOperandRegisters(unsigned Flag) {
return (Flag & 0xffff) >> 3;
}
/// isUseOperandTiedToDef - Return true if the flag of the inline asm
/// operand indicates it is an use operand that's matched to a def operand.
static bool isUseOperandTiedToDef(unsigned Flag, unsigned &Idx) {
if ((Flag & Flag_MatchingOperand) == 0)
return false;
Idx = (Flag & ~Flag_MatchingOperand) >> 16;
return true;
}
/// hasRegClassConstraint - Returns true if the flag contains a register
/// class constraint. Sets RC to the register class ID.
static bool hasRegClassConstraint(unsigned Flag, unsigned &RC) {
if (Flag & Flag_MatchingOperand)
return false;
unsigned High = Flag >> 16;
// getFlagWordForRegClass() uses 0 to mean no register class, and otherwise
// stores RC + 1.
if (!High)
return false;
RC = High - 1;
return true;
}
};
} // End llvm namespace
#endif