mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-21 19:32:16 +00:00
3258ed6a36
use-after-deleted errors. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@28513 91177308-0d34-0410-b5e6-96231b3b80d8
1418 lines
53 KiB
C++
1418 lines
53 KiB
C++
//===-- llvm/CodeGen/SelectionDAGNodes.h - SelectionDAG Nodes ---*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by the LLVM research group and is distributed under
|
|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file declares the SDNode class and derived classes, which are used to
|
|
// represent the nodes and operations present in a SelectionDAG. These nodes
|
|
// and operations are machine code level operations, with some similarities to
|
|
// the GCC RTL representation.
|
|
//
|
|
// Clients should include the SelectionDAG.h file instead of this file directly.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_CODEGEN_SELECTIONDAGNODES_H
|
|
#define LLVM_CODEGEN_SELECTIONDAGNODES_H
|
|
|
|
#include "llvm/CodeGen/ValueTypes.h"
|
|
#include "llvm/Value.h"
|
|
#include "llvm/ADT/GraphTraits.h"
|
|
#include "llvm/ADT/iterator"
|
|
#include "llvm/Support/DataTypes.h"
|
|
#include <cassert>
|
|
#include <vector>
|
|
|
|
namespace llvm {
|
|
|
|
class SelectionDAG;
|
|
class GlobalValue;
|
|
class MachineBasicBlock;
|
|
class SDNode;
|
|
template <typename T> struct simplify_type;
|
|
template <typename T> struct ilist_traits;
|
|
template<typename NodeTy, typename Traits> class iplist;
|
|
template<typename NodeTy> class ilist_iterator;
|
|
|
|
/// ISD namespace - This namespace contains an enum which represents all of the
|
|
/// SelectionDAG node types and value types.
|
|
///
|
|
namespace ISD {
|
|
//===--------------------------------------------------------------------===//
|
|
/// ISD::NodeType enum - This enum defines all of the operators valid in a
|
|
/// SelectionDAG.
|
|
///
|
|
enum NodeType {
|
|
// DELETED_NODE - This is an illegal flag value that is used to catch
|
|
// errors. This opcode is not a legal opcode for any node.
|
|
DELETED_NODE,
|
|
|
|
// EntryToken - This is the marker used to indicate the start of the region.
|
|
EntryToken,
|
|
|
|
// Token factor - This node takes multiple tokens as input and produces a
|
|
// single token result. This is used to represent the fact that the operand
|
|
// operators are independent of each other.
|
|
TokenFactor,
|
|
|
|
// AssertSext, AssertZext - These nodes record if a register contains a
|
|
// value that has already been zero or sign extended from a narrower type.
|
|
// These nodes take two operands. The first is the node that has already
|
|
// been extended, and the second is a value type node indicating the width
|
|
// of the extension
|
|
AssertSext, AssertZext,
|
|
|
|
// Various leaf nodes.
|
|
STRING, BasicBlock, VALUETYPE, CONDCODE, Register,
|
|
Constant, ConstantFP,
|
|
GlobalAddress, FrameIndex, JumpTable, ConstantPool, ExternalSymbol,
|
|
|
|
// TargetConstant* - Like Constant*, but the DAG does not do any folding or
|
|
// simplification of the constant.
|
|
TargetConstant,
|
|
TargetConstantFP,
|
|
|
|
// TargetGlobalAddress - Like GlobalAddress, but the DAG does no folding or
|
|
// anything else with this node, and this is valid in the target-specific
|
|
// dag, turning into a GlobalAddress operand.
|
|
TargetGlobalAddress,
|
|
TargetFrameIndex,
|
|
TargetJumpTable,
|
|
TargetConstantPool,
|
|
TargetExternalSymbol,
|
|
|
|
/// RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...)
|
|
/// This node represents a target intrinsic function with no side effects.
|
|
/// The first operand is the ID number of the intrinsic from the
|
|
/// llvm::Intrinsic namespace. The operands to the intrinsic follow. The
|
|
/// node has returns the result of the intrinsic.
|
|
INTRINSIC_WO_CHAIN,
|
|
|
|
/// RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...)
|
|
/// This node represents a target intrinsic function with side effects that
|
|
/// returns a result. The first operand is a chain pointer. The second is
|
|
/// the ID number of the intrinsic from the llvm::Intrinsic namespace. The
|
|
/// operands to the intrinsic follow. The node has two results, the result
|
|
/// of the intrinsic and an output chain.
|
|
INTRINSIC_W_CHAIN,
|
|
|
|
/// OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...)
|
|
/// This node represents a target intrinsic function with side effects that
|
|
/// does not return a result. The first operand is a chain pointer. The
|
|
/// second is the ID number of the intrinsic from the llvm::Intrinsic
|
|
/// namespace. The operands to the intrinsic follow.
|
|
INTRINSIC_VOID,
|
|
|
|
// CopyToReg - This node has three operands: a chain, a register number to
|
|
// set to this value, and a value.
|
|
CopyToReg,
|
|
|
|
// CopyFromReg - This node indicates that the input value is a virtual or
|
|
// physical register that is defined outside of the scope of this
|
|
// SelectionDAG. The register is available from the RegSDNode object.
|
|
CopyFromReg,
|
|
|
|
// UNDEF - An undefined node
|
|
UNDEF,
|
|
|
|
/// FORMAL_ARGUMENTS(CHAIN, CC#, ISVARARG) - This node represents the formal
|
|
/// arguments for a function. CC# is a Constant value indicating the
|
|
/// calling convention of the function, and ISVARARG is a flag that
|
|
/// indicates whether the function is varargs or not. This node has one
|
|
/// result value for each incoming argument, plus one for the output chain.
|
|
/// It must be custom legalized.
|
|
///
|
|
FORMAL_ARGUMENTS,
|
|
|
|
/// RV1, RV2...RVn, CHAIN = CALL(CHAIN, CC#, ISVARARG, ISTAILCALL, CALLEE,
|
|
/// ARG0, SIGN0, ARG1, SIGN1, ... ARGn, SIGNn)
|
|
/// This node represents a fully general function call, before the legalizer
|
|
/// runs. This has one result value for each argument / signness pair, plus
|
|
/// a chain result. It must be custom legalized.
|
|
CALL,
|
|
|
|
// EXTRACT_ELEMENT - This is used to get the first or second (determined by
|
|
// a Constant, which is required to be operand #1), element of the aggregate
|
|
// value specified as operand #0. This is only for use before legalization,
|
|
// for values that will be broken into multiple registers.
|
|
EXTRACT_ELEMENT,
|
|
|
|
// BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways. Given
|
|
// two values of the same integer value type, this produces a value twice as
|
|
// big. Like EXTRACT_ELEMENT, this can only be used before legalization.
|
|
BUILD_PAIR,
|
|
|
|
// MERGE_VALUES - This node takes multiple discrete operands and returns
|
|
// them all as its individual results. This nodes has exactly the same
|
|
// number of inputs and outputs, and is only valid before legalization.
|
|
// This node is useful for some pieces of the code generator that want to
|
|
// think about a single node with multiple results, not multiple nodes.
|
|
MERGE_VALUES,
|
|
|
|
// Simple integer binary arithmetic operators.
|
|
ADD, SUB, MUL, SDIV, UDIV, SREM, UREM,
|
|
|
|
// Carry-setting nodes for multiple precision addition and subtraction.
|
|
// These nodes take two operands of the same value type, and produce two
|
|
// results. The first result is the normal add or sub result, the second
|
|
// result is the carry flag result.
|
|
ADDC, SUBC,
|
|
|
|
// Carry-using nodes for multiple precision addition and subtraction. These
|
|
// nodes take three operands: The first two are the normal lhs and rhs to
|
|
// the add or sub, and the third is the input carry flag. These nodes
|
|
// produce two results; the normal result of the add or sub, and the output
|
|
// carry flag. These nodes both read and write a carry flag to allow them
|
|
// to them to be chained together for add and sub of arbitrarily large
|
|
// values.
|
|
ADDE, SUBE,
|
|
|
|
// Simple binary floating point operators.
|
|
FADD, FSUB, FMUL, FDIV, FREM,
|
|
|
|
// FCOPYSIGN(X, Y) - Return the value of X with the sign of Y. NOTE: This
|
|
// DAG node does not require that X and Y have the same type, just that they
|
|
// are both floating point. X and the result must have the same type.
|
|
// FCOPYSIGN(f32, f64) is allowed.
|
|
FCOPYSIGN,
|
|
|
|
/// VBUILD_VECTOR(ELT1, ELT2, ELT3, ELT4,..., COUNT,TYPE) - Return a vector
|
|
/// with the specified, possibly variable, elements. The number of elements
|
|
/// is required to be a power of two.
|
|
VBUILD_VECTOR,
|
|
|
|
/// BUILD_VECTOR(ELT1, ELT2, ELT3, ELT4,...) - Return a vector
|
|
/// with the specified, possibly variable, elements. The number of elements
|
|
/// is required to be a power of two.
|
|
BUILD_VECTOR,
|
|
|
|
/// VINSERT_VECTOR_ELT(VECTOR, VAL, IDX, COUNT,TYPE) - Given a vector
|
|
/// VECTOR, an element ELEMENT, and a (potentially variable) index IDX,
|
|
/// return an vector with the specified element of VECTOR replaced with VAL.
|
|
/// COUNT and TYPE specify the type of vector, as is standard for V* nodes.
|
|
VINSERT_VECTOR_ELT,
|
|
|
|
/// INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR (a legal packed
|
|
/// type) with the element at IDX replaced with VAL.
|
|
INSERT_VECTOR_ELT,
|
|
|
|
/// VEXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR
|
|
/// (an MVT::Vector value) identified by the (potentially variable) element
|
|
/// number IDX.
|
|
VEXTRACT_VECTOR_ELT,
|
|
|
|
/// EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR
|
|
/// (a legal packed type vector) identified by the (potentially variable)
|
|
/// element number IDX.
|
|
EXTRACT_VECTOR_ELT,
|
|
|
|
/// VVECTOR_SHUFFLE(VEC1, VEC2, SHUFFLEVEC, COUNT,TYPE) - Returns a vector,
|
|
/// of the same type as VEC1/VEC2. SHUFFLEVEC is a VBUILD_VECTOR of
|
|
/// constant int values that indicate which value each result element will
|
|
/// get. The elements of VEC1/VEC2 are enumerated in order. This is quite
|
|
/// similar to the Altivec 'vperm' instruction, except that the indices must
|
|
/// be constants and are in terms of the element size of VEC1/VEC2, not in
|
|
/// terms of bytes.
|
|
VVECTOR_SHUFFLE,
|
|
|
|
/// VECTOR_SHUFFLE(VEC1, VEC2, SHUFFLEVEC) - Returns a vector, of the same
|
|
/// type as VEC1/VEC2. SHUFFLEVEC is a BUILD_VECTOR of constant int values
|
|
/// (regardless of whether its datatype is legal or not) that indicate
|
|
/// which value each result element will get. The elements of VEC1/VEC2 are
|
|
/// enumerated in order. This is quite similar to the Altivec 'vperm'
|
|
/// instruction, except that the indices must be constants and are in terms
|
|
/// of the element size of VEC1/VEC2, not in terms of bytes.
|
|
VECTOR_SHUFFLE,
|
|
|
|
/// X = VBIT_CONVERT(Y) and X = VBIT_CONVERT(Y, COUNT,TYPE) - This node
|
|
/// represents a conversion from or to an ISD::Vector type.
|
|
///
|
|
/// This is lowered to a BIT_CONVERT of the appropriate input/output types.
|
|
/// The input and output are required to have the same size and at least one
|
|
/// is required to be a vector (if neither is a vector, just use
|
|
/// BIT_CONVERT).
|
|
///
|
|
/// If the result is a vector, this takes three operands (like any other
|
|
/// vector producer) which indicate the size and type of the vector result.
|
|
/// Otherwise it takes one input.
|
|
VBIT_CONVERT,
|
|
|
|
/// BINOP(LHS, RHS, COUNT,TYPE)
|
|
/// Simple abstract vector operators. Unlike the integer and floating point
|
|
/// binary operators, these nodes also take two additional operands:
|
|
/// a constant element count, and a value type node indicating the type of
|
|
/// the elements. The order is count, type, op0, op1. All vector opcodes,
|
|
/// including VLOAD and VConstant must currently have count and type as
|
|
/// their last two operands.
|
|
VADD, VSUB, VMUL, VSDIV, VUDIV,
|
|
VAND, VOR, VXOR,
|
|
|
|
/// VSELECT(COND,LHS,RHS, COUNT,TYPE) - Select for MVT::Vector values.
|
|
/// COND is a boolean value. This node return LHS if COND is true, RHS if
|
|
/// COND is false.
|
|
VSELECT,
|
|
|
|
/// SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a
|
|
/// scalar value into the low element of the resultant vector type. The top
|
|
/// elements of the vector are undefined.
|
|
SCALAR_TO_VECTOR,
|
|
|
|
// MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing
|
|
// an unsigned/signed value of type i[2*n], then return the top part.
|
|
MULHU, MULHS,
|
|
|
|
// Bitwise operators - logical and, logical or, logical xor, shift left,
|
|
// shift right algebraic (shift in sign bits), shift right logical (shift in
|
|
// zeroes), rotate left, rotate right, and byteswap.
|
|
AND, OR, XOR, SHL, SRA, SRL, ROTL, ROTR, BSWAP,
|
|
|
|
// Counting operators
|
|
CTTZ, CTLZ, CTPOP,
|
|
|
|
// Select(COND, TRUEVAL, FALSEVAL)
|
|
SELECT,
|
|
|
|
// Select with condition operator - This selects between a true value and
|
|
// a false value (ops #2 and #3) based on the boolean result of comparing
|
|
// the lhs and rhs (ops #0 and #1) of a conditional expression with the
|
|
// condition code in op #4, a CondCodeSDNode.
|
|
SELECT_CC,
|
|
|
|
// SetCC operator - This evaluates to a boolean (i1) true value if the
|
|
// condition is true. The operands to this are the left and right operands
|
|
// to compare (ops #0, and #1) and the condition code to compare them with
|
|
// (op #2) as a CondCodeSDNode.
|
|
SETCC,
|
|
|
|
// SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded
|
|
// integer shift operations, just like ADD/SUB_PARTS. The operation
|
|
// ordering is:
|
|
// [Lo,Hi] = op [LoLHS,HiLHS], Amt
|
|
SHL_PARTS, SRA_PARTS, SRL_PARTS,
|
|
|
|
// Conversion operators. These are all single input single output
|
|
// operations. For all of these, the result type must be strictly
|
|
// wider or narrower (depending on the operation) than the source
|
|
// type.
|
|
|
|
// SIGN_EXTEND - Used for integer types, replicating the sign bit
|
|
// into new bits.
|
|
SIGN_EXTEND,
|
|
|
|
// ZERO_EXTEND - Used for integer types, zeroing the new bits.
|
|
ZERO_EXTEND,
|
|
|
|
// ANY_EXTEND - Used for integer types. The high bits are undefined.
|
|
ANY_EXTEND,
|
|
|
|
// TRUNCATE - Completely drop the high bits.
|
|
TRUNCATE,
|
|
|
|
// [SU]INT_TO_FP - These operators convert integers (whose interpreted sign
|
|
// depends on the first letter) to floating point.
|
|
SINT_TO_FP,
|
|
UINT_TO_FP,
|
|
|
|
// SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to
|
|
// sign extend a small value in a large integer register (e.g. sign
|
|
// extending the low 8 bits of a 32-bit register to fill the top 24 bits
|
|
// with the 7th bit). The size of the smaller type is indicated by the 1th
|
|
// operand, a ValueType node.
|
|
SIGN_EXTEND_INREG,
|
|
|
|
// FP_TO_[US]INT - Convert a floating point value to a signed or unsigned
|
|
// integer.
|
|
FP_TO_SINT,
|
|
FP_TO_UINT,
|
|
|
|
// FP_ROUND - Perform a rounding operation from the current
|
|
// precision down to the specified precision (currently always 64->32).
|
|
FP_ROUND,
|
|
|
|
// FP_ROUND_INREG - This operator takes a floating point register, and
|
|
// rounds it to a floating point value. It then promotes it and returns it
|
|
// in a register of the same size. This operation effectively just discards
|
|
// excess precision. The type to round down to is specified by the 1th
|
|
// operation, a VTSDNode (currently always 64->32->64).
|
|
FP_ROUND_INREG,
|
|
|
|
// FP_EXTEND - Extend a smaller FP type into a larger FP type.
|
|
FP_EXTEND,
|
|
|
|
// BIT_CONVERT - Theis operator converts between integer and FP values, as
|
|
// if one was stored to memory as integer and the other was loaded from the
|
|
// same address (or equivalently for vector format conversions, etc). The
|
|
// source and result are required to have the same bit size (e.g.
|
|
// f32 <-> i32). This can also be used for int-to-int or fp-to-fp
|
|
// conversions, but that is a noop, deleted by getNode().
|
|
BIT_CONVERT,
|
|
|
|
// FNEG, FABS, FSQRT, FSIN, FCOS - Perform unary floating point negation,
|
|
// absolute value, square root, sine and cosine operations.
|
|
FNEG, FABS, FSQRT, FSIN, FCOS,
|
|
|
|
// Other operators. LOAD and STORE have token chains as their first
|
|
// operand, then the same operands as an LLVM load/store instruction, then a
|
|
// SRCVALUE node that provides alias analysis information.
|
|
LOAD, STORE,
|
|
|
|
// Abstract vector version of LOAD. VLOAD has a constant element count as
|
|
// the first operand, followed by a value type node indicating the type of
|
|
// the elements, a token chain, a pointer operand, and a SRCVALUE node.
|
|
VLOAD,
|
|
|
|
// EXTLOAD, SEXTLOAD, ZEXTLOAD - These three operators all load a value from
|
|
// memory and extend them to a larger value (e.g. load a byte into a word
|
|
// register). All three of these have four operands, a token chain, a
|
|
// pointer to load from, a SRCVALUE for alias analysis, and a VALUETYPE node
|
|
// indicating the type to load.
|
|
//
|
|
// SEXTLOAD loads the integer operand and sign extends it to a larger
|
|
// integer result type.
|
|
// ZEXTLOAD loads the integer operand and zero extends it to a larger
|
|
// integer result type.
|
|
// EXTLOAD is used for three things: floating point extending loads,
|
|
// integer extending loads [the top bits are undefined], and vector
|
|
// extending loads [load into low elt].
|
|
EXTLOAD, SEXTLOAD, ZEXTLOAD,
|
|
|
|
// TRUNCSTORE - This operators truncates (for integer) or rounds (for FP) a
|
|
// value and stores it to memory in one operation. This can be used for
|
|
// either integer or floating point operands. The first four operands of
|
|
// this are the same as a standard store. The fifth is the ValueType to
|
|
// store it as (which will be smaller than the source value).
|
|
TRUNCSTORE,
|
|
|
|
// DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned
|
|
// to a specified boundary. The first operand is the token chain, the
|
|
// second is the number of bytes to allocate, and the third is the alignment
|
|
// boundary. The size is guaranteed to be a multiple of the stack
|
|
// alignment, and the alignment is guaranteed to be bigger than the stack
|
|
// alignment (if required) or 0 to get standard stack alignment.
|
|
DYNAMIC_STACKALLOC,
|
|
|
|
// Control flow instructions. These all have token chains.
|
|
|
|
// BR - Unconditional branch. The first operand is the chain
|
|
// operand, the second is the MBB to branch to.
|
|
BR,
|
|
|
|
// BRIND - Indirect branch. The first operand is the chain, the second
|
|
// is the value to branch to, which must be of the same type as the target's
|
|
// pointer type.
|
|
BRIND,
|
|
|
|
// BRCOND - Conditional branch. The first operand is the chain,
|
|
// the second is the condition, the third is the block to branch
|
|
// to if the condition is true.
|
|
BRCOND,
|
|
|
|
// BR_CC - Conditional branch. The behavior is like that of SELECT_CC, in
|
|
// that the condition is represented as condition code, and two nodes to
|
|
// compare, rather than as a combined SetCC node. The operands in order are
|
|
// chain, cc, lhs, rhs, block to branch to if condition is true.
|
|
BR_CC,
|
|
|
|
// RET - Return from function. The first operand is the chain,
|
|
// and any subsequent operands are pairs of return value and return value
|
|
// signness for the function. This operation can have variable number of
|
|
// operands.
|
|
RET,
|
|
|
|
// INLINEASM - Represents an inline asm block. This node always has two
|
|
// return values: a chain and a flag result. The inputs are as follows:
|
|
// Operand #0 : Input chain.
|
|
// Operand #1 : a ExternalSymbolSDNode with a pointer to the asm string.
|
|
// Operand #2n+2: A RegisterNode.
|
|
// Operand #2n+3: A TargetConstant, indicating if the reg is a use/def
|
|
// Operand #last: Optional, an incoming flag.
|
|
INLINEASM,
|
|
|
|
// STACKSAVE - STACKSAVE has one operand, an input chain. It produces a
|
|
// value, the same type as the pointer type for the system, and an output
|
|
// chain.
|
|
STACKSAVE,
|
|
|
|
// STACKRESTORE has two operands, an input chain and a pointer to restore to
|
|
// it returns an output chain.
|
|
STACKRESTORE,
|
|
|
|
// MEMSET/MEMCPY/MEMMOVE - The first operand is the chain, and the rest
|
|
// correspond to the operands of the LLVM intrinsic functions. The only
|
|
// result is a token chain. The alignment argument is guaranteed to be a
|
|
// Constant node.
|
|
MEMSET,
|
|
MEMMOVE,
|
|
MEMCPY,
|
|
|
|
// CALLSEQ_START/CALLSEQ_END - These operators mark the beginning and end of
|
|
// a call sequence, and carry arbitrary information that target might want
|
|
// to know. The first operand is a chain, the rest are specified by the
|
|
// target and not touched by the DAG optimizers.
|
|
CALLSEQ_START, // Beginning of a call sequence
|
|
CALLSEQ_END, // End of a call sequence
|
|
|
|
// VAARG - VAARG has three operands: an input chain, a pointer, and a
|
|
// SRCVALUE. It returns a pair of values: the vaarg value and a new chain.
|
|
VAARG,
|
|
|
|
// VACOPY - VACOPY has five operands: an input chain, a destination pointer,
|
|
// a source pointer, a SRCVALUE for the destination, and a SRCVALUE for the
|
|
// source.
|
|
VACOPY,
|
|
|
|
// VAEND, VASTART - VAEND and VASTART have three operands: an input chain, a
|
|
// pointer, and a SRCVALUE.
|
|
VAEND, VASTART,
|
|
|
|
// SRCVALUE - This corresponds to a Value*, and is used to associate memory
|
|
// locations with their value. This allows one use alias analysis
|
|
// information in the backend.
|
|
SRCVALUE,
|
|
|
|
// PCMARKER - This corresponds to the pcmarker intrinsic.
|
|
PCMARKER,
|
|
|
|
// READCYCLECOUNTER - This corresponds to the readcyclecounter intrinsic.
|
|
// The only operand is a chain and a value and a chain are produced. The
|
|
// value is the contents of the architecture specific cycle counter like
|
|
// register (or other high accuracy low latency clock source)
|
|
READCYCLECOUNTER,
|
|
|
|
// HANDLENODE node - Used as a handle for various purposes.
|
|
HANDLENODE,
|
|
|
|
// LOCATION - This node is used to represent a source location for debug
|
|
// info. It takes token chain as input, then a line number, then a column
|
|
// number, then a filename, then a working dir. It produces a token chain
|
|
// as output.
|
|
LOCATION,
|
|
|
|
// DEBUG_LOC - This node is used to represent source line information
|
|
// embedded in the code. It takes a token chain as input, then a line
|
|
// number, then a column then a file id (provided by MachineDebugInfo.) It
|
|
// produces a token chain as output.
|
|
DEBUG_LOC,
|
|
|
|
// DEBUG_LABEL - This node is used to mark a location in the code where a
|
|
// label should be generated for use by the debug information. It takes a
|
|
// token chain as input and then a unique id (provided by MachineDebugInfo.)
|
|
// It produces a token chain as output.
|
|
DEBUG_LABEL,
|
|
|
|
// BUILTIN_OP_END - This must be the last enum value in this list.
|
|
BUILTIN_OP_END
|
|
};
|
|
|
|
/// Node predicates
|
|
|
|
/// isBuildVectorAllOnes - Return true if the specified node is a
|
|
/// BUILD_VECTOR where all of the elements are ~0 or undef.
|
|
bool isBuildVectorAllOnes(const SDNode *N);
|
|
|
|
/// isBuildVectorAllZeros - Return true if the specified node is a
|
|
/// BUILD_VECTOR where all of the elements are 0 or undef.
|
|
bool isBuildVectorAllZeros(const SDNode *N);
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
/// ISD::CondCode enum - These are ordered carefully to make the bitfields
|
|
/// below work out, when considering SETFALSE (something that never exists
|
|
/// dynamically) as 0. "U" -> Unsigned (for integer operands) or Unordered
|
|
/// (for floating point), "L" -> Less than, "G" -> Greater than, "E" -> Equal
|
|
/// to. If the "N" column is 1, the result of the comparison is undefined if
|
|
/// the input is a NAN.
|
|
///
|
|
/// All of these (except for the 'always folded ops') should be handled for
|
|
/// floating point. For integer, only the SETEQ,SETNE,SETLT,SETLE,SETGT,
|
|
/// SETGE,SETULT,SETULE,SETUGT, and SETUGE opcodes are used.
|
|
///
|
|
/// Note that these are laid out in a specific order to allow bit-twiddling
|
|
/// to transform conditions.
|
|
enum CondCode {
|
|
// Opcode N U L G E Intuitive operation
|
|
SETFALSE, // 0 0 0 0 Always false (always folded)
|
|
SETOEQ, // 0 0 0 1 True if ordered and equal
|
|
SETOGT, // 0 0 1 0 True if ordered and greater than
|
|
SETOGE, // 0 0 1 1 True if ordered and greater than or equal
|
|
SETOLT, // 0 1 0 0 True if ordered and less than
|
|
SETOLE, // 0 1 0 1 True if ordered and less than or equal
|
|
SETONE, // 0 1 1 0 True if ordered and operands are unequal
|
|
SETO, // 0 1 1 1 True if ordered (no nans)
|
|
SETUO, // 1 0 0 0 True if unordered: isnan(X) | isnan(Y)
|
|
SETUEQ, // 1 0 0 1 True if unordered or equal
|
|
SETUGT, // 1 0 1 0 True if unordered or greater than
|
|
SETUGE, // 1 0 1 1 True if unordered, greater than, or equal
|
|
SETULT, // 1 1 0 0 True if unordered or less than
|
|
SETULE, // 1 1 0 1 True if unordered, less than, or equal
|
|
SETUNE, // 1 1 1 0 True if unordered or not equal
|
|
SETTRUE, // 1 1 1 1 Always true (always folded)
|
|
// Don't care operations: undefined if the input is a nan.
|
|
SETFALSE2, // 1 X 0 0 0 Always false (always folded)
|
|
SETEQ, // 1 X 0 0 1 True if equal
|
|
SETGT, // 1 X 0 1 0 True if greater than
|
|
SETGE, // 1 X 0 1 1 True if greater than or equal
|
|
SETLT, // 1 X 1 0 0 True if less than
|
|
SETLE, // 1 X 1 0 1 True if less than or equal
|
|
SETNE, // 1 X 1 1 0 True if not equal
|
|
SETTRUE2, // 1 X 1 1 1 Always true (always folded)
|
|
|
|
SETCC_INVALID // Marker value.
|
|
};
|
|
|
|
/// isSignedIntSetCC - Return true if this is a setcc instruction that
|
|
/// performs a signed comparison when used with integer operands.
|
|
inline bool isSignedIntSetCC(CondCode Code) {
|
|
return Code == SETGT || Code == SETGE || Code == SETLT || Code == SETLE;
|
|
}
|
|
|
|
/// isUnsignedIntSetCC - Return true if this is a setcc instruction that
|
|
/// performs an unsigned comparison when used with integer operands.
|
|
inline bool isUnsignedIntSetCC(CondCode Code) {
|
|
return Code == SETUGT || Code == SETUGE || Code == SETULT || Code == SETULE;
|
|
}
|
|
|
|
/// isTrueWhenEqual - Return true if the specified condition returns true if
|
|
/// the two operands to the condition are equal. Note that if one of the two
|
|
/// operands is a NaN, this value is meaningless.
|
|
inline bool isTrueWhenEqual(CondCode Cond) {
|
|
return ((int)Cond & 1) != 0;
|
|
}
|
|
|
|
/// getUnorderedFlavor - This function returns 0 if the condition is always
|
|
/// false if an operand is a NaN, 1 if the condition is always true if the
|
|
/// operand is a NaN, and 2 if the condition is undefined if the operand is a
|
|
/// NaN.
|
|
inline unsigned getUnorderedFlavor(CondCode Cond) {
|
|
return ((int)Cond >> 3) & 3;
|
|
}
|
|
|
|
/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
|
|
/// 'op' is a valid SetCC operation.
|
|
CondCode getSetCCInverse(CondCode Operation, bool isInteger);
|
|
|
|
/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
|
|
/// when given the operation for (X op Y).
|
|
CondCode getSetCCSwappedOperands(CondCode Operation);
|
|
|
|
/// getSetCCOrOperation - Return the result of a logical OR between different
|
|
/// comparisons of identical values: ((X op1 Y) | (X op2 Y)). This
|
|
/// function returns SETCC_INVALID if it is not possible to represent the
|
|
/// resultant comparison.
|
|
CondCode getSetCCOrOperation(CondCode Op1, CondCode Op2, bool isInteger);
|
|
|
|
/// getSetCCAndOperation - Return the result of a logical AND between
|
|
/// different comparisons of identical values: ((X op1 Y) & (X op2 Y)). This
|
|
/// function returns SETCC_INVALID if it is not possible to represent the
|
|
/// resultant comparison.
|
|
CondCode getSetCCAndOperation(CondCode Op1, CondCode Op2, bool isInteger);
|
|
} // end llvm::ISD namespace
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
/// SDOperand - Unlike LLVM values, Selection DAG nodes may return multiple
|
|
/// values as the result of a computation. Many nodes return multiple values,
|
|
/// from loads (which define a token and a return value) to ADDC (which returns
|
|
/// a result and a carry value), to calls (which may return an arbitrary number
|
|
/// of values).
|
|
///
|
|
/// As such, each use of a SelectionDAG computation must indicate the node that
|
|
/// computes it as well as which return value to use from that node. This pair
|
|
/// of information is represented with the SDOperand value type.
|
|
///
|
|
class SDOperand {
|
|
public:
|
|
SDNode *Val; // The node defining the value we are using.
|
|
unsigned ResNo; // Which return value of the node we are using.
|
|
|
|
SDOperand() : Val(0), ResNo(0) {}
|
|
SDOperand(SDNode *val, unsigned resno) : Val(val), ResNo(resno) {}
|
|
|
|
bool operator==(const SDOperand &O) const {
|
|
return Val == O.Val && ResNo == O.ResNo;
|
|
}
|
|
bool operator!=(const SDOperand &O) const {
|
|
return !operator==(O);
|
|
}
|
|
bool operator<(const SDOperand &O) const {
|
|
return Val < O.Val || (Val == O.Val && ResNo < O.ResNo);
|
|
}
|
|
|
|
SDOperand getValue(unsigned R) const {
|
|
return SDOperand(Val, R);
|
|
}
|
|
|
|
// isOperand - Return true if this node is an operand of N.
|
|
bool isOperand(SDNode *N) const;
|
|
|
|
/// getValueType - Return the ValueType of the referenced return value.
|
|
///
|
|
inline MVT::ValueType getValueType() const;
|
|
|
|
// Forwarding methods - These forward to the corresponding methods in SDNode.
|
|
inline unsigned getOpcode() const;
|
|
inline unsigned getNodeDepth() const;
|
|
inline unsigned getNumOperands() const;
|
|
inline const SDOperand &getOperand(unsigned i) const;
|
|
inline bool isTargetOpcode() const;
|
|
inline unsigned getTargetOpcode() const;
|
|
|
|
/// hasOneUse - Return true if there is exactly one operation using this
|
|
/// result value of the defining operator.
|
|
inline bool hasOneUse() const;
|
|
};
|
|
|
|
|
|
/// simplify_type specializations - Allow casting operators to work directly on
|
|
/// SDOperands as if they were SDNode*'s.
|
|
template<> struct simplify_type<SDOperand> {
|
|
typedef SDNode* SimpleType;
|
|
static SimpleType getSimplifiedValue(const SDOperand &Val) {
|
|
return static_cast<SimpleType>(Val.Val);
|
|
}
|
|
};
|
|
template<> struct simplify_type<const SDOperand> {
|
|
typedef SDNode* SimpleType;
|
|
static SimpleType getSimplifiedValue(const SDOperand &Val) {
|
|
return static_cast<SimpleType>(Val.Val);
|
|
}
|
|
};
|
|
|
|
|
|
/// SDNode - Represents one node in the SelectionDAG.
|
|
///
|
|
class SDNode {
|
|
/// NodeType - The operation that this node performs.
|
|
///
|
|
unsigned short NodeType;
|
|
|
|
/// NodeDepth - Node depth is defined as MAX(Node depth of children)+1. This
|
|
/// means that leaves have a depth of 1, things that use only leaves have a
|
|
/// depth of 2, etc.
|
|
unsigned short NodeDepth;
|
|
|
|
/// OperandList - The values that are used by this operation.
|
|
///
|
|
SDOperand *OperandList;
|
|
|
|
/// ValueList - The types of the values this node defines. SDNode's may
|
|
/// define multiple values simultaneously.
|
|
MVT::ValueType *ValueList;
|
|
|
|
/// NumOperands/NumValues - The number of entries in the Operand/Value list.
|
|
unsigned short NumOperands, NumValues;
|
|
|
|
/// Prev/Next pointers - These pointers form the linked list of of the
|
|
/// AllNodes list in the current DAG.
|
|
SDNode *Prev, *Next;
|
|
friend struct ilist_traits<SDNode>;
|
|
|
|
/// Uses - These are all of the SDNode's that use a value produced by this
|
|
/// node.
|
|
std::vector<SDNode*> Uses;
|
|
public:
|
|
virtual ~SDNode() {
|
|
assert(NumOperands == 0 && "Operand list not cleared before deletion");
|
|
NodeType = ISD::DELETED_NODE;
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Accessors
|
|
//
|
|
unsigned getOpcode() const { return NodeType; }
|
|
bool isTargetOpcode() const { return NodeType >= ISD::BUILTIN_OP_END; }
|
|
unsigned getTargetOpcode() const {
|
|
assert(isTargetOpcode() && "Not a target opcode!");
|
|
return NodeType - ISD::BUILTIN_OP_END;
|
|
}
|
|
|
|
size_t use_size() const { return Uses.size(); }
|
|
bool use_empty() const { return Uses.empty(); }
|
|
bool hasOneUse() const { return Uses.size() == 1; }
|
|
|
|
/// getNodeDepth - Return the distance from this node to the leaves in the
|
|
/// graph. The leaves have a depth of 1.
|
|
unsigned getNodeDepth() const { return NodeDepth; }
|
|
|
|
typedef std::vector<SDNode*>::const_iterator use_iterator;
|
|
use_iterator use_begin() const { return Uses.begin(); }
|
|
use_iterator use_end() const { return Uses.end(); }
|
|
|
|
/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
|
|
/// indicated value. This method ignores uses of other values defined by this
|
|
/// operation.
|
|
bool hasNUsesOfValue(unsigned NUses, unsigned Value) const;
|
|
|
|
// isOnlyUse - Return true if this node is the only use of N.
|
|
bool isOnlyUse(SDNode *N) const;
|
|
|
|
// isOperand - Return true if this node is an operand of N.
|
|
bool isOperand(SDNode *N) const;
|
|
|
|
/// getNumOperands - Return the number of values used by this operation.
|
|
///
|
|
unsigned getNumOperands() const { return NumOperands; }
|
|
|
|
const SDOperand &getOperand(unsigned Num) const {
|
|
assert(Num < NumOperands && "Invalid child # of SDNode!");
|
|
return OperandList[Num];
|
|
}
|
|
typedef const SDOperand* op_iterator;
|
|
op_iterator op_begin() const { return OperandList; }
|
|
op_iterator op_end() const { return OperandList+NumOperands; }
|
|
|
|
|
|
/// getNumValues - Return the number of values defined/returned by this
|
|
/// operator.
|
|
///
|
|
unsigned getNumValues() const { return NumValues; }
|
|
|
|
/// getValueType - Return the type of a specified result.
|
|
///
|
|
MVT::ValueType getValueType(unsigned ResNo) const {
|
|
assert(ResNo < NumValues && "Illegal result number!");
|
|
return ValueList[ResNo];
|
|
}
|
|
|
|
typedef const MVT::ValueType* value_iterator;
|
|
value_iterator value_begin() const { return ValueList; }
|
|
value_iterator value_end() const { return ValueList+NumValues; }
|
|
|
|
/// getOperationName - Return the opcode of this operation for printing.
|
|
///
|
|
const char* getOperationName(const SelectionDAG *G = 0) const;
|
|
void dump() const;
|
|
void dump(const SelectionDAG *G) const;
|
|
|
|
static bool classof(const SDNode *) { return true; }
|
|
|
|
protected:
|
|
friend class SelectionDAG;
|
|
|
|
/// getValueTypeList - Return a pointer to the specified value type.
|
|
///
|
|
static MVT::ValueType *getValueTypeList(MVT::ValueType VT);
|
|
|
|
SDNode(unsigned NT, MVT::ValueType VT) : NodeType(NT), NodeDepth(1) {
|
|
OperandList = 0; NumOperands = 0;
|
|
ValueList = getValueTypeList(VT);
|
|
NumValues = 1;
|
|
Prev = 0; Next = 0;
|
|
}
|
|
SDNode(unsigned NT, SDOperand Op)
|
|
: NodeType(NT), NodeDepth(Op.Val->getNodeDepth()+1) {
|
|
OperandList = new SDOperand[1];
|
|
OperandList[0] = Op;
|
|
NumOperands = 1;
|
|
Op.Val->Uses.push_back(this);
|
|
ValueList = 0;
|
|
NumValues = 0;
|
|
Prev = 0; Next = 0;
|
|
}
|
|
SDNode(unsigned NT, SDOperand N1, SDOperand N2)
|
|
: NodeType(NT) {
|
|
if (N1.Val->getNodeDepth() > N2.Val->getNodeDepth())
|
|
NodeDepth = N1.Val->getNodeDepth()+1;
|
|
else
|
|
NodeDepth = N2.Val->getNodeDepth()+1;
|
|
OperandList = new SDOperand[2];
|
|
OperandList[0] = N1;
|
|
OperandList[1] = N2;
|
|
NumOperands = 2;
|
|
N1.Val->Uses.push_back(this); N2.Val->Uses.push_back(this);
|
|
ValueList = 0;
|
|
NumValues = 0;
|
|
Prev = 0; Next = 0;
|
|
}
|
|
SDNode(unsigned NT, SDOperand N1, SDOperand N2, SDOperand N3)
|
|
: NodeType(NT) {
|
|
unsigned ND = N1.Val->getNodeDepth();
|
|
if (ND < N2.Val->getNodeDepth())
|
|
ND = N2.Val->getNodeDepth();
|
|
if (ND < N3.Val->getNodeDepth())
|
|
ND = N3.Val->getNodeDepth();
|
|
NodeDepth = ND+1;
|
|
|
|
OperandList = new SDOperand[3];
|
|
OperandList[0] = N1;
|
|
OperandList[1] = N2;
|
|
OperandList[2] = N3;
|
|
NumOperands = 3;
|
|
|
|
N1.Val->Uses.push_back(this); N2.Val->Uses.push_back(this);
|
|
N3.Val->Uses.push_back(this);
|
|
ValueList = 0;
|
|
NumValues = 0;
|
|
Prev = 0; Next = 0;
|
|
}
|
|
SDNode(unsigned NT, SDOperand N1, SDOperand N2, SDOperand N3, SDOperand N4)
|
|
: NodeType(NT) {
|
|
unsigned ND = N1.Val->getNodeDepth();
|
|
if (ND < N2.Val->getNodeDepth())
|
|
ND = N2.Val->getNodeDepth();
|
|
if (ND < N3.Val->getNodeDepth())
|
|
ND = N3.Val->getNodeDepth();
|
|
if (ND < N4.Val->getNodeDepth())
|
|
ND = N4.Val->getNodeDepth();
|
|
NodeDepth = ND+1;
|
|
|
|
OperandList = new SDOperand[4];
|
|
OperandList[0] = N1;
|
|
OperandList[1] = N2;
|
|
OperandList[2] = N3;
|
|
OperandList[3] = N4;
|
|
NumOperands = 4;
|
|
|
|
N1.Val->Uses.push_back(this); N2.Val->Uses.push_back(this);
|
|
N3.Val->Uses.push_back(this); N4.Val->Uses.push_back(this);
|
|
ValueList = 0;
|
|
NumValues = 0;
|
|
Prev = 0; Next = 0;
|
|
}
|
|
SDNode(unsigned Opc, const std::vector<SDOperand> &Nodes) : NodeType(Opc) {
|
|
NumOperands = Nodes.size();
|
|
OperandList = new SDOperand[NumOperands];
|
|
|
|
unsigned ND = 0;
|
|
for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
|
|
OperandList[i] = Nodes[i];
|
|
SDNode *N = OperandList[i].Val;
|
|
N->Uses.push_back(this);
|
|
if (ND < N->getNodeDepth()) ND = N->getNodeDepth();
|
|
}
|
|
NodeDepth = ND+1;
|
|
ValueList = 0;
|
|
NumValues = 0;
|
|
Prev = 0; Next = 0;
|
|
}
|
|
|
|
/// MorphNodeTo - This clears the return value and operands list, and sets the
|
|
/// opcode of the node to the specified value. This should only be used by
|
|
/// the SelectionDAG class.
|
|
void MorphNodeTo(unsigned Opc) {
|
|
NodeType = Opc;
|
|
ValueList = 0;
|
|
NumValues = 0;
|
|
|
|
// Clear the operands list, updating used nodes to remove this from their
|
|
// use list.
|
|
for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
|
|
I->Val->removeUser(this);
|
|
delete [] OperandList;
|
|
OperandList = 0;
|
|
NumOperands = 0;
|
|
}
|
|
|
|
void setValueTypes(MVT::ValueType VT) {
|
|
assert(NumValues == 0 && "Should not have values yet!");
|
|
ValueList = getValueTypeList(VT);
|
|
NumValues = 1;
|
|
}
|
|
void setValueTypes(MVT::ValueType *List, unsigned NumVal) {
|
|
assert(NumValues == 0 && "Should not have values yet!");
|
|
ValueList = List;
|
|
NumValues = NumVal;
|
|
}
|
|
|
|
void setOperands(SDOperand Op0) {
|
|
assert(NumOperands == 0 && "Should not have operands yet!");
|
|
OperandList = new SDOperand[1];
|
|
OperandList[0] = Op0;
|
|
NumOperands = 1;
|
|
Op0.Val->Uses.push_back(this);
|
|
}
|
|
void setOperands(SDOperand Op0, SDOperand Op1) {
|
|
assert(NumOperands == 0 && "Should not have operands yet!");
|
|
OperandList = new SDOperand[2];
|
|
OperandList[0] = Op0;
|
|
OperandList[1] = Op1;
|
|
NumOperands = 2;
|
|
Op0.Val->Uses.push_back(this); Op1.Val->Uses.push_back(this);
|
|
}
|
|
void setOperands(SDOperand Op0, SDOperand Op1, SDOperand Op2) {
|
|
assert(NumOperands == 0 && "Should not have operands yet!");
|
|
OperandList = new SDOperand[3];
|
|
OperandList[0] = Op0;
|
|
OperandList[1] = Op1;
|
|
OperandList[2] = Op2;
|
|
NumOperands = 3;
|
|
Op0.Val->Uses.push_back(this); Op1.Val->Uses.push_back(this);
|
|
Op2.Val->Uses.push_back(this);
|
|
}
|
|
void setOperands(SDOperand Op0, SDOperand Op1, SDOperand Op2, SDOperand Op3) {
|
|
assert(NumOperands == 0 && "Should not have operands yet!");
|
|
OperandList = new SDOperand[4];
|
|
OperandList[0] = Op0;
|
|
OperandList[1] = Op1;
|
|
OperandList[2] = Op2;
|
|
OperandList[3] = Op3;
|
|
NumOperands = 4;
|
|
Op0.Val->Uses.push_back(this); Op1.Val->Uses.push_back(this);
|
|
Op2.Val->Uses.push_back(this); Op3.Val->Uses.push_back(this);
|
|
}
|
|
void setOperands(SDOperand Op0, SDOperand Op1, SDOperand Op2, SDOperand Op3,
|
|
SDOperand Op4) {
|
|
assert(NumOperands == 0 && "Should not have operands yet!");
|
|
OperandList = new SDOperand[5];
|
|
OperandList[0] = Op0;
|
|
OperandList[1] = Op1;
|
|
OperandList[2] = Op2;
|
|
OperandList[3] = Op3;
|
|
OperandList[4] = Op4;
|
|
NumOperands = 5;
|
|
Op0.Val->Uses.push_back(this); Op1.Val->Uses.push_back(this);
|
|
Op2.Val->Uses.push_back(this); Op3.Val->Uses.push_back(this);
|
|
Op4.Val->Uses.push_back(this);
|
|
}
|
|
void setOperands(SDOperand Op0, SDOperand Op1, SDOperand Op2, SDOperand Op3,
|
|
SDOperand Op4, SDOperand Op5) {
|
|
assert(NumOperands == 0 && "Should not have operands yet!");
|
|
OperandList = new SDOperand[6];
|
|
OperandList[0] = Op0;
|
|
OperandList[1] = Op1;
|
|
OperandList[2] = Op2;
|
|
OperandList[3] = Op3;
|
|
OperandList[4] = Op4;
|
|
OperandList[5] = Op5;
|
|
NumOperands = 6;
|
|
Op0.Val->Uses.push_back(this); Op1.Val->Uses.push_back(this);
|
|
Op2.Val->Uses.push_back(this); Op3.Val->Uses.push_back(this);
|
|
Op4.Val->Uses.push_back(this); Op5.Val->Uses.push_back(this);
|
|
}
|
|
void setOperands(SDOperand Op0, SDOperand Op1, SDOperand Op2, SDOperand Op3,
|
|
SDOperand Op4, SDOperand Op5, SDOperand Op6) {
|
|
assert(NumOperands == 0 && "Should not have operands yet!");
|
|
OperandList = new SDOperand[7];
|
|
OperandList[0] = Op0;
|
|
OperandList[1] = Op1;
|
|
OperandList[2] = Op2;
|
|
OperandList[3] = Op3;
|
|
OperandList[4] = Op4;
|
|
OperandList[5] = Op5;
|
|
OperandList[6] = Op6;
|
|
NumOperands = 7;
|
|
Op0.Val->Uses.push_back(this); Op1.Val->Uses.push_back(this);
|
|
Op2.Val->Uses.push_back(this); Op3.Val->Uses.push_back(this);
|
|
Op4.Val->Uses.push_back(this); Op5.Val->Uses.push_back(this);
|
|
Op6.Val->Uses.push_back(this);
|
|
}
|
|
void setOperands(SDOperand Op0, SDOperand Op1, SDOperand Op2, SDOperand Op3,
|
|
SDOperand Op4, SDOperand Op5, SDOperand Op6, SDOperand Op7) {
|
|
assert(NumOperands == 0 && "Should not have operands yet!");
|
|
OperandList = new SDOperand[8];
|
|
OperandList[0] = Op0;
|
|
OperandList[1] = Op1;
|
|
OperandList[2] = Op2;
|
|
OperandList[3] = Op3;
|
|
OperandList[4] = Op4;
|
|
OperandList[5] = Op5;
|
|
OperandList[6] = Op6;
|
|
OperandList[7] = Op7;
|
|
NumOperands = 8;
|
|
Op0.Val->Uses.push_back(this); Op1.Val->Uses.push_back(this);
|
|
Op2.Val->Uses.push_back(this); Op3.Val->Uses.push_back(this);
|
|
Op4.Val->Uses.push_back(this); Op5.Val->Uses.push_back(this);
|
|
Op6.Val->Uses.push_back(this); Op7.Val->Uses.push_back(this);
|
|
}
|
|
|
|
void addUser(SDNode *User) {
|
|
Uses.push_back(User);
|
|
}
|
|
void removeUser(SDNode *User) {
|
|
// Remove this user from the operand's use list.
|
|
for (unsigned i = Uses.size(); ; --i) {
|
|
assert(i != 0 && "Didn't find user!");
|
|
if (Uses[i-1] == User) {
|
|
Uses[i-1] = Uses.back();
|
|
Uses.pop_back();
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
|
|
// Define inline functions from the SDOperand class.
|
|
|
|
inline unsigned SDOperand::getOpcode() const {
|
|
return Val->getOpcode();
|
|
}
|
|
inline unsigned SDOperand::getNodeDepth() const {
|
|
return Val->getNodeDepth();
|
|
}
|
|
inline MVT::ValueType SDOperand::getValueType() const {
|
|
return Val->getValueType(ResNo);
|
|
}
|
|
inline unsigned SDOperand::getNumOperands() const {
|
|
return Val->getNumOperands();
|
|
}
|
|
inline const SDOperand &SDOperand::getOperand(unsigned i) const {
|
|
return Val->getOperand(i);
|
|
}
|
|
inline bool SDOperand::isTargetOpcode() const {
|
|
return Val->isTargetOpcode();
|
|
}
|
|
inline unsigned SDOperand::getTargetOpcode() const {
|
|
return Val->getTargetOpcode();
|
|
}
|
|
inline bool SDOperand::hasOneUse() const {
|
|
return Val->hasNUsesOfValue(1, ResNo);
|
|
}
|
|
|
|
/// HandleSDNode - This class is used to form a handle around another node that
|
|
/// is persistant and is updated across invocations of replaceAllUsesWith on its
|
|
/// operand. This node should be directly created by end-users and not added to
|
|
/// the AllNodes list.
|
|
class HandleSDNode : public SDNode {
|
|
public:
|
|
HandleSDNode(SDOperand X) : SDNode(ISD::HANDLENODE, X) {}
|
|
~HandleSDNode() {
|
|
MorphNodeTo(ISD::HANDLENODE); // Drops operand uses.
|
|
}
|
|
|
|
SDOperand getValue() const { return getOperand(0); }
|
|
};
|
|
|
|
class StringSDNode : public SDNode {
|
|
std::string Value;
|
|
protected:
|
|
friend class SelectionDAG;
|
|
StringSDNode(const std::string &val)
|
|
: SDNode(ISD::STRING, MVT::Other), Value(val) {
|
|
}
|
|
public:
|
|
const std::string &getValue() const { return Value; }
|
|
static bool classof(const StringSDNode *) { return true; }
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::STRING;
|
|
}
|
|
};
|
|
|
|
class ConstantSDNode : public SDNode {
|
|
uint64_t Value;
|
|
protected:
|
|
friend class SelectionDAG;
|
|
ConstantSDNode(bool isTarget, uint64_t val, MVT::ValueType VT)
|
|
: SDNode(isTarget ? ISD::TargetConstant : ISD::Constant, VT), Value(val) {
|
|
}
|
|
public:
|
|
|
|
uint64_t getValue() const { return Value; }
|
|
|
|
int64_t getSignExtended() const {
|
|
unsigned Bits = MVT::getSizeInBits(getValueType(0));
|
|
return ((int64_t)Value << (64-Bits)) >> (64-Bits);
|
|
}
|
|
|
|
bool isNullValue() const { return Value == 0; }
|
|
bool isAllOnesValue() const {
|
|
return Value == MVT::getIntVTBitMask(getValueType(0));
|
|
}
|
|
|
|
static bool classof(const ConstantSDNode *) { return true; }
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::Constant ||
|
|
N->getOpcode() == ISD::TargetConstant;
|
|
}
|
|
};
|
|
|
|
class ConstantFPSDNode : public SDNode {
|
|
double Value;
|
|
protected:
|
|
friend class SelectionDAG;
|
|
ConstantFPSDNode(bool isTarget, double val, MVT::ValueType VT)
|
|
: SDNode(isTarget ? ISD::TargetConstantFP : ISD::ConstantFP, VT),
|
|
Value(val) {
|
|
}
|
|
public:
|
|
|
|
double getValue() const { return Value; }
|
|
|
|
/// isExactlyValue - We don't rely on operator== working on double values, as
|
|
/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
|
|
/// As such, this method can be used to do an exact bit-for-bit comparison of
|
|
/// two floating point values.
|
|
bool isExactlyValue(double V) const;
|
|
|
|
static bool classof(const ConstantFPSDNode *) { return true; }
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::ConstantFP ||
|
|
N->getOpcode() == ISD::TargetConstantFP;
|
|
}
|
|
};
|
|
|
|
class GlobalAddressSDNode : public SDNode {
|
|
GlobalValue *TheGlobal;
|
|
int Offset;
|
|
protected:
|
|
friend class SelectionDAG;
|
|
GlobalAddressSDNode(bool isTarget, const GlobalValue *GA, MVT::ValueType VT,
|
|
int o=0)
|
|
: SDNode(isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress, VT),
|
|
Offset(o) {
|
|
TheGlobal = const_cast<GlobalValue*>(GA);
|
|
}
|
|
public:
|
|
|
|
GlobalValue *getGlobal() const { return TheGlobal; }
|
|
int getOffset() const { return Offset; }
|
|
|
|
static bool classof(const GlobalAddressSDNode *) { return true; }
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::GlobalAddress ||
|
|
N->getOpcode() == ISD::TargetGlobalAddress;
|
|
}
|
|
};
|
|
|
|
|
|
class FrameIndexSDNode : public SDNode {
|
|
int FI;
|
|
protected:
|
|
friend class SelectionDAG;
|
|
FrameIndexSDNode(int fi, MVT::ValueType VT, bool isTarg)
|
|
: SDNode(isTarg ? ISD::TargetFrameIndex : ISD::FrameIndex, VT), FI(fi) {}
|
|
public:
|
|
|
|
int getIndex() const { return FI; }
|
|
|
|
static bool classof(const FrameIndexSDNode *) { return true; }
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::FrameIndex ||
|
|
N->getOpcode() == ISD::TargetFrameIndex;
|
|
}
|
|
};
|
|
|
|
class JumpTableSDNode : public SDNode {
|
|
int JTI;
|
|
protected:
|
|
friend class SelectionDAG;
|
|
JumpTableSDNode(int jti, MVT::ValueType VT, bool isTarg)
|
|
: SDNode(isTarg ? ISD::TargetJumpTable : ISD::JumpTable, VT),
|
|
JTI(jti) {}
|
|
public:
|
|
|
|
int getIndex() const { return JTI; }
|
|
|
|
static bool classof(const JumpTableSDNode *) { return true; }
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::JumpTable ||
|
|
N->getOpcode() == ISD::TargetJumpTable;
|
|
}
|
|
};
|
|
|
|
class ConstantPoolSDNode : public SDNode {
|
|
Constant *C;
|
|
int Offset;
|
|
unsigned Alignment;
|
|
protected:
|
|
friend class SelectionDAG;
|
|
ConstantPoolSDNode(bool isTarget, Constant *c, MVT::ValueType VT,
|
|
int o=0)
|
|
: SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, VT),
|
|
C(c), Offset(o), Alignment(0) {}
|
|
ConstantPoolSDNode(bool isTarget, Constant *c, MVT::ValueType VT, int o,
|
|
unsigned Align)
|
|
: SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, VT),
|
|
C(c), Offset(o), Alignment(Align) {}
|
|
public:
|
|
|
|
Constant *get() const { return C; }
|
|
int getOffset() const { return Offset; }
|
|
|
|
// Return the alignment of this constant pool object, which is either 0 (for
|
|
// default alignment) or log2 of the desired value.
|
|
unsigned getAlignment() const { return Alignment; }
|
|
|
|
static bool classof(const ConstantPoolSDNode *) { return true; }
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::ConstantPool ||
|
|
N->getOpcode() == ISD::TargetConstantPool;
|
|
}
|
|
};
|
|
|
|
class BasicBlockSDNode : public SDNode {
|
|
MachineBasicBlock *MBB;
|
|
protected:
|
|
friend class SelectionDAG;
|
|
BasicBlockSDNode(MachineBasicBlock *mbb)
|
|
: SDNode(ISD::BasicBlock, MVT::Other), MBB(mbb) {}
|
|
public:
|
|
|
|
MachineBasicBlock *getBasicBlock() const { return MBB; }
|
|
|
|
static bool classof(const BasicBlockSDNode *) { return true; }
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::BasicBlock;
|
|
}
|
|
};
|
|
|
|
class SrcValueSDNode : public SDNode {
|
|
const Value *V;
|
|
int offset;
|
|
protected:
|
|
friend class SelectionDAG;
|
|
SrcValueSDNode(const Value* v, int o)
|
|
: SDNode(ISD::SRCVALUE, MVT::Other), V(v), offset(o) {}
|
|
|
|
public:
|
|
const Value *getValue() const { return V; }
|
|
int getOffset() const { return offset; }
|
|
|
|
static bool classof(const SrcValueSDNode *) { return true; }
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::SRCVALUE;
|
|
}
|
|
};
|
|
|
|
|
|
class RegisterSDNode : public SDNode {
|
|
unsigned Reg;
|
|
protected:
|
|
friend class SelectionDAG;
|
|
RegisterSDNode(unsigned reg, MVT::ValueType VT)
|
|
: SDNode(ISD::Register, VT), Reg(reg) {}
|
|
public:
|
|
|
|
unsigned getReg() const { return Reg; }
|
|
|
|
static bool classof(const RegisterSDNode *) { return true; }
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::Register;
|
|
}
|
|
};
|
|
|
|
class ExternalSymbolSDNode : public SDNode {
|
|
const char *Symbol;
|
|
protected:
|
|
friend class SelectionDAG;
|
|
ExternalSymbolSDNode(bool isTarget, const char *Sym, MVT::ValueType VT)
|
|
: SDNode(isTarget ? ISD::TargetExternalSymbol : ISD::ExternalSymbol, VT),
|
|
Symbol(Sym) {
|
|
}
|
|
public:
|
|
|
|
const char *getSymbol() const { return Symbol; }
|
|
|
|
static bool classof(const ExternalSymbolSDNode *) { return true; }
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::ExternalSymbol ||
|
|
N->getOpcode() == ISD::TargetExternalSymbol;
|
|
}
|
|
};
|
|
|
|
class CondCodeSDNode : public SDNode {
|
|
ISD::CondCode Condition;
|
|
protected:
|
|
friend class SelectionDAG;
|
|
CondCodeSDNode(ISD::CondCode Cond)
|
|
: SDNode(ISD::CONDCODE, MVT::Other), Condition(Cond) {
|
|
}
|
|
public:
|
|
|
|
ISD::CondCode get() const { return Condition; }
|
|
|
|
static bool classof(const CondCodeSDNode *) { return true; }
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::CONDCODE;
|
|
}
|
|
};
|
|
|
|
/// VTSDNode - This class is used to represent MVT::ValueType's, which are used
|
|
/// to parameterize some operations.
|
|
class VTSDNode : public SDNode {
|
|
MVT::ValueType ValueType;
|
|
protected:
|
|
friend class SelectionDAG;
|
|
VTSDNode(MVT::ValueType VT)
|
|
: SDNode(ISD::VALUETYPE, MVT::Other), ValueType(VT) {}
|
|
public:
|
|
|
|
MVT::ValueType getVT() const { return ValueType; }
|
|
|
|
static bool classof(const VTSDNode *) { return true; }
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::VALUETYPE;
|
|
}
|
|
};
|
|
|
|
|
|
class SDNodeIterator : public forward_iterator<SDNode, ptrdiff_t> {
|
|
SDNode *Node;
|
|
unsigned Operand;
|
|
|
|
SDNodeIterator(SDNode *N, unsigned Op) : Node(N), Operand(Op) {}
|
|
public:
|
|
bool operator==(const SDNodeIterator& x) const {
|
|
return Operand == x.Operand;
|
|
}
|
|
bool operator!=(const SDNodeIterator& x) const { return !operator==(x); }
|
|
|
|
const SDNodeIterator &operator=(const SDNodeIterator &I) {
|
|
assert(I.Node == Node && "Cannot assign iterators to two different nodes!");
|
|
Operand = I.Operand;
|
|
return *this;
|
|
}
|
|
|
|
pointer operator*() const {
|
|
return Node->getOperand(Operand).Val;
|
|
}
|
|
pointer operator->() const { return operator*(); }
|
|
|
|
SDNodeIterator& operator++() { // Preincrement
|
|
++Operand;
|
|
return *this;
|
|
}
|
|
SDNodeIterator operator++(int) { // Postincrement
|
|
SDNodeIterator tmp = *this; ++*this; return tmp;
|
|
}
|
|
|
|
static SDNodeIterator begin(SDNode *N) { return SDNodeIterator(N, 0); }
|
|
static SDNodeIterator end (SDNode *N) {
|
|
return SDNodeIterator(N, N->getNumOperands());
|
|
}
|
|
|
|
unsigned getOperand() const { return Operand; }
|
|
const SDNode *getNode() const { return Node; }
|
|
};
|
|
|
|
template <> struct GraphTraits<SDNode*> {
|
|
typedef SDNode NodeType;
|
|
typedef SDNodeIterator ChildIteratorType;
|
|
static inline NodeType *getEntryNode(SDNode *N) { return N; }
|
|
static inline ChildIteratorType child_begin(NodeType *N) {
|
|
return SDNodeIterator::begin(N);
|
|
}
|
|
static inline ChildIteratorType child_end(NodeType *N) {
|
|
return SDNodeIterator::end(N);
|
|
}
|
|
};
|
|
|
|
template<>
|
|
struct ilist_traits<SDNode> {
|
|
static SDNode *getPrev(const SDNode *N) { return N->Prev; }
|
|
static SDNode *getNext(const SDNode *N) { return N->Next; }
|
|
|
|
static void setPrev(SDNode *N, SDNode *Prev) { N->Prev = Prev; }
|
|
static void setNext(SDNode *N, SDNode *Next) { N->Next = Next; }
|
|
|
|
static SDNode *createSentinel() {
|
|
return new SDNode(ISD::EntryToken, MVT::Other);
|
|
}
|
|
static void destroySentinel(SDNode *N) { delete N; }
|
|
//static SDNode *createNode(const SDNode &V) { return new SDNode(V); }
|
|
|
|
|
|
void addNodeToList(SDNode *NTy) {}
|
|
void removeNodeFromList(SDNode *NTy) {}
|
|
void transferNodesFromList(iplist<SDNode, ilist_traits> &L2,
|
|
const ilist_iterator<SDNode> &X,
|
|
const ilist_iterator<SDNode> &Y) {}
|
|
};
|
|
|
|
} // end llvm namespace
|
|
|
|
#endif
|